Enhancing Trace Pb2⁺ Detection via Novel Functional Materials for Improved Electrocatalytic Redox Processes on Electrochemical Sensors: A Short Review
Abstract
:1. Introduction
2. Improving the Efficiency of Electrocatalytic Redox Reactions Using Inorganic Nanomaterials for Enhanced Pb2+ Detection
3. Advantages of Carbon Nanomaterials in Achieving Lower Detection Limits for Pb2+ Ions
4. Enhancing Selective Adsorption and Anti-Interference in Pb2+ Detection via Functional Group Modification of Electrodes
5. Amplifying Electrochemical Signals with Nanozyme Materials for Trace Pb2+ Detection through Biocatalytic Reactions
6. Conclusions and Future Perspectives
6.1. Conclusions
- (1)
- Inorganic nanomaterials, such as MXenes, ferrite-based nanomaterials, and MOFs, enhance the electrochemical detection of Pb2+ by improving electrocatalytic redox reactions. They offer high surface area, conductivity, and tunable chemistry, leading to better signal amplification and ion enrichment. Despite their low detection limits, challenges with the linear detection range remain.
- (2)
- Carbon nanomaterials, such as CNTs and graphene, are highly conductive, cost-effective, and easily modifiable. Combining them with other catalytic materials optimizes sensor performance, enhancing the detection of trace Pb2+ ions through synergistic effects.
- (3)
- Materials rich in various active groups, including nucleic acids, chitosan, and cyclodextrin, enhance electrochemical sensors’ selectivity and anti-interference capabilities by explicitly interacting with Pb2+ ions. These environmentally friendly materials improve sensor accuracy and reliability at trace levels.
- (4)
- Biological macromolecules, such as enzymes and nucleic acids, offer high catalytic activity, enriching Pb2+ ions and facilitating redox reactions. This enhances signal amplification and detection precision. Though expensive and best suited for labs, these sensors provide high sensitivity and selectivity.
6.2. Future Perspectives
- (1)
- Catalytic advancements: Catalysis will play a crucial role in the future of electrochemical detection. Developing and integrating novel catalytic materials will be essential for overcoming current limitations in sensitivity, selectivity, and interference. Future research should focus on exploring the catalytic properties of emerging nanomaterials, such as hybrid composites that combine the strengths of metal oxides, MXenes, carbon nanomaterials, and biological macromolecules. These materials can enhance the electrocatalytic redox reactions of Pb2+ ions, leading to improved detection performance.
- (2)
- Cost issues: Better detection performance often involves using complex electrode structures and precious metals, which can be costly. Replacing these with cheaper functional materials, such as carbon nanomaterials and inexpensive metal/metal oxide nanomaterials, can reduce costs. However, the stability of these materials, particularly on chemically modified electrodes, remains a concern. Developing functional polymeric coatings (e.g., Nafion and polyaniline) and new modification techniques can help address these stability issues, making the sensors more reliable and cost-effective.
- (3)
- Interference issues: The complex composition of substances in real-world environments can significantly interfere with detecting trace amounts of Pb2+ ions. Biomaterials, with their unique spatial structures and abundant active groups, can improve the selectivity of electrochemical sensors. However, the thermal stability of some biomaterials is relatively low, and the structure of electrochemical nucleic acid sensors can be complex and costly.
- (1)
- Real-time monitoring: One of the significant advantages of electrochemical sensors is their capability for real-time monitoring. Unlike traditional techniques that require sample collection and laboratory analysis, electrochemical sensors can provide immediate feedback on Pb2+ levels. This functionality is achieved by applying a specific voltage pattern to the electrochemical sensor, which controls the repeated adsorption–reduction–oxidation–dissolution process of lead ions on its surface. By monitoring the peak current generated during these processes, it is possible to obtain real-time measurements of Pb2+ concentrations.
- (2)
- Miniaturization and portability: Electrochemical sensors can be miniaturized and made portable, allowing for on-site testing. This portability is a significant advantage over other techniques such as AAS or ICP-OES, which are typically confined to laboratory settings due to their size and complexity.
- (3)
- Integration with Electronic Devices: Electrochemical sensors can be easily integrated with electronic devices, including smartphones and IoT (Internet of things) systems. This integration facilitates data collection, analysis, and remote monitoring, providing a technological edge over traditional methods that require separate, often cumbersome, data handling processes.
