Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review
Abstract
:1. Introduction
2. Hydrotreatment Process
- The quality of feedstock, including parameters such as free fatty acid content and phosphatide content.
- Reaction conditions, encompassing factors like temperature, reaction time, and mixing intensity.
- Selection of the catalyst type. This latter aspect will be further elaborated, including a comparison of different catalytic systems, in Section 3.
2.1. Feedstocks
2.2. Influence of Reaction Time, Pressure, and Temperature
3. Choice of Catalyst for Hydrotreatment
3.1. Heterogeneous Catalysts
3.2. Nickel-Based Catalysts
3.3. Palladium-Based Catalysts
3.4. Cobalt-Based Catalysts
3.5. Transition Metal Phosphides
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United States Environmental Protection Agency (US EPA, OAR). Learn about Impacts Diesel Exhaust Diesel Emissions Reduction Act (DERA); United States Environmental Protection Agency: Washington, DC, USA, 2015. [Google Scholar]
- Sonnichsen, N. Global Biofuel Production 2020; Statista: Hamburg, Germany, 2021. [Google Scholar]
- Abbaszaadeh, A.; Ghobadian, B.; Omidkhah, M.R.; Najafi, G. Current Biodiesel Production Technologies: A Comparative Review. Energy Convers. Manag. 2012, 63, 138–148. [Google Scholar] [CrossRef]
- Garraín, D.; Herrera, I.; Lago, C.; Lechón, Y.; Sáez, R. Renewable Diesel Fuel from Processing of Vegetable Oil in Hydrotreatment Units: Theoretical Compliance with European Directive 2009/28/EC and Ongoing Projects in Spain. Smart Grid Renew. Energy 2010, 1, 70–73. [Google Scholar] [CrossRef]
- Knothe, G. Biodiesel and Renewable Diesel: A Comparison. Prog. Energy Combust. Sci. 2010, 36, 364–373. [Google Scholar] [CrossRef]
- Sailau, Z.; Serikkanov, A.; Kemelbekova, A.; Shongalova, A.; Zhantuarov, S.; Almas, N.; Aldongarov, A.; Toshtay, K. Insight into the Glycerol Extraction from Biodiesel Using Deep Eutectic Solvents. J. Mol. Model. 2023, 29, 54. [Google Scholar] [CrossRef] [PubMed]
- Sailau, Z.; Almas, N.; Aldongarov, A.; Toshtay, K. Studying the Formation of Choline Chloride- and Glucose-Based Natural Deep Eutectic Solvent at the Molecular Level. J. Mol. Model. 2022, 28, 235. [Google Scholar] [CrossRef] [PubMed]
- Szybist, J.P.; Song, J.; Alam, M.; Boehman, A.L. Biodiesel Combustion, Emissions and Emission Control. Fuel Process Technol. 2007, 88, 679–691. [Google Scholar] [CrossRef]
- Corrêa, S.M.; Arbilla, G. Aromatic Hydrocarbons Emissions in Diesel and Biodiesel Exhaust. Atmos. Environ. 2006, 40, 6821–6826. [Google Scholar] [CrossRef]
- Vojtisek-Lom, M.; Pechout, M.; Dittrich, L.; Beránek, V.; Kotek, M.; Schwarz, J.; Vodička, P.; Milcová, A.; Rossnerová, A.; Ambrož, A.; et al. Polycyclic Aromatic Hydrocarbons (PAH) and Their Genotoxicity in Exhaust Emissions from a Diesel Engine during Extended Low-Load Operation on Diesel and Biodiesel Fuels. Atmos. Environ. 2015, 109, 9–18. [Google Scholar] [CrossRef]
