Enhanced Photocatalytic Performances of SnS2/TiO2 Composites via a Charge Separation Following Z-Scheme at the SnS2/TiO2{101} Facets
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characteristics of SnS2/TiO2 Composites
2.2. Photoactivity of SnS2/TiO2 Composite
2.3. Proposed Mechanism for the Enhanced Photoactivity of SnS2/TiO2 Composite
System | Type of Heterojunction | Catalyst Concentration (g/L) | Dye (Concentration) | Light Source | Rate Constant (min−1) | Reference |
---|---|---|---|---|---|---|
SnS2/TiO2 | Z-scheme | 0.02 | MB (7.5 µM) and RhB (3.75 mg/L) | Halogen lamb (100 mW/cm2) | 0.052 (MB) 0.008 (RhB) | This work |
SnS2/TiO2 | Z-scheme | 0.15 | MB (12 µM) and RhB (10 mg/L) | Xe lamp (200 W, 200–800 nm) | 0.02 (MB) 0.022 (RhB) | Gao et al. (2021) [58] |
SnS2/TiO2 | Type II | 0.2 | MB (20 µM) | Mercury lamp (250 W) | 0.03 | Zhang et al. (2017) [56] |
TiO2/SnS2/MoS2 | Z-scheme | - | MB (10 mL, 5 mg/L) | Artificial sunlight (AM 1.5 G, 150 mW) | 0.0175 | Gao et al. (2022) [59] |
SnS2/TiO2 | Type II | 1 | RhB (10 mg/L) | Xe lamp (300 W, 420 nm) | 0.035 | Yan et al. (2017) [60] |
SnS2/BiOBr | Z-scheme | 0.625 | RhB (10 mg/L) | Xe lamp (400 W, 420 nm) | 0.1203 | Qiu et al. (2017) [53] |
SnS2/TiO2 | Z-scheme | 50 | CO2 | Xe lamp (300 W) | - | She et al. (2019) [42] |
TiO2/CdS | Z-scheme | 2 | CO2 | Xe lamp (350 W) | - | Wang et al. (2020) [61] |
3. Materials and Methods
3.1. Synthesis of TiO2 Nanosheets
3.2. Synthesis of SnS2/TiO2
3.3. Characterization of As-Synthesized Photocatalysts
3.4. Evaluation of Photocatalytic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A review on photocatalysis used for wastewater treatment: Dye degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef]
- Sultana, R.; Liba, S.I.; Rahman, M.A.; Yeachin, N.; Syed, I.M.; Bhuiyan, M.A. Enhanced photocatalytic activity in RhB dye degradation by Mn and B co-doped mixed phase TiO2 photocatalyst under visible light irradiation. Surf. Interfaces 2023, 42, 103302. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Yu, X.; Jeon, B.; Kim, Y.K. Dominant influence of the surface on the photoactivity of shape-controlled anatase TiO2 nanocrystals. ACS Catal. 2015, 5, 3316–3322. [Google Scholar] [CrossRef]
- Wu, B.; Guo, C.; Zheng, N.; Xie, Z.; Stucky, G.D. Nonaqueous production of nanostructured anatase with high-energy facets. J. Am. Chem. Soc. 2008, 130, 17563–17567. [Google Scholar] [CrossRef]
- Yu, J.; Fan, J.; Lv, K. Anatase TiO2 nanosheets with exposed (001) facets: Improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2010, 2, 2144–2149. [Google Scholar] [CrossRef]
- Wen, C.Z.; Jiang, H.B.; Qiao, S.Z.; Yang, H.G.; Lu, G.Q. Synthesis of high-reactive facets dominated anatase TiO2. J. Mater. Chem. 2011, 21, 7052–7061. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, P.; Fei, X.; Wu, X.; Huang, Z.; Zhong, W.; Gong, Q.; Zheng, Y.; Zhang, Q.; Xie, S.; et al. Unusual facet and co-catalyst effects in TiO2-based photocatalytic coupling of methane. Nat. Commun. 2024, 15, 4453. [Google Scholar] [CrossRef]