- (4)
- Cost-effectiveness: By developing cost-effective synthesis methods for nanomaterials and optimizing sensor designs to use minimal amounts of expensive components, electrochemical sensors can be made more affordable. This cost-effectiveness, combined with high performance, makes them suitable for widespread use, especially in resource-limited settings.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poonam; Bharti, S.K.; Kumar, N. Kinetic study of lead (Pb2+) removal from battery manufacturing wastewater using bagasse biochar as biosorbent. Appl. Water Sci. 2018, 8, 13. [Google Scholar] [CrossRef]
- Ameen, F.A.; Hamdan, A.M.; El-Naggar, M.Y. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Sci. Rep. 2020, 10, 11. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.L.B.; Hatje, V.; Masque, P.; Zurbrick, C.M.; Boyle, E.A.; Santos, W.P.C. Chronology of anthropogenic impacts reconstructed from sediment records of trace metals and Pb isotopes in Todos os Santos Bay (NE Brazil). Mar. Pollut. Bull. 2017, 125, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, L.; Liu, M.; Meng, X.-Z.; Zhang, X. Historical Trends of Atmospheric Pb and Hg Emissions from Fossil Fuel Combustion in Shanghai. Huanjing Kexue 2018, 39, 3987–3994. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.; Xue, P.-Y.; Wei, L.; Liu, C.-C.; Gao, P.-P.; Fan, L.-M.; Du, J.-Y.; Liu, W.-J. Characteristics of Cd, As, and Pb in Soil and Wheat Grains and Health Risk Assessment of Grain-Cd/As/Pb on the Field Scale. Huanjing Kexue 2020, 41, 2869–2877. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.T.; Yu, F.R.; Zhang, J.N. Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas. Int. J. Environ. Res. Public Health 2022, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Austruy, A.; Laplanche, C.; Mombo, S.; Dumat, C.; Deola, F.; Gers, C. Ecological changes in historically polluted soils: Metal(loid) bioaccumulation in microarthropods and their impact on community structure. Geoderma 2016, 271, 181–190. [Google Scholar] [CrossRef]
- Lischka, A.; Lacoue-Labarthe, T.; Hoving, H.J.T.; JavidPour, J.; Pannell, J.L.; Merten, V.; Churlaud, C.; Bustamante, P. High cadmium and mercury concentrations in the tissues of the orange-back flying squid, Sthenoteuthis pteropus, from the tropical Eastern Atlantic. Ecotox. Environ. Safe. 2018, 163, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Malik, R.N. Human health risk assessment of heavy metals via consumption of contaminated vegetables collected from different irrigation sources in Lahore, Pakistan. Arab. J. Chem. 2014, 7, 91–99. [Google Scholar] [CrossRef]
- Ma, L.; Liu, J.Y.; Dong, J.X.; Xiao, Q.; Zhao, J.; Jiang, F.L. Toxicity of Pb2+ on rat liver mitochondria induced by oxidative stress and mitochondrial permeability transition. Toxicol. Res. 2017, 6, 822–830. [Google Scholar] [CrossRef]
- Huang, Q.S.; Wu, W.; Wei, W.; Song, L.; Sun, J.; Ni, B.J. Highly-efficient Pb2+ removal from water by novel K2W4O13 nanowires: Performance, mechanisms and DFT calculation. Chem. Eng. J. 2020, 381, 10. [Google Scholar] [CrossRef]
- Radulescu, C.; Dulama, I.D.; Stihi, C.; Ionita, I.; Chilian, A.; Necula, C.; Chelarescu, E.D. Determination of Heavy Metal Levels in Water and Therapeutic Mud by Atomic Absorption Spectrometry. Rom. J. Phys. 2014, 59, 1057–1066. [Google Scholar]
- Mehrani, Z.; Ebrahimzadeh, H.; Asgharinezhad, A.A.; Moradi, E. Determination of copper in food and water sources using poly m-phenylenediamine/CNT electrospun nanofiber. Microchem. J. 2019, 149, 103975. [Google Scholar] [CrossRef]
- Vyhnanovsky, J.; Yildiz, D.; Stadlerova, B.; Musil, S. Efficient photochemical vapor generation of bismuth using a coiled Teflon reactor: Effect of metal sensitizers and analytical performance with flame-in-gas-shield atomizer and atomic fluorescence spectrometry. Microchem. J. 2021, 164, 10. [Google Scholar] [CrossRef]