- Karavalakis, G.; Fontaras, G.; Ampatzoglou, D.; Kousoulidou, M.; Stournas, S.; Samaras, Z.; Bakeas, E. Effects of Low Concentration Biodiesel Blends Application on Modern Passenger Cars. Part 3: Impact on PAH, Nitro-PAH, and Oxy-PAH Emissions. Environ. Pollut. 2010, 158, 1584–1594. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Natsios, I.; Dimaratos, A.; Katsaounis, D.; Samaras, Z.; Bezergianni, S.; Lehto, K. Evaluation of a Hydrotreated Vegetable Oil (HVO) and Effects on Emissions of a Passenger Car Diesel Engine. Front. Mech. Eng. 2018, 4, 7. [Google Scholar] [CrossRef]
- Aatola, H.; Larmi, M.; Sarjovaara, T.; Mikkonen, S. Hydrotreated Vegetable Oil (HVO) as a Renewable Diesel Fuel: Trade-off between NOx, Particulate Emission, and Fuel Consumption of a Heavy Duty Engine. SAE Int. J. Engines 2008, 1, 1251–1262. [Google Scholar] [CrossRef]
- Zeman, P.; Hönig, V.; Kotek, M.; Táborský, J.; Obergruber, M.; Mařík, J.; Hartová, V.; Pechout, M. Hydrotreated Vegetable Oil as a Fuel from Waste Materials. Catalysts 2019, 9, 337. [Google Scholar] [CrossRef]
- Hydrotreating (HVO)—Advantages over FAME and Properties. Biorefineries, 2019. Available online: https://biorrefineria.blogspot.com/2019/11/hydrotreating-hvo-renewable-diesel-advantages-over-fame-properties.html (accessed on 26 November 2019).
- Graves, C. HVO Fuel Approval Offers Huge Fossil CO2 Reductions to Volvo Penta Engines; Volvo Penta: Göteborg, Sweden, 2016. [Google Scholar]
- Boonrod, B.; Prapainainar, P.; Varabuntoonvit, V.; Sudsakorn, K.; Prapainainar, C. Environmental impact assessment of bio-hydrogenated diesel from hydrogen and coproduct of palm oil industry. Int. J. Hydrogen Energy 2021, 46, 10570–10585. [Google Scholar] [CrossRef]
- Bellocchi, S.; De Falco, M.; Gambini, M.; Manno, M.; Stilo, T.; Vellini, M. Opportunities for Power-to-Gas and Power-to-Liquid in CO2-Reduced Energy Scenarios: The Italian Case. Energy 2019, 175, 847–861. [Google Scholar] [CrossRef]
- Varone, A.; Ferrari, M. Power to Liquid and Power to Gas: An Option for the German Energiewende. Renew. Sustain. Energy Rev. 2015, 45, 207–218. [Google Scholar] [CrossRef]
- Ail, S.S.; Dasappa, S. Biomass to Liquid Transportation Fuel via Fischer Tropsch Synthesis—Technology Review and Current Scenario. Renew. Sustain. Energy Rev. 2016, 58, 267–286. [Google Scholar] [CrossRef]
- Haasz, T.; Gómez Vilchez, J.J.; Kunze, R.; Deane, P.; Fraboulet, D.; Fahl, U.; Mulholland, E. Perspectives on Decarbonizing the Transport Sector in the EU-28. Energy Strateg. Rev. 2018, 20, 124–132. [Google Scholar] [CrossRef]
- Navas-Anguita, Z.; García-Gusano, D.; Iribarren, D. A Review of Techno-Economic Data for Road Transportation Fuels. Renew. Sustain. Energy Rev. 2019, 112, 11–26. [Google Scholar] [CrossRef]
- Salomone, F.; Giglio, E.; Ferrero, D.; Santarelli, M.; Pirone, R.; Bensaid, S. Techno-Economic Modelling of a Power-to-Gas System Based on SOEC Electrolysis and CO2 Methanation in a RES-Based Electric Grid. Chem. Eng. J. 2019, 377, 120233. [Google Scholar] [CrossRef]
- Andika, R.; Nandiyanto, A.B.D.; Putra, Z.A.; Bilad, M.R.; Kim, Y.; Yun, C.M.; Lee, M. Co-Electrolysis for Power-to-Methanol Applications. Renew. Sustain. Energy Rev. 2018, 95, 227–241. [Google Scholar] [CrossRef]
- Pozzo, M.; Lanzini, A.; Santarelli, M. Enhanced Biomass-to-Liquid (BTL) Conversion Process through High Temperature Co-Electrolysis in a Solid Oxide Electrolysis Cell (SOEC). Fuel 2015, 145, 39–49. [Google Scholar] [CrossRef]
