Exploring the Effect of the Solvothermal Time on the Structural Properties and Catalytic Activity of Cu-ZnO-ZrO2 Catalysts Synthesized by the Solvothermal Method for CO2 Hydrogenation to Methanol
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.1.1. XRD
2.1.2. SEM and EDX Mapping
2.1.3. N2 Adsorption–Desorption
2.1.4. SCu
2.1.5. XPS
2.1.6. H2-TPR
2.1.7. CO2-TPD
2.1.8. H2-TPD
2.2. Catalytic Activity
2.3. Structure–Activity Relationship Analysis
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Characterization
3.3. Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the greener production of formates/formic acid, methanol, and DME by heterogeneously catalyzed CO2 hydrogenation processes. Chem. Rev. 2017, 117, 9804–9838. [Google Scholar] [CrossRef]
- Porosoff, M.D.; Yan, B.; Chen, J.G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62–73. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, D.; Dong, S.; Wu, J.; Zhu, M.; Han, Y.-F.; Liu, Z.-W. Catalysis for CO2 hydrogenation—What we have learned/should Learn from the hydrogenation of syngas to methanol. Catalysts 2023, 13, 1452. [Google Scholar] [CrossRef]
- Dang, S.; Yang, H.; Gao, P.; Wang, H.; Li, X.; Wei, W.; Sun, Y. A review of research progress on heterogeneous catalysts for methanol synthesis from carbon dioxide hydrogenation. Catal. Today 2019, 330, 61–75. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, L.; Wu, Z.; Huang, C.; Chen, K.; Wang, H.; Yang, F. Size effect of Cu particles on interface formation in Cu/ZnO catalysts for methanol synthesis. Catalysts 2023, 13, 1190. [Google Scholar] [CrossRef]
- Witoon, T.; Chalorngtham, J.; Dumrongbunditkul, P.; Chareonpanich, M.; Limtrakul, J. CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases. Chem. Eng. J. 2016, 293, 327–336. [Google Scholar] [CrossRef]
- Witoon, T.; Kachaban, N.; Donphai, W.; Kidkhunthod, P.; Faungnawakij, K.; Chareonpanich, M.; Limtrakul, J. Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts. Energy Convers. Manag. 2016, 118, 21–31. [Google Scholar] [CrossRef]
- Kordus, D.; Widrinna, S.; Timoshenko, J.; Lopez Luna, M.; Rettenmaier, C.; Chee, S.W.; Ortega, E.; Karslioglu, O.; Kuhl, S.; Roldan Cuenya, B. Enhanced methanol synthesis from CO2 hydrogenation achieved by tuning the Cu-ZnO interaction in ZnO/Cu2O nanocube catalysts supported on ZrO2 and SiO2. J. Am. Chem. Soc. 2024, 146, 8677–8687. [Google Scholar] [CrossRef] [PubMed]
- Zabilskiy, M.; Sushkevich, V.L.; Palagin, D.; Newton, M.A.; Krumeich, F.; van Bokhoven, J.A. The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol. Nat. Commun. 2020, 11, 2409. [Google Scholar] [CrossRef]
- Marcos, F.C.F.; Cavalcanti, F.M.; Petrolini, D.D.; Lin, L.; Betancourt, L.E.; Senanayake, S.D.; Rodriguez, J.A.; Assaf, J.M.; Giudici, R.; Assaf, E.M. Effect of operating parameters on H2/CO2 conversion to methanol over Cu-Zn oxide supported on ZrO2 polymorph catalysts: Characterization and kinetics. Chem. Eng. J. 2022, 427, 130947. [Google Scholar] [CrossRef]
- Bonura, G.; Cordaro, M.; Cannilla, C.; Arena, F.; Frusteri, F. The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl. Catal. B Environ. 2014, 152–153, 152–161. [Google Scholar] [CrossRef]
