Effect of NaOH Concentration on Rapidly Quenched Cu–Al Alloy-Derived Cu Catalyst for CO2 Hydrogenation to CH3OH
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the As-Leached RQ Cu Catalysts
2.2. Catalytic Performance in CO2 Hydrogenation
2.3. Characterization of the RQ Cu Catalysts after Reaction
2.4. Structure–Activity Relationship of the RQ Cu Catalyst
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Olah, G. Towards oil independence through renewable methanol chemistry. Angew. Chem. Int. Ed. 2013, 52, 104–107. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Wang, T.; Tsubaki, N. Efficient Conversion of Carbon Dioxide to Methanol Using Copper Catalyst by a New Low-temperature Hydrogenation Process. Chem. Lett. 2007, 36, 1182–1183. [Google Scholar] [CrossRef]
- Ma, J.; Sun, N.; Zhang, X.; Zhao, N.; Xiao, F.; Wei, W.; Sun, Y. A short review of catalysis for CO2 conversion. Catal. Today 2009, 148, 221–231. [Google Scholar] [CrossRef]
- Sizgek, G.; Curry-Hyde, H.; Wainwright, M. Methanol synthesis over copper and ZnO promoted copper surfaces. Appl. Catal. A 1994, 115, 15–28. [Google Scholar] [CrossRef]
- Hesselmann, C.; Wolf, T.; Galgon, F.; Körner, C.; Albert, J.; Wasserscheid, P. Additively manufactured RANEY®-type copper catalyst for methanol synthesis. Catal. Sci. Technol. 2020, 10, 164–168. [Google Scholar] [CrossRef]
- Kong, X.; Ma, C.; Zhang, J.; Sun, J.; Chen, J.; Liu, K. Effect of leaching temperature on structure and performance of Raney Cu catalysts for hydrogenation of dimethyl oxalate. Appl. Catal. A 2016, 509, 153–160. [Google Scholar] [CrossRef]
- Evans, J.; Cant, N.; Trimm, D.; Wainwright, M. Hydrogenolysis of ethyl formate over copper-based catalysts. Appl. Catal. 1983, 6, 355–362. [Google Scholar] [CrossRef]
- Thomas, D.; Wehrli, J.; Wainwright, M.; Trimm, D.; Cant, N. Hydrogenolysis of diethyl oxalate over copper-based catalysts. Appl. Catal. A 1992, 86, 101–114. [Google Scholar] [CrossRef]
- Tanielyan, S.; Marin, N.; Alvez, G.; Bhagat, R.; Miryala, B.; Augustine, R.; Schmidt, S. An Efficient, Selective Process for the Conversion of Glycerol to Propylene Glycol Using Fixed Bed Raney Copper Catalysts. Org. Process Res. Dev. 2014, 18, 1419–1426. [Google Scholar] [CrossRef]
- Ma, L.; Gong, B.; Tran, T.; Wainwright, M. Cr2O3 promoted skeletal Cu catalysts for the reactions of methanol steam reforming and water gas shift. Catal. Today 2000, 63, 499–505. [Google Scholar] [CrossRef]
- Fan, K.; Qiao, M. Skeletal Ni Catalysts Prepared from Rapidly Quenched Ni-Al Alloy. In Catalysis Research at the Cutting Edge; Bevy, L.P., Ed.; Nova Science Publishers: New York, NY, USA, 2005; pp. 135–163. [Google Scholar]
- Hu, H.; Qiao, M.; Wang, S.; Fan, K.; Li, H.; Zong, B.; Zhang, X. Structural and catalytic properties of skeletal Ni catalyst prepared from the rapidly quenched Ni50Al50 alloy. J. Catal. 2004, 221, 612–618. [Google Scholar] [CrossRef]