- Mulholland, E.; Teter, J.; Cazzola, P.; McDonald, Z.; Ó Gallachóir, B.P. The Long Haul towards Decarbonising Road Freight—A Global Assessment to 2050. Appl. Energy 2018, 216, 678–693. [Google Scholar] [CrossRef]
- Veriansyah, B.; Han, J.Y.; Kim, S.K.; Hong, S.-A.; Kim, Y.J.; Lim, J.S.; Shu, Y.-W.; Oh, S.-G.; Kim, J. Production of Renewable Diesel by Hydroprocessing of Soybean Oil: Effect of Catalysts. Fuel 2012, 94, 578–585. [Google Scholar] [CrossRef]
- Huber, G.W.; O’Connor, P.; Corma, A. Processing Biomass in Conventional Oil Refineries: Production of High Quality Diesel by Hydrotreating Vegetable Oils in Heavy Vacuum Oil Mixtures. Appl. Catal. A Gen. 2007, 329, 120–129. [Google Scholar] [CrossRef]
- Labeckas, G.; Slavinskas, S.; Kanapkienė, I. The Individual Effects of Cetane Number, Oxygen Content or Fuel Properties on the Ignition Delay, Combustion Characteristics, and Cyclic Variation of a Turbocharged CRDI Diesel Engine—Part 1. Energy Convers. Manag. 2017, 148, 1003–1027. [Google Scholar] [CrossRef]
- anak Erison, A.E.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Abdullah, M.O.; Ghasemi, M. Life Cycle Assessment of Biodiesel Production by Using Impregnated Magnetic Biochar Derived from Waste Palm Kernel Shell. Environ. Res. 2022, 214, 114149. [Google Scholar] [CrossRef]
- Manurung, R.; Ramadhani, D.A.; Maisarah, S. One Step Transesterification Process of Sludge Palm Oil (SPO) by Using Deep Eutectic Solvent (DES) in Biodiesel Production. AIP Conf. Proc. 2017, 1855, 070004. [Google Scholar]
- Hayyan, A.; Alam, M.Z.; Kabbashi, N.A.; Mirghani, M.E.S. Pretreatment of Sludge Palm Oil for Biodiesel Production by Esterification. In Proceedings of the 22nd Symposium of Malaysian Chemical Engineers, Kuala Lumpur, Malaysia, 15 December 2015; Volume 2, pp. 485–490. [Google Scholar]
- Loh, J.M.; Amelia; Gourich, W.; Chew, C.L.; Song, C.P.; Chan, E.-S. Improved Biodiesel Production from Sludge Palm Oil Catalyzed by a Low-Cost Liquid Lipase under Low-Input Process Conditions. Renew. Energy 2021, 177, 348–358. [Google Scholar] [CrossRef]
- Hor, C.J.; Tan, Y.H.; Mubarak, N.M.; Tan, I.S.; Ibrahim, M.L.; Yek, P.N.Y.; Karri, R.R.; Khalid, M. Techno-Economic Assessment of Hydrotreated Vegetable Oil as a Renewable Fuel from Waste Sludge Palm Oil. Environ. Res. 2023, 220, 115169. [Google Scholar] [CrossRef]
- Chhetri, A.; Watts, K.; Islam, M. Waste Cooking Oil as an Alternate Feedstock for Biodiesel Production. Energies 2008, 1, 3–18. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Directive (EU) 2015/1513: Amending Directive 98/70/EC Relating to the Quality of Petrol and Diesel Fuels and Amending Directive. 2009/28/EC on the Promotion of the Use of Energy from Renewable Sources. 2015. Available online: http://eur-lex.europa.eu/pri/en/oj/dat/2003/l_285/l_28520031101en00330037.pdf (accessed on 24 April 2019).
- European Commission Commission Regulation (EU). 2019/649 of 24 April 2019 Amending Annex III to Regulation (EC) No 1925/2006 of the European Parliament and of the Council as Regards Trans Fat, Other than Trans Fat Naturally Occurring in Fat of Animal Origin. Off. J. Eur. Union 2019, 17–20. Available online: http://data.europa.eu/eli/reg/2019/649/oj (accessed on 24 April 2019).