- Dong, X.; Li, F.; Zhao, N.; Xiao, F.; Wang, J.; Tan, Y. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Catal. B Environ. 2016, 191, 8–17. [Google Scholar] [CrossRef]
- Witoon, T.; Numpilai, T.; Phongamwong, T.; Donphai, W.; Boonyuen, C.; Warakulwit, C.; Chareonpanich, M.; Limtrakul, J. Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem. Eng. J. 2018, 334, 1781–1791. [Google Scholar] [CrossRef]
- Chang, X.; Zi, X.; Li, J.; Liu, F.; Han, X.; Chen, J.; Hao, Z.; Zhang, H.; Zhang, Z.; Gao, P.; et al. An insight into synergistic metal-oxide interaction in CO2 hydrogenation to methanol over Cu/ZnO/ZrO2. Catalysts 2023, 13, 1337. [Google Scholar] [CrossRef]
- Chen, D.; Mao, D.; Xiao, J.; Guo, X.; Yu, J. CO2 hydrogenation to methanol over CuO–ZnO–TiO2–ZrO2: A comparison of catalysts prepared by sol–gel, solid-state reaction and solution-combustion. J. Sol-Gel Sci. Technol. 2018, 86, 719–730. [Google Scholar] [CrossRef]
- Liang, Y.; Mao, D.; Guo, X.; Yu, J.; Wu, G.; Ma, Z. Solvothermal preparation of CuO-ZnO-ZrO2 catalysts for methanol synthesis via CO2 hydrogenation. J. Taiwan Inst. Chem. Eng. 2021, 121, 81–91. [Google Scholar] [CrossRef]
- Liang, Y.; Han, J.; Yu, J.; Wu, G.; Mao, D. Methanol synthesis from CO2 hydrogenation on CuO–ZnO–ZrO2 prepared by solvothermal method: The influence of solvent on catalyst properties and catalytic behavior. Top. Catal. 2023, 66, 1503–1514. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Zhang, Z.; Zhang, Y.; Wu, H.; Hu, Z. Morphology well-controlled synthesis of NiO by solvothermal reaction time and their morphology-dependent pseudocapacitive performances. J. Alloys Compd. 2016, 658, 621–628. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, J.; Zhao, L.; Wang, F.; He, H.; Dramou, P. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features. J. Phys. Chem. Solids 2022, 169, 110855. [Google Scholar] [CrossRef]
- Wang, G.; Mao, D.; Guo, X.; Yu, J. Enhanced performance of the CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol by WO3 modification. Appl. Surf. Sci. 2018, 456, 403–409. [Google Scholar] [CrossRef]
- Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. Glycine–nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J. Catal. 2010, 271, 178–185. [Google Scholar] [CrossRef]
- Samson, K.; Śliwa, M.; Socha, R.P.; Góra-Marek, K.; Mucha, D.; Rutkowska-Zbik, D.; Paul, J.F.; Ruggiero-Mikołajczyk, M.; Grabowski, R.; Słoczyński, J. Influence of ZrO2 structure and copper electronic state on activity of Cu/ZrO2 catalysts in methanol synthesis from CO2. ACS Catal. 2014, 4, 3730–3741. [Google Scholar] [CrossRef]
- Shi, L.; Shen, W.; Yang, G.; Fan, X.; Jin, Y.; Zeng, C.; Matsuda, K.; Tsubaki, N. Formic acid directly assisted solid-state synthesis of metallic catalysts without further reduction: As-prepared Cu/ZnO catalysts for low-temperature methanol synthesis. J. Catal. 2013, 302, 83–90. [Google Scholar] [CrossRef]
- Huang, C.; Mao, D.; Guo, X.; Yu, J. Microwave-assisted hydrothermal synthesis of CuO–ZnO–ZrO2 as catalyst for direct synthesis of nethanol by carbon dioxide hydrogenation. Energy Technol. 2017, 5, 2100–2107. [Google Scholar] [CrossRef]