- Hu, H.; Xie, F.; Pei, Y.; Qiao, M.; Yan, S.; He, H.; Fan, K.; Li, H.; Zong, B.; Zhang, X. Skeletal Ni catalysts prepared from Ni–Al alloys rapidly quenched at different rates: Texture, structure and catalytic performance in chemoselective hydrogenation of 2-ethylanthraquinone. J. Catal. 2006, 237, 143–151. [Google Scholar] [CrossRef]
- Wang, H.; Xu, K.; Yao, X.; Ye, D.; Pei, Y.; Hu, H.; Qiao, M.; Li, Z.; Zhang, X.; Zong, B. Undercoordinated Site-Abundant and Tensile-Strained Nickel for Low-Temperature COx Methanation. ACS Catal. 2018, 8, 1207–1211. [Google Scholar] [CrossRef]
- Bota, A.; Goerigk, G.; Drucker, T.; Haubold, H.; Petró, J. Anomalous small-angle X-ray scattering on a new, nonpyrophoric Raney-type Ni catalyst. J. Catal. 2002, 205, 354–357. [Google Scholar] [CrossRef]
- Zhu, L.; Guo, P.; Chu, X.; Yan, S.; Qiao, M.; Fan, K.; Zhang, X.; Zong, B. An environmentally benign and catalytically efficient non-pyrophoric Ni catalyst for aqueous-phase reforming of ethylene glycol. Green Chem. 2008, 10, 1323–1330. [Google Scholar] [CrossRef]
- Chastain, J.; King, R., Jr. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1992; Volume 40, p. 221. [Google Scholar]
- Chen, L.; Guo, P.; Zhu, L.; Qiao, M.; Shen, W.; Xu, H.; Fan, K. Preparation of Cu/SBA-15 catalysts by different methods for the hydrogenolysis of dimethyl maleate to 1,4-butanediol. Appl. Catal. A 2009, 356, 129–136. [Google Scholar] [CrossRef]
- Hengne, A.; Yuan, D.; Date, N.; Saih, Y.; Kamble, S.; Rode, C.; Huang, K. Preparation and Activity of Copper–Gallium Nanocomposite Catalysts for Carbon Dioxide Hydrogenation to Methanol. Ind. Eng. Chem. Res. 2019, 58, 21331–21340. [Google Scholar] [CrossRef]
- Dong, X.; Li, F.; Zhao, N.; Xiao, F.; Wang, J.; Tan, Y. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method. Appl. Catal. B 2016, 191, 8–17. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Peng, S.; Zhang, M.; Lu, G.; Chen, Q.; Chen, Y.; Guo, G. High-Performance and Long-Lived Cu/SiO2 Nanocatalyst for CO2 Hydrogenation. ACS Catal. 2015, 5, 4255–4259. [Google Scholar] [CrossRef]
- Arena, F.; Italiano, G.; Barbera, K.; Bordiga, S.; Bonura, G.; Spadaro, L.; Frusteri, F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl. Catal. A 2008, 350, 16–23. [Google Scholar] [CrossRef]
- Pu, Y.; Luo, Y.; Wei, X.; Sun, J.; Li, L.; Zou, W.; Dong, L. Synergistic effects of Cu2O-decorated CeO2 on photocatalytic CO2 reduction: Surface Lewis acid/base and oxygen defect. Appl. Catal. B 2019, 254, 580–586. [Google Scholar] [CrossRef]