- Ozawa, K.; Emori, M.; Yamamoto, S.; Yukawa, R.; Yamamoto, S.; Hobara, R.; Fujikawa, K.; Sakama, H.; Matsuda, I. Electron–hole recombination time at TiO2 single-crystal surfaces: Influence of surface band bending. J. Phys. Chem. Lett. 2014, 5, 1953–1957. [Google Scholar] [CrossRef]
- Wang, Y.; Fiaz, M.; Kim, J.; Carl, N.; Kim, Y.K. Kinetic evidence for type-II heterojunction and z-scheme interactions in g-C3N4/TiO2 nanotube-based photocatalysts in photocatalytic hydrogen evolution. ACS Appl. Energy Mater. 2023, 6, 5197–5206. [Google Scholar] [CrossRef]
- Govinda Raj, M.; Mahalingam, S.; Gnanarani, S.V.; Jayashree, C.; Ganeshraja, A.S.; Pugazhenthiran, N.; Rahaman, M.; Abinaya, S.; Senthil, B.; Kim, J. TiO2 nanorod decorated with MoS2 nanospheres: An efficient dual-functional photocatalyst for antibiotic degradation and hydrogen production. Chemosphere 2024, 357, 142033. [Google Scholar] [CrossRef]
- Yang, S.; Lu, Q.; Wang, F.; Zhi, Y.; Chen, J.; Wang, Y.; Zhang, H.; Yin, H.; Sun, P.; Cao, W. S-scheme SnO/TiO2 heterojunction with high hole mobility for boosting photocatalytic degradation of gaseous benzene. Chem. Eng. J. 2023, 478, 147345. [Google Scholar] [CrossRef]
- Pandeya, S.; Ding, R.; Ma, Y.; Han, X.; Gui, M.; Mulmi, P.; Panthi, K.P.; Neupane, B.B.; Pant, H.R.; Li, Z.; et al. Self-standing CdS/TiO2 Janus nanofiberous membrane: COD removal, antibacterial activity and photocatalytic degradation of organic pollutants. J. Environ. Chem. Eng. 2024, 12, 112521. [Google Scholar] [CrossRef]
- Burton, L.A.; Whittles, T.J.; Hesp, D.; Linhart, W.M.; Skelton, J.M.; Hou, B.; Webster, R.F.; O’Dowd, G.; Reece, C.; Cherns, D.; et al. Electronic and optical properties of single crystal SnS2: An earth-abundant disulfide photocatalyst. J. Mater. Chem. A 2016, 4, 1312–1318. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, Y.; Wang, Y.; Zhu, A.; Zhang, Y. Efficient photocatalytic reduction of aqueous Cr (VI) by Zr4+ doped and polyaniline coupled SnS2 nanoflakes. Sep. Purif. Technol. 2022, 283, 120161. [Google Scholar] [CrossRef]
- Nguyen Thi, T.H.; Huu, H.T.; Phi, H.N.; Nguyen, V.P.; Le, Q.D.; Thi, L.N.; Trang Phan, T.T.; Vo, V. A facile synthesis of SnS2/g-C3N4 S-scheme heterojunction photocatalyst with enhanced photocatalytic performance. J. Sci. Adv. Mater. Devices 2022, 7, 100402. [Google Scholar] [CrossRef]
- Xie, Q.; Zhou, H.; Lv, Z.; Liu, H.; Guo, H. Sn4+ self-doped hollow cubic SnS as an efficient visible-light photocatalyst for Cr(VI) reduction and detoxification of cyanide. J. Mater. Chem. A 2017, 5, 6299–6309. [Google Scholar] [CrossRef]
- Zhu, L.; Lu, Q.; Lv, L.; Wang, Y.; Hu, Y.; Deng, Z.; Lou, Z.; Hou, Y.; Teng, F. Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC Adv. 2017, 7, 20084–20092. [Google Scholar] [CrossRef]
- Wang, M.; Tan, S.; Kan, S.; Wu, Y.; Sang, S.; Liu, K.; Liu, H. In-situ assembly of TiO2 with high exposure of (001) facets on three-dimensional porous graphene aerogel for lithium-sulfur battery. J. Energy Chem. 2020, 49, 316–322. [Google Scholar] [CrossRef]