- Liu, H.; Huang, W.; Yu, Z.; Wang, X.; Jia, Y.; Huang, M.; Yang, H.; Li, R.; Wei, Q.; Zhou, Y. High-performance CuMgAl catalysts derived from hydrotalcite for CO2 hydrogenation to methanol: Effects of Cu-MgO interaction. Mol. Catal. 2024, 558, 114002. [Google Scholar] [CrossRef]
- Xue, H.; Guo, X.; Mao, D.; Meng, T.; Yu, J.; Ma, Z. Phosphotungstic acid-modified MnOx for selective catalytic reduction of NOx with NH3. Catalysts 2022, 12, 1248. [Google Scholar] [CrossRef]
- Han, J.; Yu, J.; Xue, Z.; Wu, G.; Mao, D. Highly efficient CO2 hydrogenation to methanol over Cu–Ce1−xZrxO2 catalysts prepared by an eco-friendly and facile solid-phase grinding method. Renew. Energy 2024, 222, 119951. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, G.; Fan, G.; Yang, L.; Li, F. Fabrication of Zr–Ce oxide solid solution surrounded Cu-based catalyst assisted by a microliquid film reactor for efficient CO2 hydrogenation to produce methanol. Ind. Eng. Chem. Res. 2021, 60, 16188–16200. [Google Scholar] [CrossRef]
- Sripada, P.; Kimpton, J.; Barlow, A.; Williams, T.; Kandasamy, S.; Bhattacharya, S. Investigating the dynamic structural changes on Cu/CeO2 catalysts observed during CO2 hydrogenation. J. Catal. 2020, 381, 415–426. [Google Scholar] [CrossRef]
- Hu, X.; Mao, D.; Yu, J.; Xue, Z. Low-temperature CO oxidation on CuO-CeO2-ZrO2 catalysts prepared by a facile surfactant-assisted grinding method. Fuel 2023, 340, 127529. [Google Scholar] [CrossRef]
- Chen, G.; Yu, J.; Li, G.; Zheng, X.; Mao, H.; Mao, D. Cu+-ZrO2 interfacial sites with highly dispersed copper nanoparticles derived from Cu@UiO-67 hybrid for efficient CO2 hydrogenation to methanol. Int. J. Hydrogen Energy 2023, 48, 2605–2616. [Google Scholar] [CrossRef]
- Cui, X.; Yan, W.; Yang, H.; Shi, Y.; Xue, Y.; Zhang, H.; Niu, Y.; Fan, W.; Deng, T. Preserving the active Cu–ZnO interface for selective hydrogenation of CO2 to dimethyl ether and methanol. ACS Sustain. Chem. Eng. 2021, 9, 2661–2672. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Z.; Song, L.; Fu, Q. An investigation of Zr/Ce ratio influencing the catalytic performance of CuO/Ce1−xZrxO2 catalyst for CO2 hydrogenation to CH3OH. J. Energy Chem. 2020, 47, 18–28. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, X.; Guo, M.; Li, J.; Peng, C. An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu−Ce−Zr catalysts. Front. Chem. Sci. Eng. 2022, 16, 950–962. [Google Scholar] [CrossRef]
- Wang, W.; Qu, Z.; Song, L.; Fu, Q. CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: Tuning methanol selectivity via metal-support interaction. J. Energy Chem. 2020, 40, 22–30. [Google Scholar] [CrossRef]
- Wang, Y.; Kattel, S.; Gao, W.; Li, K.; Liu, P.; Chen, J.G.; Wang, H. Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nat. Commun. 2019, 10, 1166. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Zhang, H.; Zhang, J.; Wu, D. The influence of the compositions and structures of Cu-ZrO2 catalysts on the catalytic performance of CO2 hydrogenation to CH3OH. Chem. Eng. J. 2023, 471, 144605. [Google Scholar] [CrossRef]