- Zhu, S.Q.; Chen, B.B.; He, M.; Huang, T.; Hu, B. Speciation of mercury in water and fish samples by HPLC-ICP-MS after magnetic solid phase extraction. Talanta 2017, 171, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Li, L.B.; Chen, B.N.A.; Luo, L.J.; Liu, X.H.; Bi, X.Y.; You, T.Y. Sensitive and selective detection of Hg2+ in tap and canal water via self-enhanced ECL aptasensor based on NH2-Ru@SiO2-NGQDs. Talanta 2021, 222, 8. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Wu, W.Q.; Feng, C.Q.; Wu, H.M.; Zhang, Z.W. Simultaneous determination of heavy metals by an electrochemical method based on a nanocomposite consisting of fluorinated graphene and gold nanocage. Microchim. Acta 2020, 187, 9. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Zhan, F.P.; Li, S.L.; Antwi-Mensah, P.; Niu, L.; Wang, Q.X. Dual signal-based electrochemical aptasensor for simultaneous detection of Lead(II) and Mercury(II) in environmental water samples. Biosens. Bioelectron. 2022, 209, 7. [Google Scholar] [CrossRef] [PubMed]
- Koosha, E.; Shamsipur, M.; Salimi, F.; Ramezani, M. A microextraction method based on precipitation for the simultaneous separation and preconcentration of cadmium and lead before their determination by FAAS: Experimental design methodology. Sep. Sci. Technol. 2021, 56, 1721–1729. [Google Scholar] [CrossRef]
- Yu, H.M.; Li, C.H.; Tian, Y.F.; Jiang, X.M. Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry. Microchem. J. 2020, 152, 14. [Google Scholar] [CrossRef]
- da Silva, D.L.F.; da Costa, M.A.P.; Silva, L.O.B.; dos Santos, W.N.L. Simultaneous determination of mercury and selenium in fish by CVG AFS. Food Chem. 2019, 273, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, Y.-H.; Jiang, X.J.; Chang, S.; Sun, F.-F. Simultaneous determination of arsenic, antimony, lead and mercury in cosmetics by microwave digestion-atomic fluorescence spectrometry. China Surfactant Deterg. Cosmet. (China) 2019, 49, 764–768. [Google Scholar] [CrossRef]
- Singh, V.; Mishra, A.K. Green and cost-effective fluorescent carbon nanoparticles for the selective and sensitive detection of iron (III) ions in aqueous solution: Mechanistic insights and cell line imaging studies. Sens. Actuator B-Chem. 2016, 227, 467–474. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H.X. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lin, X.G.; Zhang, M.X.; Li, Y.; Luo, C.F.; Wu, J.E. Review of Electrochemical Biosensors for Food Safety Detection. Biosensors 2022, 12, 959. [Google Scholar] [CrossRef] [PubMed]
- Jarczewska, M.; Sokal, M.; Olszewski, M.; Malinowska, E. Studies on the Aptasensor Miniaturization for Electrochemical Detection of Lead Ions. Biosensors 2024, 14, 110. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Park, H.; Jo, W.; Lee, W.; Park, J. Detection of Heavy Metals in Water Environment Using Nafion-Blanketed Bismuth Nanoplates. ACS Sustain. Chem. Eng. 2023, 11, 6844–6855. [Google Scholar] [CrossRef]
- Alam, M.W.; Najeeb, J.; Naeem, S.; Usman, S.M.; Nahvi, I.; Alismail, F.; Abuzir, A.; Farhan, M.; Nawaz, A. Electrochemical Methodologies for Investigating the Antioxidant Potential of Plant and Fruit Extracts: A Review. Antioxidants 2022, 11, 1205. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.Y.; Han, D.H.; Kwon, S.R.; Bohn, P.W. Asymmetric Nafion-Coated Nanopore Electrode Arrays as Redox-Cycling-Based Electrochemical Diodes. ACS Nano 2018, 12, 9177–9185. [Google Scholar] [CrossRef]
- Milikic, J.; Savic, M.; Lezaic, A.J.; Sljukic, B.; Ciric-Marjanovic, G. Electrochemical Sensing of Cadmium and Lead Ions in Water by MOF-5/PANI Composites. Polymers 2024, 16, 683. [Google Scholar] [CrossRef]
- Zhang, B.Z.; Lv, L.A.; Ma, X.Y.; Xie, L.L.; Lin, M.; Chen, H.Y.; He, B.S. Au@ZnNi-MOF labeled electrochemical aptasensor for detection of enrofloxacin based on AuPt@h-CeO2/MoS2 and DNAzyme-driven DNA walker triple amplification signal strategy. Biosens. Bioelectron. 2022, 210, 114296. [Google Scholar] [CrossRef]
- Zhou, B.B.; Xie, H.; Li, X.Y.; Zhu, Y.B.; Huang, L.J.; Zhong, M.; Chen, L. Construction of a self-reporting molecularly-imprinted electrochemical sensor based on CuHCF modified by rGNR-rGO for the detection of zearalenone. Food Chem. 2024, 448, 139154. [Google Scholar] [CrossRef] [PubMed]