- Liao, F.; Huang, Y.; Ge, J.; Zheng, W.; Tedsree, K.; Collier, P.; Hong, X.; Tsang, S. Morphology-Dependent Interactions of ZnO with Cu Nanoparticles at the Materials’ Interface in Selective Hydrogenation of CO2 to CH3OH. Angew. Chem. Int. Ed. 2011, 50, 2162–2165. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, H.; Gao, P.; Li, X.; Zhang, J.; Liu, H.; Wang, H.; Wei, W.; Sun, Y. Slurry Methanol Synthesis from CO2 Hydrogenation over Micro-Spherical SiO2 Support Cu/ZnO Catalysts. J. CO2 Util. 2018, 26, 642–651. [Google Scholar] [CrossRef]
- Toyir, J.; de la Piscina, P.; Fierro, J.; Homs, N. Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: Influence of metallic precursors. Appl. Catal. B 2001, 34, 255–266. [Google Scholar] [CrossRef]
- Le Valant, A.; Comminges, C.; Tisseraud, C.; Canaff, C.; Pinard, L.; Pouilloux, Y. The Cu–ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures. J. Catal. 2015, 324, 41–49. [Google Scholar] [CrossRef]
- Liu, J.; Shi, J.; He, D.; Zhang, Q.; Wu, X.; Liang, Y.; Zhu, Q. Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+H2 to methanol reaction. Appl. Catal. A 2001, 218, 113–119. [Google Scholar] [CrossRef]
- Guo, X.; Mao, D.; Wang, S.; Wu, G.; Lu, G. Combustion synthesis of CuO–ZnO–ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol. Catal. Commun. 2009, 10, 1661–1664. [Google Scholar] [CrossRef]
- Guo, X.; Mao, D.; Lu, G.; Wang, S.; Wu, G. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J. Mol. Catal. A 2011, 345, 60–68. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Yang, B.; Guo, L. A Highly Active and Selective Mesostructured Cu/AlCeO Catalyst for CO2 Hydrogenation to Methanol. Appl. Catal. A 2019, 571, 51–60. [Google Scholar] [CrossRef]
- An, B.; Zhang, J.; Cheng, K.; Ji, P.; Wang, C.; Lin, W. Confinement of Ultrasmall Cu/ZnOx Nanoparticles in Metal-Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840. [Google Scholar] [CrossRef]
- Wang, W.; Wang, S.; Ma, X.; Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 2011, 40, 3703–3727. [Google Scholar] [CrossRef]
- Bowker, M. Methanol Synthesis from CO2 Hydrogenation. ChemCatChem 2019, 11, 4238–4246. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Quaranta, E. State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology. J. Catal. 2016, 343, 2–45. [Google Scholar] [CrossRef]
- Zhong, J.; Yang, X.; Wu, Z.; Liang, B.; Huang, Y.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413. [Google Scholar] [CrossRef]
- Kanuri, S.; Roy, S.; Chakraborty, C.; Datta, S.; Singh, S.; Dinda, S. An insight of CO2 hydrogenation to methanol synthesis: Thermodynamics, catalysts, operating parameters, and reaction mechanism. Int. J. Energy Res. 2022, 46, 5503–5522. [Google Scholar] [CrossRef]
- Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Schlögl, R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897. [Google Scholar] [CrossRef]
Catalyst | Bulk Comp. a (wt%) | SBET b (m2 g–1) | Vpore b (cm3 g–1) | dpore b (nm) | SCu c (m2 g–1) | SCu/SBET (%) | dcryst d (nm) |
---|---|---|---|---|---|---|---|