- Song, L.; Wang, H.; Wang, S.; Qu, Z. Dual-site activation of H2 over Cu/ZnAl2O4 boosting CO2 hydrogenation to methanol. Appl. Catal. B Environ. 2023, 322, 122137. [Google Scholar] [CrossRef]
- An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840. [Google Scholar] [CrossRef]
- Dasireddy, V.D.B.C.; Likozar, B. The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity. Renew. Energy 2019, 140, 452–460. [Google Scholar] [CrossRef]
- Singh, R.; Kundu, K.; Pant, K.K. CO2 hydrogenation to methanol over Cu-ZnO-CeO2 catalyst: Reaction structure–activity relationship, optimizing Ce and Zn ratio, and kinetic study. Chem. Eng. J. 2024, 479, 147783. [Google Scholar] [CrossRef]
- Natesakhawat, S.; Lekse, J.W.; Baltrus, J.P.; Ohodnicki, P.R.; Howard, B.H.; Deng, X.; Matranga, C. Active sites and structure–activity relationships of copper-based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal. 2012, 2, 1667–1676. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Etim, U.J.; Song, Y.; Gazit, O.M.; Zhong, Z. Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol. J. Catal. 2022, 413, 284–296. [Google Scholar] [CrossRef]
- Hou, X.-X.; Xu, C.-H.; Liu, Y.-L.; Li, J.-J.; Hu, X.-D.; Liu, J.; Liu, J.-Y.; Xu, Q. Improved methanol synthesis from CO2 hydrogenation over CuZnAlZr catalysts with precursor pre-activation by formaldehyde. J. Catal. 2019, 379, 147–153. [Google Scholar] [CrossRef]
- Huang, J.F.; Zhu, J.; Cao, L.Y.; Fei, J.; Wu, J.P. Influence of solvothermal time on oxidation resistance of carbon/carbon composites modified by borate sol. Surf. Eng. 2012, 28, 351–356. [Google Scholar] [CrossRef]
- Raudaskoski, R.; Niemelä, M.V.; Keiski, R.L. The effect of ageing time on co-precipitated Cu/ZnO/ZrO2 catalysts used in methanol synthesis from CO2 and H2. Top. Catal. 2007, 45, 57–60. [Google Scholar] [CrossRef]
- Zou, T.; Araújo, T.P.; Krumeich, F.; Mondelli, C.; Pérez-Ramírez, J. ZnO-promoted inverse ZrO2–Cu catalysts for CO2-based methanol synthesis under mild conditions. ACS Sustain. Chem. Eng. 2021, 10, 81–90. [Google Scholar] [CrossRef]
- Angelo, L.; Girleanu, M.; Ersen, O.; Serra, C.; Parkhomenko, K.; Roger, A.-C. Catalyst synthesis by continuous coprecipitation under micro-fluidic conditions: Application to the preparation of catalysts for methanol synthesis from CO2/H2. Catal. Today 2016, 270, 59–67. [Google Scholar] [CrossRef]
- Arena, F.; Barbera, K.; Italiano, G.; Bonura, G.; Spadaro, L.; Frusteri, F. Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J. Catal. 2007, 249, 185–194. [Google Scholar] [CrossRef]
- Ding, Z.; Xu, Y.; Yang, Q.; Hou, R. Pd-modified CuO–ZnO–ZrO2 catalysts for CH3OH synthesis from CO2 hydrogenation. Int. J. Hydrogen Energy 2022, 47, 24750–24760. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, Q.; Wu, D.; Fan, W.-H.; Zhang, Y.-L.; Deng, J.-F. A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Appl. Catal. A Gen. 1998, 171, 45–55. [Google Scholar] [CrossRef]
- Li, L.; Mao, D.; Yu, J.; Guo, X. Highly selective hydrogenation of CO2 to methanol over CuO–ZnO–ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. J. Power Sources 2015, 279, 394–404. [Google Scholar] [CrossRef]