- Huang, G.; Zhang, J.; Jiang, F.; Zhang, Z.; Zeng, J.; Qi, X.; Shen, Z.; Wang, H.; Kong, Z.; Xi, J.; et al. Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant {001} facets. J. Solid State Chem. 2020, 281, 121041. [Google Scholar] [CrossRef]
- Gonçalves, B.S.; Palhares, H.G.; Souza, T.C.C.d.; Castro, V.G.d.; Silva, G.G.; Silva, B.C.; Krambrock, K.; Soares, R.B.; Lins, V.F.C.; Houmard, M.; et al. Effect of the carbon loading on the structural and photocatalytic properties of reduced graphene oxide-TiO2 nanocomposites prepared by hydrothermal synthesis. J. Mater. Res. Technol. 2019, 8, 6262–6274. [Google Scholar] [CrossRef]
- Mayerhofer, A.; Dali, Y.; Presoly, P.; Bernhard, C.; Michelic, S.K. Study on the possible error due to matrix interaction in automated SEM/EDS analysis of nonmetallic inclusions in steel by thermodynamics, kinetics and electrolytic extraction. Metals 2020, 10, 860. [Google Scholar] [CrossRef]
- Yuan, Y.-J.; Ye, Z.-J.; Lu, H.-W.; Hu, B.; Li, Y.-H.; Chen, D.-Q.; Zhong, J.-S.; Yu, Z.-T.; Zou, Z.-G. Constructing anatase TiO2 nanosheets with exposed (001) facets/layered MoS2 two-dimensional nanojunctions for enhanced solar hydrogen generation. ACS Catal. 2016, 6, 532–541. [Google Scholar] [CrossRef]
- Dashairya, L.; Sharma, M.; Basu, S.; Saha, P. SnS2/RGO based nanocomposite for efficient photocatalytic degradation of toxic industrial dyes under visible-light irradiation. J. Alloys Compd. 2019, 774, 625–636. [Google Scholar] [CrossRef]
- Ye, L.; Mao, J.; Liu, J.; Jiang, Z.; Peng, T.; Zan, L. Synthesis of anatase TiO2 nanocrystals with {101}, {001} or {010} single facets of 90% level exposure and liquid-phase photocatalytic reduction and oxidation activity orders. J. Mater. Chem. A 2013, 1, 10532–10537. [Google Scholar] [CrossRef]
- Selcuk, S.; Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 2016, 15, 1107–1112. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Y.; Kim, Y.K. Engineering defects and photocatalytic activity of TiO2 nanoparticles by thermal treatments in NH3 and subsequent surface chemical etchings. Phys. Chem. Chem. Phys. 2017, 19, 24049–24058. [Google Scholar] [CrossRef]
- Lee, T.-Y.; Lee, C.-Y.; Chiu, H.-T. Enhanced photocatalysis from truncated octahedral bipyramids of anatase TiO2 with exposed {001}/{101} facets. ACS Omega 2018, 3, 10225–10232. [Google Scholar] [CrossRef]
- Sriv, T.; Kim, K.; Cheong, H. Low-frequency raman spectroscopy of few-layer 2H-SnS2. ACS Catal. 2018, 8, 10194. [Google Scholar] [CrossRef]
- Tian, F.; Zhang, Y.; Zhang, J.; Pan, C. Raman spectroscopy: A new approach to measure the percentage of anatase TiO2 exposed (001) facets. J. Phys. Chem. C 2012, 116, 7515–7519. [Google Scholar] [CrossRef]
- Du, Y.L.; Deng, Y.; Zhang, M.S. Variable-temperature raman scattering study on anatase titanium dioxide nanocrystals. J. Phys. Chem. Solids 2006, 67, 2405–2408. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, Z.; Li, S.; Su, Y.; Huang, L.; Shao, N.; Liu, F.; Bu, Y.; Zhang, H.; Zhang, Z. Role of SnS2 in 2D–2D SnS2/TiO2 nanosheet heterojunctions for Photocatalytic Hydrogen Evolution. ACS Appl. Nano Mater. 2019, 2, 2144–2151. [Google Scholar] [CrossRef]