- Du, H.Y.; Cong, L.Y.; Xu, S.K.; He, W.M.; Shen, J.; Wang, J.; Li, X.G.; Zheng, L. Investigation of an ion migration channel with ion preconcentration and separation based on capillary electrophoresis. Sens. Actuators A-Phys. 2023, 362, 114670. [Google Scholar] [CrossRef]
- Lei, P.; Zhou, Y.; Zhao, S.; Dong, C.A.; Shuang, S.M. Carbon-supported X-manganate (X--Ni, Zn, and Cu) nanocomposites for sensitive electrochemical detection of trace heavy metal ions. J. Hazard. Mater. 2022, 435, 129036. [Google Scholar] [CrossRef]
- Ulaganambi, M.; S, L.K.; Kumar, S.; Tetala, K.K.R. In silico studies and development of a protein-based electrochemical sensor for selective and sensitive detection of aflatoxin B1. Microchim. Acta 2024, 191, 426. [Google Scholar] [CrossRef] [PubMed]
- Kongkaew, S.; Janduang, S.; Srilikhit, A.; Kaewnu, K.; Thipwimonmas, Y.; Cotchim, S.; Torrarit, K.; Phua, C.H.; Limbut, W. Waste DVD polycarbonate substrate for screen-printed carbon electrode modified with PVP-stabilized AuNPs for continuous free chlorine detection. Talanta 2024, 277, 126406. [Google Scholar] [CrossRef]
- Ji, J.; Wang, Z.; Zhang, F.; Wang, B.; Niu, Y.; Jiang, X.; Qiao, Z.-y.; Ren, T.-l.; Zhang, W.; Sang, S.; et al. Pulse electrochemical synaptic transistor for supersensitive and ultrafast biosensors. InfoMat 2023, 5, e12478. [Google Scholar] [CrossRef]
- Meng, L.; Akhoundian, M.; Al Azawi, A.; Shoja, Y.; Chi, P.-Y.; Meinander, K.; Suihkonen, S.; Franssila, S. Ultrasensitive Monolithic Dopamine Microsensors Employing Vertically Aligned Carbon Nanofibers. Adv. Healthc. Mater. 2024, 2303872. [Google Scholar] [CrossRef]
- Xing, Y.; Ding, X.; Liang, X.L.; Liu, G.Y.; Hou, S.L.; Hou, S.F. Magnetic MXene-based molecularly imprinted electrochemical sensor for methylmalonic acid. Microchim. Acta 2023, 190, 208. [Google Scholar] [CrossRef]
- Li, B.; Xie, X.M.; Meng, T.H.; Guo, X.T.; Li, Q.Z.; Yang, Y.T.; Jin, H.X.; Jin, C.H.; Meng, X.R.; Pang, H. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chem. 2024, 440, 138213. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B-Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Babu, S.; Lee, K.; Yang, H. Enzymatic Precipitation of Highly Electroactive and Ion-Transporting Prussian Blue for a Sensitive Electrochemical Immunosensor. ACS Sens. 2024, 9, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Liu, Y.Y.; Zhao, P.; Liang, Y.; Ma, Y.; Liu, H.; Hou, J.Z.; Hou, C.J.; Huo, D.Q. Sulfhydryl-functionalized 3D MXene-AuNPs enabled electrochemical sensors for the selective determination of Pb2+, Cu2+ and Hg2+ in grain. Food Chem. 2024, 446, 138770. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.X.; Karimi-Maleh, H. In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti3C2Tx for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. Chemosphere 2023, 324, 138302. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Xu, M.M.; Kuang, Y.J.; Liu, X.P.; Yuan, J.H. A novel ratiometric electrochemical aptasensor based on M-shaped functional DNA complexes for simultaneous detection of trace lead and mercury ions in series aquatic edible vegetables. J. Hazard. Mater. 2024, 465, 133169. [Google Scholar] [CrossRef]
- Albalawi, I.; Hogan, A.; Alatawi, H.; Alsefri, S.; Moore, E. A novel comparative study for simultaneous determination of Cd (II) and Pb (II) based on ruthenium complex-nanoparticles-nafion modified screen-printed gold electrode. Sens. Actuators B-Chem. 2023, 380, 133273. [Google Scholar] [CrossRef]
- Zhang, H.C.; Li, Y.R.; Zhang, Y.P.; Wu, J.F.; Li, S.X.; Li, L.L. A Disposable Electrochemical Sensor for Lead Ion Detection Based on In Situ Polymerization of Conductive Polypyrrole Coating. J. Electron. Mater. 2023, 52, 1819–1828. [Google Scholar] [CrossRef]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Shao, Z.; Jiang, S.P. Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application. Energy Storage Mater. 2020, 26, 1–22. [Google Scholar] [CrossRef]
- Mao, J.J.; Chen, Y.J.; Pei, J.J.; Wang, D.S.; Li, Y.D. Pt-M (M = Cu, Fe, Zn, etc.) bimetallic nanomaterials with abundant surface defects and robust catalytic properties. Chem. Commun. 2016, 52, 5985–5988. [Google Scholar] [CrossRef]