- Deffense, E. From Organic Chemistry to Fat and Oil Chemistry. Oléagineux Corps Gras Lipides 2009, 16, 14–24. [Google Scholar] [CrossRef]
- Choukri, A. Improved Oil Treatment Conditions for Soft Degumming. J. Am. Oil Chem Soc. 2001, 78, 1157–1160. [Google Scholar] [CrossRef]
- Erickson, D.R. Chapter 11—Neutralization. In Practical Handbook of Soybean Processing and Utilization; Elsevier: Amsterdam, The Netherlands, 1995; pp. 184–202. [Google Scholar]
- Thomas, A.; Matthäus, B.; Fiebig, H.-J. Fats and Fatty Oils. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015; pp. 1–84. [Google Scholar]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of Various Plants and Animals Feedstocks for Biodiesel Production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef]
- Gunstone, F.D. The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses; Blackwell Publishing: Oxford, UK, 2004. [Google Scholar]
- Simacek, P.; Kubicka, D.; Kubickova, I.; Homola, F.; Pospisil, M.; Chudoba, J. Premium Quality Renewable Diesel Fuel by Hydroprocessing of Sunflower Oil. Fuel 2011, 2473–2479. [Google Scholar] [CrossRef]
- Phimsen, S.; Kiatkittipong, W.; Yamada, H.; Tagawa, T.; Kiatkittipong, K.; Laosiripojana, N.; Assabumrungrat, S. Nickel Sulfide, Nickel Phosphide and Nickel Carbide Catalysts for Bio-Hydrotreated Fuel Production. Energy Convers. Manag. 2017, 151, 324–333. [Google Scholar] [CrossRef]
- Kubička, D.; Kaluža, L. Deoxygenation of Vegetable Oils over Sulfided Ni, Mo and NiMo Catalysts. Appl. Catal. A Gen. 2010, 372, 199–208. [Google Scholar] [CrossRef]
- Sonthalia, A.; Kumar, N. Hydroprocessed Vegetable Oil as a Fuel for Transportation Sector: A Review. J. Energy Inst. 2019, 92, 1–17. [Google Scholar] [CrossRef]
- Sotelo-Boyas, R.; Trejo-Zarraga, F.; de Jesus Hernandez-Loyo, F. Hydroconversion of Triglycerides into Green Liquid Fuels. In Hydrogenation; InTech: Houston TX, USA, 2012. [Google Scholar]
- Kochetkova, D.; Blažek, J.; Šimáček, P.; Staš, M.; Beňo, Z. Influence of Rapeseed Oil Hydrotreating on Hydrogenation Activity of CoMo Catalyst. Fuel Process. Technol. 2016, 142, 319–325. [Google Scholar] [CrossRef]
- Bezergianni, S. Catalytic Hydroprocessing of Liquid Biomass for Biofuels Production; INTECH Open Access Publisher: London, UK, 2013. [Google Scholar]
- Mortensen, P.M.; Grunwaldt, J.-D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels. Appl. Catal. A Gen. 2011, 407, 1–19. [Google Scholar] [CrossRef]
- Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B.C.; Rahimpour, M.R. Upgrading of Lignin-Derived Bio-Oils by Catalytic Hydrodeoxygenation. Energy Environ. Sci. 2014, 7, 103–129. [Google Scholar] [CrossRef]
- Demirbas, A.; Dincer, K. Sustainable Green Diesel: A Futuristic View. Energy Sources Part A Recover. Util. Environ. Eff. 2008, 30, 1233–1241. [Google Scholar] [CrossRef]
- Kiss, A.A.; Dimian, A.C.; Rothenberg, G. Solid Acid Catalysts for Biodiesel Production—Towards Sustainable Energy. Adv. Synth. Catal. 2006, 348, 75–81. [Google Scholar] [CrossRef]