- Sun, Q.; Li, Y.; Hao, J.; Zheng, S.; Zhang, T.; Wang, T.; Wu, R.; Fang, H.; Wang, Y. Increased active sites and charge transfer in the SnS2/TiO2 heterostructure for visible-light-assisted NO2 sensing. ACS Appl. Mater. Interfaces 2021, 13, 54152–54161. [Google Scholar] [CrossRef] [PubMed]
- van Kasteren, J.G.A.; Basuvalingam, S.B.; Mattinen, M.; Bracesco, A.E.A.; Kessels, W.M.M.; Bol, A.A.; Macco, B. Growth mechanism and Film properties of atomic-layer-deposited titanium oxysulfide. Chem. Mater. 2022, 34, 7750–7760. [Google Scholar] [CrossRef]
- Gonbeau, D.; Guimon, C.; Pfister-Guillouzo, G.; Levasseur, A.; Meunier, G.; Dormoy, R. XPS study of thin films of titanium oxysulfides. Surf. Sci. 1991, 254, 81–89. [Google Scholar] [CrossRef]
- He, Z.; Que, W. Surface scattering and reflecting: The effect on light absorption or photocatalytic activity of TiO2 scattering microspheres. Phys. Chem. Chem. Phys. 2013, 15, 16768–16773. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Zhu, Z.; Li, J.; Zhou, J.; Wei, N. Characterization and activity of mesoporous titanium dioxide beads with high surface areas and controllable pore sizes. J. Hazard. Mater. 2011, 190, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Yadav, U. 2D SnS2 nanostructure-derived photocatalytic degradation of organic pollutants under visible Light. Front. Nanotechnol. 2021, 3, 711368. [Google Scholar] [CrossRef]
- Veres, Á.; Ménesi, J.; Janáky, C.; Samu, G.F.; Scheyer, M.K.; Xu, Q.; Salahioglu, F.; Garland, M.V.; Dékány, I.; Zhong, Z. New insights into the relationship between structure and photocatalytic properties of TiO2 catalysts. RSC Adv. 2015, 5, 2421–2428. [Google Scholar] [CrossRef]
- Hou, L.; Guan, Z.; Liu, T.; He, C.; Li, Q.; Yang, J. Synergistic effect of {101} crystal facet and bulk/surface oxygen vacancy ratio on the photocatalytic hydrogen production of TiO2. Int. J. Hydrogen Energy 2019, 44, 8109–8120. [Google Scholar] [CrossRef]
- Roy, N.; Sohn, Y.; Pradhan, D. Synergy of low-energy {101} and high-energy {001} TiO2 crystal facets for enhanced photocatalysis. ACS Nano 2013, 7, 2532–2540. [Google Scholar] [CrossRef] [PubMed]
- She, H.; Zhou, H.; Li, L.; Zhao, Z.; Jiang, M.; Huang, J.; Wang, L.; Wang, Q. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustain. Chem. Eng. 2019, 7, 650–659. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, W.; Zhang, Z.; Fang, X. High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. J. Phys. Chem. C 2013, 117, 19346–19352. [Google Scholar] [CrossRef]
- Ding, X.; Zhao, K.; Zhang, L. Enhanced photocatalytic removal of sodium pentachlorophenate with self-doped Bi2WO6 under visible light by generating more superoxide ions. Environ. Sci. Technol. 2014, 48, 5823–5831. [Google Scholar] [CrossRef] [PubMed]
- Ren, B.; Wang, T.; Qu, G.; Deng, F.; Liang, D.; Yang, W.; Liu, M. In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation. Environ. Sci. Pollut. Res. 2018, 25, 19122–19133. [Google Scholar] [CrossRef] [PubMed]