- Feng, T.T.; Gao, S.Q.; Wang, K. Colorimetric Sensing of Prostate Specific Membrane Antigen Based on Gold Nanoparticles. Acta Chim. Sin. 2019, 77, 422–426. [Google Scholar] [CrossRef]
- Jana, M.L.; Xu, R.; Cheng, X.B.; Yeon, J.S.; Park, J.M.; Huang, J.Q.; Zhang, Q.; Park, H.S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, C.; Li, X.; Du, X. An Electrochemical Sensor Based on Chalcogenide Molybdenum Disulfide-Gold-Silver Nanocomposite for Detection of Hydrogen Peroxide Released by Cancer Cells. Sensors 2020, 20, 6817. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Chen, S.; Zhang, J.; Li, T.; Li, P.; Liu, J.; Du, X.; Wang, S. Antibacterial Activity of Manganese Dioxide Nanosheets by ROS-Mediated Pathways and Destroying Membrane Integrity. Nanomaterials 2020, 10, 1545. [Google Scholar] [CrossRef] [PubMed]
- Zhao, N.; Deng, L.; Luo, D.; Zhang, P. One-step fabrication of biomass-derived hierarchically porous carbon/MnO nanosheets composites for symmetric hybrid supercapacitor. Appl. Surf. Sci. 2020, 526, 146696. [Google Scholar] [CrossRef]
- Bagherzade, A.; Jamshidi, M. Thermo-mechanical properties of epoxy nanocomposites incorporating amino acid and acid functionalized multi-walled carbon nanotubes. J. Compos. Mater. 2020, 54, 1847–1861. [Google Scholar] [CrossRef]
- Li, Y.; Shang, Y.; He, J.; Zhang, X.; Dong, J.; Song, R. Study on Dispersion Properties of Multi-walled Carbon Nanotubes in Polyurethane- Based Coating Materials. China Plast. 2021, 35, 18–24. [Google Scholar]
- de Barros, A.; Constantino, C.J.L.; da Cruz, N.C.; Bortoleto, J.R.R.; Ferreira, M. High performance of electrochemical sensors based on LbL films of gold nanoparticles, polyaniline and sodium montmorillonite clay mineral for simultaneous detection of metal ions. Electrochim. Acta 2017, 235, 700–708. [Google Scholar] [CrossRef]
- Xi, H.; Chen, X.; Cao, Y.; Xu, J.; Ye, C.; Deng, D.; Zhang, J.; Huang, G. Electrochemical determination of formaldehyde via reduced AuNPs@PPy composites modified electrode. Microchem. J. 2020, 156, 104846. [Google Scholar] [CrossRef]
- Kamal Ahmed, R.; Saad, E.M.; Fahmy, H.M.; El Nashar, R.M. Design and application of molecularly imprinted Polypyrrole/Platinum nanoparticles modified platinum sensor for the electrochemical detection of Vardenafil. Microchem. J. 2021, 171, 106771. [Google Scholar] [CrossRef]
- Cadkova, M.; Kovarova, A.; Dvorakova, V.; Metelka, R.; Bilkova, Z.; Korecka, L. Electrochemical quantum dots-based magneto-immunoassay for detection of HE4 protein on metal film-modified screen-printed carbon electrodes. Talanta 2018, 182, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Grabarczyk, M.; Adamczyk, M. Application of Electrochemical Sensor Based on Lead Film Electrode in Trace Vanadium (V) Determination by Adsorptive Stripping Voltammetry. IEEE Sens. J. 2019, 19, 5916–5922. [Google Scholar] [CrossRef]
- He, Y.; Ma, L.; Zhou, L.Y.; Liu, G.H.; Jiang, Y.J.; Gao, J. Preparation and Application of Bismuth/MXene Nano-Composite as Electrochemical Sensor for Heavy Metal Ions Detection. Nanomaterials 2020, 10, 866. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.H.; Ma, L.; Zhou, L.Y.; Jiang, Y.J.; Gao, J. Synthesis of bismuth nanoparticle-loaded cobalt ferrite for electrochemical detection of heavy metal ions. RSC Adv. 2020, 10, 27697–27705. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Y.; Yu, H.; Liu, T.; Li, W.J.; Hao, X.D.; Lu, Q.; Liang, X.S.; Liu, F.M.; Liu, F.M.; Wang, C.G.; et al. Highly sensitive detection of Pb2+ and Cu2+ based on ZIF-67/MWCNT/Nafion-modified glassy carbon electrode. Anal. Chim. Acta 2020, 1124, 166–175. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Rahm, C.E.; Jiang, D.H.; Gupta, V.K.; Heineman, W.R.; Justin, G.; Alvarez, N.T. Parts per trillion detection of heavy metals in as-is tap water using carbon nanotube microelectrodes. Anal. Chim. Acta 2021, 1155, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.S.; Li, C.H.; Sun, C.; Yang, X.D. Simultaneously determination of trace Cd2+ and Pb2+ based on L-cysteine/graphene modified glassy carbon electrode. Food Chem. 2016, 192, 351–357. [Google Scholar] [CrossRef]