- Kiss, A.A.; Dimian, A.C.; Rothenberg, G. Biodiesel by Catalytic Reactive Distillation Powered by Metal Oxides. Energy Fuels 2008, 22, 598–604. [Google Scholar] [CrossRef]
- Rajesh, M.; Sau, M.; Malhotra, R.K.; Sharma, D.K. Hydrotreating of Gas Oil, Jatropha Oil, and Their Blends Using a Carbon Supported Cobalt-Molybdenum Catalyst. Pet. Sci. Technol. 2015, 33, 1653–1659. [Google Scholar] [CrossRef]
- Rajesh, M.; Sau, M.; Malhotra, R.K.; Sharma, D.K. Synthesis and Characterization of Ni-Mo Catalyst Using Pea Pod (Pisum sativum L.) as Carbon Support and Its Hydrotreating Potential for Gas Oil, Jatropha Oil, and Their Blends. Pet. Sci. Technol. 2016, 34, 394–400. [Google Scholar] [CrossRef]
- Rajesh, M.; Sau, M.; Malhotra, R.K.; Sharma, D.K. Synthesis and Characterization of Ni-Mo Catalyst Using Jatropha Curcas Leaves as Carbon Support and Its Catalytic Activity for Hydrotreating of Gas Oil, Jatropha Oil, and Their Blends. Pet. Sci. Technol. 2016, 34, 240–246. [Google Scholar] [CrossRef]
- Zarchin, R.; Rabaev, M.; Vidruk-Nehemya, R.; Landau, M.V.; Herskowitz, M. Hydroprocessing of Soybean Oil on Nickel-Phosphide Supported Catalysts. Fuel 2015, 139, 684–691. [Google Scholar] [CrossRef]
- Bezergianni, S.; Dimitriadis, A.; Kalogianni, A.; Knudsen, K.G. Toward Hydrotreating of Waste Cooking Oil for Biodiesel Production. Effect of Pressure, H 2 /Oil Ratio, and Liquid Hourly Space Velocity. Ind. Eng. Chem. Res. 2011, 50, 3874–3879. [Google Scholar] [CrossRef]
- Tiwari, R.; Rana, B.S.; Kumar, R.; Verma, D.; Kumar, R.; Joshi, R.K.; Garg, M.O.; Sinha, A.K. Hydrotreating and Hydrocracking Catalysts for Processing of Waste Soya-Oil and Refinery-Oil Mixtures. Catal. Commun. 2011, 12, 559–562. [Google Scholar] [CrossRef]
- Bezergianni, S.; Kalogianni, A.; Vasalos, I.A. Hydrocracking of Vacuum Gas Oil–Vegetable Oil Mixtures for Biofuels Production. Bioresour. Technol. 2009, 100, 3036–3042. [Google Scholar] [CrossRef]
- Şenol, O.İ.; Viljava, T.R.; Krause, A.O. Hydrodeoxygenation of Aliphatic Esters on Sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 Catalyst: The Effect of Water. Catal. Today 2005, 106, 186–189. [Google Scholar] [CrossRef]
- Guzman, A.; Torres, J.E.; Prada, L.P.; Nunez, M.L. Hydroprocessing of Crude Palm Oil at Pilot Plant Scale. Catal. Today 2010, 156, 38–43. [Google Scholar] [CrossRef]
- Kovács, S.; Kasza, T.; Thernesz, A.; Horváth, I.W.; Hancsók, J. Fuel Production by Hydrotreating of Triglycerides on NiMo/Al2O3/F Catalyst. Chem. Eng. J. 2010, 176–177, 237–243. [Google Scholar] [CrossRef]
- Monnier, J.; Sulimma, H.; Dalai, A.; Caravaggio, G. Hydrodeoxygenation of Oleic Acid and Canola Oil over Alumina-Supported Metal Nitrides. Appl. Catal. A Gen. 2010, 382, 176–180. [Google Scholar] [CrossRef]
- Toshtay, K. Liquid-Phase Hydrogenation of Sunflower Oil over Platinum and Nickel Catalysts: Effects on Activity and Stereoselectivity. Results Eng. 2024, 21, 101970. [Google Scholar] [CrossRef]