- Shanmugaratnam, S.; Selvaratnam, B.; Baride, A.; Koodali, R.; Ravirajan, P.; Velauthapillai, D.; Shivatharsiny, Y. SnS2/TiO2 nanocomposites for hydrogen production and photodegradation under extended solar irradiation. Catalysts 2021, 11, 589. [Google Scholar] [CrossRef]
- He, Y.; Zhang, L.; Fan, M.; Wang, X.; Walbridge, M.L.; Nong, Q.; Wu, Y.; Zhao, L. Z-scheme SnO2−x/g-C3N4 composite as an efficient photocatalyst for dye degradation and photocatalytic CO2 reduction. Sol. Energy Mater. Sol. Cells 2015, 137, 175–184. [Google Scholar] [CrossRef]
- Ju, L.; Wu, P.; Yang, Q.; Ahmed, Z.; Zhu, N. Synthesis of ZnAlTi-LDO supported C60@AgCl nanoparticles and their photocatalytic activity for photo-degradation of Bisphenol A. Appl. Catal. B Environ. 2018, 224, 159–174. [Google Scholar] [CrossRef]
- Moss, B.; Lim, K.K.; Beltram, A.; Moniz, S.; Tang, J.; Fornasiero, P.; Barnes, P.; Durrant, J.; Kafizas, A. Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Sci. Rep. 2017, 7, 2938. [Google Scholar] [CrossRef] [PubMed]
- Bechambi, O.; Chalbi, M.; Najjar, W.; Sayadi, S. Photocatalytic activity of ZnO doped with Ag on the degradation of endocrine disrupting under UV irradiation and the investigation of its antibacterial activity. Appl. Surf. Sci. 2015, 347, 414–420. [Google Scholar] [CrossRef]
- Su, Q.; Li, Y.; Hu, R.; Song, F.; Liu, S.; Guo, C.; Zhu, S.; Liu, W.; Pan, J. Heterojunction photocatalysts based on 2D materials: The role of configuration. Adv. Sustain. Syst. 2020, 4, 2000130. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, R.; Yang, Z.; Du, H.; Jiang, Y.; Shen, C.; Liang, K.; Xu, A. Enhanced visible-light photocatalytic activity of Z-scheme graphitic carbon nitride/oxygen vacancy-rich zinc oxide hybrid photocatalysts. Chin. J. Catal. 2015, 36, 2135–2144. [Google Scholar] [CrossRef]
- Qiu, F.; Li, W.; Wang, F.; Li, H.; Liu, X.; Sun, J. In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light. J. Colloid Interface Sci. 2017, 493, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mittal, A.; Chauhan, N.S.; Saini, S.; Yadav, J.; Kushwaha, M.; Chakraborty, R.; Sengupta, S.; Kumari, K.; Kumar, N. Mechanistic investigation of RhB photodegradation under low power visible LEDs using a Pd-modified TiO2/Bi2O3 photocatalyst: Experimental and DFT studies. J. Phys. Chem. Solids 2022, 162, 110510. [Google Scholar] [CrossRef]
- Rauf, M.A.; Meetani, M.A.; Khaleel, A.; Ahmed, A. Photocatalytic degradation of Methylene Blue using a mixed catalyst and product analysis by LC/MS. Chem. Eng. J. 2010, 157, 373–378. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Shi, Y.; Xu, G.; Zhang, E.; Wang, H.; Kong, Z.; Xi, J.; Ji, Z. Anatase TiO2 nanosheets with coexposed {101} and {001} facets coupled with ultrathin SnS2 nanosheets as a face-to-face n-p-n dual heterojunction photocatalyst for enhancing photocatalytic activity. Appl. Surf. Sci. 2017, 420, 839–848. [Google Scholar] [CrossRef]
- Moustakas, N.G.; Kontos, A.G.; Likodimos, V.; Katsaros, F.; Boukos, N.; Tsoutsou, D.; Dimoulas, A.; Romanos, G.E.; Dionysiou, D.D.; Falaras, P. Inorganic–organic core–shell titania nanoparticles for efficient visible light activated photocatalysis. Appl. Catal. B Environ. 2013, 130–131, 14–24. [Google Scholar] [CrossRef]