- Priya, T.; Dhanalakshmi, N.; Thennarasu, S.; Karthikeyan, V.; Thinakaran, N. Ultra sensitive electrochemical detection of Cd2+ and Pb2+ using penetrable nature of graphene/gold nanoparticles/modified L-cysteine nanocomposite. Chem. Phys. Lett. 2019, 731, 7. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Lian, H.; Yang, W.; Zhuge, W.F.; Tang, X.Q.; Guo, Y.Y.; Peng, J.Y.; Li, F.Y. Electrochmical Sensing Platform for Detection of Lead(II) and Cadmium(II) Based on Mixed-Aerogels Loaded with Bismuth Nanoparticles. Chin. J. Anal. Chem. 2022, 50, 1233–1242. [Google Scholar] [CrossRef]
- Wu, S.P.; Li, K.H.; Zhang, Z.H.; Chen, L.Y. Synthesis of imprinted chitosan/AuNPs/graphene-coated MWCNTs/Nafion film for detection of lead ions. New J. Chem. 2020, 44, 14129–14135. [Google Scholar] [CrossRef]
- Alam, A.U.; Howlader, M.M.R.; Hu, N.-X.; Deen, M.J. Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs. Sens. Actuators B Chem. 2019, 296, 126632. [Google Scholar] [CrossRef]
- Guo, X.D.; Li, M.; Zhao, R.T.; Yang, Y.; Wang, R.L.; Wu, F.; Jia, L.L.; Zhang, Y.X.; Wang, L.H.; Qu, Z.B.; et al. Structural and positional impact on DNAzyme-based electrochemical sensors for metal ions. Nanomed.-Nanotechnol. Biol. Med. 2019, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.; Zhang, Y.J.; Liu, X.G.; Liu, S.Y.; Li, B.S.; Zhang, M.M.; Qin, L.; Yi, H.; Li, M.F.; Li, L.; et al. Electrochemical biosensor for amplified detection of Pb2+ based on perfect match of reduced graphene oxide-gold nanoparticles and single-stranded DNAzyme. Anal. Bioanal. Chem. 2019, 411, 7499–7509. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.; Xie, S.B.; Zhang, J.; Tang, D.Y.; Tang, Y. Immobilized-free miniaturized electrochemical sensing system for Pb2+ detection based on dual Pb2+-DNAzyme assistant feedback amplification strategy. Biosens. Bioelectron. 2018, 117, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Pratapkumar, C.; Prashantha, S.C.; Dileep Kumar, V.G.; Santosh, M.S.; Ravikumar, C.R.; Anilkumar, M.R.; Shashidhara, T.S.; Nanjunda Swamy, C.; Jahagirdar, A.A.; Alam, M.W.; et al. Structural, photocatalytic and electrochemical studies on facile combustion synthesized low-cost nano chromium (III) doped polycrystalline magnesium aluminate spinels. J. Sci. Adv. Mater. Devices 2021, 6, 462–471. [Google Scholar] [CrossRef]
- Zhao, D.; Guo, X.; Wang, T.; Alvarez, N.; Shanov, V.N.; Heineman, W.R. Simultaneous Detection of Heavy Metals by Anodic Stripping Voltammetry Using Carbon Nanotube Thread. Electroanalysis 2014, 26, 488–496. [Google Scholar] [CrossRef]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, S.; Ghourchian, H.; Rahimi, P. Different behaviors of single and multi wall carbon nanotubes for studying electrochemistry and electrocatalysis of choline oxidase. Electrochim. Acta 2011, 56, 9542–9548. [Google Scholar] [CrossRef]
- Schonfelder, R.; Aviles, F.; Bachmatiuk, A.; Cauich-Rodriguez, J.V.; Knupfer, M.; Buchner, B.; Rummeli, M.H. On the merits of Raman spectroscopy and thermogravimetric analysis to asses carbon nanotube structural modifications. Appl. Phys. A-Mater. Sci. Process. 2012, 106, 843–852. [Google Scholar] [CrossRef]
- Morales-Torres, S.; Silva, T.L.S.; Pastrana-Martinez, L.M.; Brandao, A.; Figueiredo, J.L.; Silva, A.M.T. Modification of the surface chemistry of singleand multi-walled carbon nanotubes by HNO3 and H2SO4 hydrothermal oxidation for application in direct contact membrane distillation. Phys. Chem. Chem. Phys. 2014, 16, 12237–12250. [Google Scholar] [CrossRef]
- Gu, Y.-y.; Fu, H.; Huang, Z.; Lin, R.; Wu, Z.; Li, M.; Cui, Y.; Fu, R.; Wang, S. O/F co-doped CNTs promoted graphite felt gas diffusion cathode for highly efficient and durable H2O2 evolution without aeration. J. Clean. Prod. 2022, 341, 130799. [Google Scholar] [CrossRef]
- Xiao, S.N.; Wan, Z.; Zhou, J.C.; Li, H.; Zhang, H.Q.; Su, C.L.; Chen, W.; Li, G.S.; Zhang, D.Q.; Li, H.X. Gas-Phase Photoelectrocatalysis for Breaking Down Nitric Oxide. Environ. Sci. Technol. 2019, 53, 7145–7154. [Google Scholar] [CrossRef] [PubMed]