- Marcos, F.C.F.; Lin, L.; Betancourt, L.E.; Senanayake, S.D.; Rodriguez, J.A.; Assaf, J.M.; Giudici, R.; Assaf, E.M. Insights into the methanol synthesis mechanism via CO2 hydrogenation over Cu-ZnO-ZrO2 catalysts: Effects of surfactant/Cu-Zn-Zr molar ratio. J. CO2 Util. 2020, 41, 101215. [Google Scholar] [CrossRef]
- Li, Z.; Du, T.; Li, Y.; Jia, H.; Wang, Y.; Song, Y.; Fang, X. Water-and reduction-free preparation of oxygen vacancy rich Cu-ZnO-ZrO2 catalysts for promoted methanol synthesis from CO2. Fuel 2022, 322, 124264. [Google Scholar] [CrossRef]
Catalyst | SBET (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) | dCuO1 (nm) | dCu1 (nm) | SCu2 (m2/g) |
---|---|---|---|---|---|---|
CZZ-1 | 20.7 | 0.055 | 10.6 | 26.8 | 30.2 | 4.6 |
CZZ-3 | 32.7 | 0.069 | 8.1 | 22.2 | 27.2 | 12.0 |
CZZ-6 | 40.5 | 0.087 | 8.6 | 19.1 | 25.7 | 15.7 |
CZZ-12 | 16.4 | 0.054 | 13.3 | 27.7 | 29.1 | 4.5 |
Catalyst | Temperature of Peaks (°C) | H2 Consumption of Peaks (μmol/g) | Degree of Reduction 1 | |||
---|---|---|---|---|---|---|
Tα | Tβ | α | β | Total | ||
CZZ-1 | 211 | 262 | 138 | 2676 | 2814 | 0.81 |
CZZ-3 | 210 | - | 2802 | - | 2802 | 0.80 |
CZZ-6 | 201 | - | 3306 | - | 3306 | 0.94 |
CZZ-12 | 242 | - | 3378 | - | 3378 | 0.96 |
Catalyst | α Peak | β Peak | γ Peak | (Aα + Aβ + Aγ)/(a.u.) | |||
---|---|---|---|---|---|---|---|
Tα/(°C) | Aα/(a.u.) | Tβ/(°C) | Aβ/(a.u.) | Tγ/(°C) | Aγ/(a.u.) | ||
CZZ-1 | 105 | 47 | 150 | 72 | 387 | 42 | 161 |
CZZ-3 | 114 | 116 | 165 | 207 | 389 | 46 | 369 |
CZZ-6 | 105 | 70 | 151 | 144 | 380 | 101 | 315 |
CZZ-12 | 111 | 46 | 160 | 68 | 390 | 42 | 156 |
Catalyst | α Peak | β Peak | Aα + Aβ/(a.u.) | ||
---|---|---|---|---|---|
Tα/(°C) | Aα/(a.u.) | Tβ/(°C) | Aβ/(a.u.) | ||
CZZ-1 | 137 | 20 | 285 | 80 | 100 |
CZZ-3 | 148 | 25 | 324 | 81 | 106 |
CZZ-6 | 106 | 30 | 282 | 172 | 202 |
CZZ-12 | 161 | 25 | 327 | 82 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, J.; Liang, Y.; Yu, J.; Wu, G.; Mao, D. Exploring the Effect of the Solvothermal Time on the Structural Properties and Catalytic Activity of Cu-ZnO-ZrO2 Catalysts Synthesized by the Solvothermal Method for CO2 Hydrogenation to Methanol. Catalysts 2024, 14, 390. https://doi.org/10.3390/catal14060390
Han J, Liang Y, Yu J, Wu G, Mao D. Exploring the Effect of the Solvothermal Time on the Structural Properties and Catalytic Activity of Cu-ZnO-ZrO2 Catalysts Synthesized by the Solvothermal Method for CO2 Hydrogenation to Methanol. Catalysts. 2024; 14(6):390. https://doi.org/10.3390/catal14060390
Chicago/Turabian StyleHan, Jian, Yannan Liang, Jun Yu, Guisheng Wu, and Dongsen Mao. 2024. "Exploring the Effect of the Solvothermal Time on the Structural Properties and Catalytic Activity of Cu-ZnO-ZrO2 Catalysts Synthesized by the Solvothermal Method for CO2 Hydrogenation to Methanol" Catalysts 14, no. 6: 390. https://doi.org/10.3390/catal14060390
APA StyleHan, J., Liang, Y., Yu, J., Wu, G., & Mao, D. (2024). Exploring the Effect of the Solvothermal Time on the Structural Properties and Catalytic Activity of Cu-ZnO-ZrO2 Catalysts Synthesized by the Solvothermal Method for CO2 Hydrogenation to Methanol. Catalysts, 14(6), 390. https://doi.org/10.3390/catal14060390