- Gao, J.; Sun, X.; Zheng, L.; He, G.; Wang, Y.; Li, Y.; Liu, Y.; Deng, J.; Liu, M.; Hu, J. 2D Z-scheme TiO2/SnS2 heterojunctions with enhanced visible-light photocatalytic performance for refractory contaminants and mechanistic insights. New J. Chem. 2021, 45, 16131–16142. [Google Scholar] [CrossRef]
- Gao, J.; Hu, J.; Wang, Y.; Zheng, L.; He, G.; Deng, J.; Liu, M.; Li, Y.; Liu, Y.; Zhou, H. Fabrication of Z-scheme TiO2/SnS2/MoS2 ternary heterojunction arrays for enhanced photocatalytic and photoelectrochemical performance under visible light. J. Solid State Chem. 2022, 307, 122737. [Google Scholar] [CrossRef]
- Yan, X.; Ye, K.; Zhang, T.; Xue, C.; Zhang, D.; Ma, C.; Wei, J.; Yang, G. Formation of three-dimensionally ordered macroporous TiO2@nanosheet SnS2 heterojunctions for exceptional visible-light driven photocatalytic activity. New J. Chem. 2017, 41, 8482–8489. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Zhang, L.; Cheng, B.; Yu, J.; Fan, J. Step-scheme CdS/TiO2 nanocomposite hollow microsphere with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2020, 56, 143–150. [Google Scholar] [CrossRef]
- Dai, X.; Xie, M.L.; Meng, S.G.; Fu, X.L.; Chen, S.F. Coupled systems for selective oxidation of aromatic alcohols to aldehydes and reduction of nitrobenzene into aniline using CdS/g-C3N4 photocatalyst under visible light irradiation. Appl. Catal. B Environ. 2014, 158, 382–390. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Zhang, J.; Du, Z. Fabrication and characterization of Ag2CO3/SnS2 composites with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Adv. 2015, 5, 86705–86712. [Google Scholar] [CrossRef]
- Kuldeep, A.R.; Dhabbe, R.S.; Garadkar, K.M. Development of g-C3N4-TiO2 visible active hybrid photocatalyst for the photodegradation of methyl orange. Res. Chem. Intermed. 2021, 47, 5155–5174. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carl, N.; Fiaz, M.; Oh, H.-S.; Kim, Y.-K. Enhanced Photocatalytic Performances of SnS2/TiO2 Composites via a Charge Separation Following Z-Scheme at the SnS2/TiO2{101} Facets. Catalysts 2024, 14, 442. https://doi.org/10.3390/catal14070442
Carl N, Fiaz M, Oh H-S, Kim Y-K. Enhanced Photocatalytic Performances of SnS2/TiO2 Composites via a Charge Separation Following Z-Scheme at the SnS2/TiO2{101} Facets. Catalysts. 2024; 14(7):442. https://doi.org/10.3390/catal14070442
Chicago/Turabian StyleCarl, Nkenku, Muhammad Fiaz, Hyun-Seok Oh, and Yu-Kwon Kim. 2024. "Enhanced Photocatalytic Performances of SnS2/TiO2 Composites via a Charge Separation Following Z-Scheme at the SnS2/TiO2{101} Facets" Catalysts 14, no. 7: 442. https://doi.org/10.3390/catal14070442
APA StyleCarl, N., Fiaz, M., Oh, H. -S., & Kim, Y. -K. (2024). Enhanced Photocatalytic Performances of SnS2/TiO2 Composites via a Charge Separation Following Z-Scheme at the SnS2/TiO2{101} Facets. Catalysts, 14(7), 442. https://doi.org/10.3390/catal14070442