- Kiranakumar, H.V.; Thejas, R.; Naveen, C.S.; Khan, M.I.; Prasanna, G.D.; Reddy, S.; Oreijah, M.; Guedri, K.; Bafakeeh, O.T.; Jameel, M. A review on electrical and gas-sensing properties of reduced graphene oxide-metal oxide nanocomposites. Biomass Convers. Biorefinery 2022, 14, 12625–12635. [Google Scholar] [CrossRef]
- Nguyen, B.H.; Nguyen, V.H.; Bui, D.H.; Le, T.T.P. Theory of photon-electron interaction in single-layer graphene sheet. Adv. Nat. Sci.-Nanosci. Nanotechnol. 2015, 6, 045009. [Google Scholar] [CrossRef]
- Ma, D.K.; Ding, H.R.; Wang, X.M.; Yang, N.; Zhang, X. The unexpected thermal conductivity from graphene disk, carbon nanocone to carbon nanotube. Int. J. Heat Mass Transf. 2017, 108, 940–944. [Google Scholar] [CrossRef]
- Alam, A.U.; Qin, Y.; Catalano, M.; Wang, L.; Kim, M.J.; Howlader, M.M.R.; Hu, N.-X.; Deen, M.J. Tailoring MWCNTs and β-Cyclodextrin for Sensitive Detection of Acetaminophen and Estrogen. ACS Appl. Mater. Interfaces 2018, 10, 21411–21427. [Google Scholar] [CrossRef]
- Göde, C.; Yola, M.L.; Yilmaz, A.; Atar, N.; Wang, S.B. A novel electrochemical sensor based on calixarene functionalized reduced graphene oxide: Application to simultaneous determination of Fe(III), Cd(II) and Pb(II) ions. J. Colloid Interface Sci. 2017, 508, 525–531. [Google Scholar] [CrossRef]
- Zhu, N.X.; Liu, X.N.; Peng, K.M.; Cao, H.; Yuan, M.; Ye, T.; Wu, X.X.; Yin, F.Q.; Yu, J.S.; Hao, L.L.; et al. A Novel Aptamer-Imprinted Polymer-Based Electrochemical Biosensor for the Detection of Lead in Aquatic Products. Molecules 2023, 28, 196. [Google Scholar] [CrossRef]
- Hou, J.; Gong, X.Y.; Zhong, Y.J.; Cheng, C.; Liu, M.X.; Yang, Z.J. Immobilization of tannin onto dialdehyde chitosan as a strategy for highly efficient and selective Au(III) adsorption. Int. J. Biol. Macromol. 2023, 235, 123919. [Google Scholar] [CrossRef]
- Yang, S.; Song, Z.J.; He, Z.C.; Ye, X.M.; Li, J.; Wang, W.S.; Zhang, D.W.; Li, Y.C. A review of chitosan-based shape memory materials: Stimuli-responsiveness, multifunctionalities and applications. Carbohydr. Polym. 2024, 323, 121411. [Google Scholar] [CrossRef]
- Chauhan, D.; Jaiswal, M.; Sankararamakrishnan, N. Removal of cadmium and hexavalent chromium from electroplating waste water using thiocarbamoyl chitosan. Carbohydr. Polym. 2012, 88, 670–675. [Google Scholar] [CrossRef]
- Muzzarelli, R.; Boudrant, J.; Meyer, D.; Manno, N.; Demarchis, M.; Paoletti, M.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012, 87, 995–1012. [Google Scholar] [CrossRef]
- Fen, Y.W.; Yunus, W.M.M.; Yusof, N.A. Surface plasmon resonance optical sensor for detection of Pb2+ based on immobilized p-tert-butylcalix 4 arene-tetrakis in chitosan thin film as an active layer. Sens. Actuator B-Chem. 2012, 171, 287–293. [Google Scholar] [CrossRef]
- Hwang, J.H.; Pathak, P.; Wang, X.C.; Rodriguez, K.L.; Cho, H.J.; Lee, W.H. A Novel Bismuth-Chitosan Nanocomposite Sensor for Simultaneous Detection of Pb(II), Cd(II) and Zn(II) in Wastewater. Micromachines 2019, 10, 511. [Google Scholar] [CrossRef]
- Ding, Y.Y.; Yang, J.H.; Cai, J. Preparation of guanidinylated carboxymethyl chitosan and its application in the diffusive gradients in thin films (DGT) technique for measuring labile trace metals in water. Int. J. Environ. Anal. Chem. 2018, 98, 1275–1291. [Google Scholar] [CrossRef]
- Dai, X.; Zhang, X.H.; Wang, Z.X.; Xu, S.; Zhang, S.X.; Cao, M.; Jiang, X.D. The effect of surface modification of PMMA/chitosan composites on improving adsorption properties for chelating Pb2+. J. Polym. Eng. 2019, 39, 628–635. [Google Scholar] [CrossRef]
- Croitoru, A.M.; Ficai, A.; Ficai, D.; Trusca, R.; Dolete, G.; Andronescu, E.; Turculet, S.C. Chitosan/Graphene Oxide Nanocomposite Membranes as Adsorbents with Applications in Water Purification. Materials 2020, 13, 1687. [Google Scholar] [CrossRef]
- Asiabi, M.; Mehdinia, A.; Jabbari, A. Spider-web-like chitosan/MIL-68(Al) composite nanofibers for high-efficient solid phase extraction of Pb(II) and Cd(II). Microchim. Acta 2017, 184, 4495–4501. [Google Scholar] [CrossRef]