RQ Cu-10 | Cu97.8Al2.2 | 15 | 0.15 | 28.1 | 9.8 | 65 | 18.6 |
RQ Cu-3 | Cu71.2Al28.8 | 17 | 0.045 | 9.7 | 5.2 | 31 | 17.5 |
Catalyst | Kinetic Energy (eV) | Cu+/Cu (%) | Cu0/Cu (%) | Cu2+/Cu (%) | ||
---|---|---|---|---|---|---|
Cu0 | Cu+ | Cu2+ | ||||
RQ Cu-10 | 918.3 | 915.4 | 916.8 | 26.4 | 71.0 | 2.6 |
RQ Cu-3 | 918.2 | 915.3 | - | 26.7 | 73.3 | - |
Catalyst | Conv. (%) | Sel.MeOH (%) | STYMeOH (mmol gCu–1 h–1) |
---|---|---|---|
RQ Cu-10 | 6.1 | 78.8 | 0.287 |
RQ Cu-3 | 13.7 | 94.4 | 0.772 |
Catalyst | Temperature (K) | Pressure (MPa) | H2/CO2 Ratio | Conv. (%) | Sel.MeOH (%) | Ref. |
---|---|---|---|---|---|---|
RQ Cu-3 | 473 | 4.0 | 3 | 13.7 | 94.4 | This work |
Cu/ZnO/Al2O3 | 543 | 4.5 | 2.2 | 10.9 | 72.7 | [24] |
Cu/ZnO/SiO2 | 493 | 3.0 | 3 | 13.5 | 57.2 | [25] |
Cu/Ga/ZnO | 543 | 2.0 | 3 | 6.0 | 88.8 | [26] |
Cu@ZnOx | 523 | 3.0 | 3 | 2.3 | 100 | [27] |
Cu/ZrO2 | 513 | 2.0 | 3 | 6.3 | 48.8 | [28] |
Cu/Zn/ZrO2 | 513 | 3.0 | 3 | 17.0 | 56.2 | [29] |
La-Cu/ZrO2 | 493 | 3.0 | 3 | 5.8 | 72.0 | [30] |
Cu/AlCeO-7 | 553 | 4.0 | 3 | 22.0 | 35.0 | [31] |
CuZn@UiO-bpy | 523 | 4.0 | 3 | 3.3 | 100 | [32] |
Temperature (K) | Conv. (%) | Sel.MeOH (%) | STYMeOH (mmol gCu–1 h–1) |
---|---|---|---|
453 | 7.6 | 95.9 | 0.556 |
473 | 13.7 | 94.4 | 0.772 |
493 | 8.4 | 81.2 | 0.407 |
513 | 4.9 | 43.8 | 0.128 |
Pressure (MPa) | Conv. (%) | Sel.MeOH (%) | STYMeOH (mmol gCu–1 h–1) |
---|---|---|---|
3.0 | 8.0 | 90.5 | 0.324 |
4.0 | 13.7 | 94.4 | 0.772 |
5.0 | 18.2 | 97.9 | 1.329 |
Catalyst | SBET a (m2 g–1) | Vpore a (cm3 g–1) | dpore a (nm) | SCu b (m2 gCu–1) | SCu/SBET (%) | dcryst c (nm) |
---|---|---|---|---|---|---|
RQ Cu-10 | 5 | 0.020 | 23.0 | 4.9 | 98 | 40.6 |
RQ Cu-3 | 21 | 0.061 | 8.8 | 6.1 | 42 | 32.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Sun, D.; Ji, Y.; Zu, S.; Pei, Y.; Yan, S.; Qiao, M.; Zhang, X.; Zong, B. Effect of NaOH Concentration on Rapidly Quenched Cu–Al Alloy-Derived Cu Catalyst for CO2 Hydrogenation to CH3OH. Catalysts 2024, 14, 391. https://doi.org/10.3390/catal14060391
Liu X, Sun D, Ji Y, Zu S, Pei Y, Yan S, Qiao M, Zhang X, Zong B. Effect of NaOH Concentration on Rapidly Quenched Cu–Al Alloy-Derived Cu Catalyst for CO2 Hydrogenation to CH3OH. Catalysts. 2024; 14(6):391. https://doi.org/10.3390/catal14060391
Chicago/Turabian StyleLiu, Xuancheng, Dong Sun, Yushan Ji, Sijie Zu, Yan Pei, Shirun Yan, Minghua Qiao, Xiaoxin Zhang, and Baoning Zong. 2024. "Effect of NaOH Concentration on Rapidly Quenched Cu–Al Alloy-Derived Cu Catalyst for CO2 Hydrogenation to CH3OH" Catalysts 14, no. 6: 391. https://doi.org/10.3390/catal14060391
APA StyleLiu, X., Sun, D., Ji, Y., Zu, S., Pei, Y., Yan, S., Qiao, M., Zhang, X., & Zong, B. (2024). Effect of NaOH Concentration on Rapidly Quenched Cu–Al Alloy-Derived Cu Catalyst for CO2 Hydrogenation to CH3OH. Catalysts, 14(6), 391. https://doi.org/10.3390/catal14060391