- Huang, L.J.; Huang, W.; Shen, R.J.; Shuai, Q. Chitosan/thiol functionalized metal-organic framework composite for the simultaneous determination of lead and cadmium ions in food samples. Food Chem. 2020, 330, 127212. [Google Scholar] [CrossRef]
- Wang, L.Y.; Peng, X.L.; Fu, H.J. An electrochemical aptasensor for the sensitive detection of Pb2+ based on a chitosan/reduced graphene oxide/titanium dioxide. Microchem. J. 2022, 174, 8. [Google Scholar] [CrossRef]
- Xing, C.; Lin, Q.T.; Gao, X.; Cao, T.; Chen, J.; Liu, J.L.; Lin, Y.H.; Wang, J.; Lu, C.H. Intracellular miRNA Imaging Based on a Self-Powered and Self-Feedback Entropy-Driven Catalyst-DNAzyme Circuit. ACS Appl. Mater. Interfaces 2022, 14, 39866–39872. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, Y.B.; Luo, X.Q.; Li, Y.J.; Xing, Y.Q.; Huang, K.J. Visual self-powered platform for ultrasensitive heavy metal detection designed on graphdiyne/graphene heterojunction and DNAzyme-triggered DNA circuit strategy. Chem. Eng. J. 2024, 485, 150151. [Google Scholar] [CrossRef]
- Meng, J.Y.; Huang, J.M.; Oueslati, R.; Jiang, Y.; Chen, J.G.; Li, S.S.; Dai, S.J.; He, Q.; Wu, J. A single-step DNAzyme sensor for ultra-sensitive and rapid detection of Pb2+ ions. Electrochim. Acta 2021, 368, 137551. [Google Scholar] [CrossRef]
- Nong, Y.Z.; Xu, M.; Liu, B.C.; Li, J.F.; He, D.Y.; Li, C.F.; Lin, P.Y.; Luo, Y.; Dang, C.Y.; Fu, J. Low temperature acclimation of electroactive microorganisms may be an effective strategy to enhance the toxicity sensing performance of microbial fuel cell sensors. Water Res. 2024, 256, 121566. [Google Scholar] [CrossRef] [PubMed]
- Dolati, S.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Recent nucleic acid based biosensors for Pb2+ detection. Sens. Actuators B-Chem. 2017, 246, 864–878. [Google Scholar] [CrossRef]
- Zhang, B.Y.; Shi, L.; Ma, X.Y.; Liu, L.; Fu, Y.; Zhang, X.F. Advances in the Functional Nucleic Acid Biosensors for Detection of Lead Ions. Crit. Rev. Anal. Chem. 2023, 53, 309–325. [Google Scholar] [CrossRef]
Electrochemical Sensor | LOD (S/N = 3) | Linear Range | Ref. |
---|---|---|---|
Based on metal/metal oxide nanomaterials | |||
BiNPs@Ti3C2Tx@GCE | 10.8 nM | 0.06–0.6 μM | [63] |
BiNPs @CoFe2O4@GCE | 7.3 nM | 0.06–0.6 μM | [64] |
ZIF-67/MWCNT/Nafion/GCE | 1 nM | 1.38 nM to 5 μM | [65] |
Based on carbon nanomaterials | |||
HD-CNTf | 0.45 nM | 0.48–144.6 nM | [66] |
L-cys/GR-CS/GCE | 2.17 nM (0.45 μg/L) | 5.02–300 nM (1.04–62.1 μg/L) | [67] |
PrGO/AuNPs/Sal-Cys/GCE | 0.04 nM | 1–10 nM | [68] |
BiNPs modified aerogel | 0.63 pM (0.13 ng/L) | 0.02–2 nM (5–500 ng/L) | [69] |
Based on renewable biomaterials | |||
CS/MWCNTs/GR/AuNPs/Nafion/GCE | 0.283 nM | 1 nM–50 μM | [70] |
MWCNT-β-CD (physical modification)/SPE | 0.004 μM (0.9 ppb) | 0.015–0.50 μM (3.1–103.3 ppb) | [71] |
MWCNT-β-CD (chemical modification)/SPE | 0.011 μM (2.3 ppb) | 0.030–0.50 μM (6.2–103.5 ppb) | [71] |
Based on nucleic acids | |||
Tetrahedron-based DNAzyme sensors | 0.01 μM | 0.01–100 μM | [72] |
MCH/P/AuNPs/RGO/GCE | 0.015 nM | 0.05–400000 nM | [73] |
The sensor based on DDFA strategy | 0.048 pM | 0.2 pM–100 nM | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.; Wang, X.; Xu, H. Enhancing Trace Pb2⁺ Detection via Novel Functional Materials for Improved Electrocatalytic Redox Processes on Electrochemical Sensors: A Short Review. Catalysts 2024, 14, 451. https://doi.org/10.3390/catal14070451
Yang D, Wang X, Xu H. Enhancing Trace Pb2⁺ Detection via Novel Functional Materials for Improved Electrocatalytic Redox Processes on Electrochemical Sensors: A Short Review. Catalysts. 2024; 14(7):451. https://doi.org/10.3390/catal14070451
Chicago/Turabian StyleYang, Duowen, Xinyu Wang, and Hao Xu. 2024. "Enhancing Trace Pb2⁺ Detection via Novel Functional Materials for Improved Electrocatalytic Redox Processes on Electrochemical Sensors: A Short Review" Catalysts 14, no. 7: 451. https://doi.org/10.3390/catal14070451
APA StyleYang, D., Wang, X., & Xu, H. (2024). Enhancing Trace Pb2⁺ Detection via Novel Functional Materials for Improved Electrocatalytic Redox Processes on Electrochemical Sensors: A Short Review. Catalysts, 14(7), 451. https://doi.org/10.3390/catal14070451