- Toshtay, K.; Auyezov, A.B.; Bizhanov, Z.A.; Yeraliyeva, A.T.; Toktasinov, S.K.; Kudaibergen, B.; Nurakyshev, A. Effect of Catalyst Preparation on the Selective Hydrogenation of Vegetable Oil Over Low Percentage Pd/Diatomite Catalysts. Eurasian Chem. J. 2014, 17, 33. [Google Scholar] [CrossRef]
- Snåre, M.; Kubicˇkova, I.; Mäki-Arvela, P.; Eränen, K.; Murzin, D.Y. Heterogeneous Catalytic Deoxygenation of Stearic Acid for Production of Biodiesel. Ind. Eng. Chem. Res. 2006, 45, 5708–5715. [Google Scholar] [CrossRef]
- Gusmao, J.; Brodzki, D.; Djega-Mariadassou, G.; Frety, R. Utilization of Vegetable Oils as an Alternative Source for Diesel-Type Fuel: Hydrocracking on Reduced Ni/SiO2 and Sulphided Ni-Mo/γ-Al2O3. Catal. Today 1989, 5, 533–544. [Google Scholar] [CrossRef]
- da Rocha Filho, G.N.; Brodzki, D.; Djéga-Mariadassou, G. Formation of Alkanes, Alkylcycloalkanes and Alkylbenzenes during the Catalytic Hydrocracking of Vegetable Oils. Fuel 1993, 72, 543–549. [Google Scholar] [CrossRef]
- Šimáček, P.; Kubička, D.; Šebor, G.; Pospíšil, M. Hydroprocessed Rapeseed Oil as a Source of Hydrocarbon-Based Biodiesel. Fuel 2009, 88, 456–460. [Google Scholar] [CrossRef]
- Kubička, D.; Horáček, J. Deactivation of HDS Catalysts in Deoxygenation of Vegetable Oils. Appl. Catal. A Gen. 2011, 394, 9–17. [Google Scholar] [CrossRef]
- Şenol, O.İ.; Viljava, T.R.; Krause, A.O. Effects of Sulphiding Agents on the Hydrodeoxygenation of Aliphatic Esters on Sulphided Catalysts. Appl. Catal. A Gen. 2007, 326, 236–244. [Google Scholar] [CrossRef]
- Arend, M.; Nonnen, T.; Hoelderich, W.F.; Fischer, J.; Groos, J. Catalytic Deoxygenation of Oleic Acid in Continuous Gas Flow for the Production of Diesel-like Hydrocarbons. Appl. Catal. A Gen. 2011, 399, 198–204. [Google Scholar] [CrossRef]
- Yakovlev, V.A.; Khromova, S.A.; Sherstyuk, O.V.; Dundich, V.O.; Ermakov, D.Y.; Novopashina, V.M.; Lebedev, M.Y.; Bulavchenko, O.; Parmon, V.N. Development of New Catalytic Systems for Upgraded Bio-Fuels Production from Bio-Crude-Oil and Biodiesel. Catal. Today 2009, 144, 362–366. [Google Scholar] [CrossRef]
- Song, H.; Dai, M.; Guo, Y.-T.; Zhang, Y.-J. Preparation of Composite TiO2–Al2O3 Supported Nickel Phosphide Hydrotreating Catalysts and Catalytic Activity for Hydrodesulfurization of Dibenzothiophene. Fuel Process. Technol. 2012, 96, 228–236. [Google Scholar] [CrossRef]
- Manoli, J.-M.; Da Costa, P.; Brun, M.; Vrinat, M.; Maugé, F.; Potvin, C. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Promoted (Ni,P) Alumina-Supported Molybdenum Carbide Catalysts: Activity and Characterization of Active Sites. J. Catal. 2004, 221, 365–377. [Google Scholar] [CrossRef]
- Cecilia, J.A.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Jiménez-López, A.; Oyama, S.T. Oxygen-Removal of Dibenzofuran as a Model Compound in Biomass Derived Bio-Oil on Nickel Phosphide Catalysts: Role of Phosphorus. Appl. Catal. B Environ. 2013, 136, 140–149. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Shi, H. Deoxygenation of Methyl Laurate as a Model Compound to Hydrocarbons on Ni2P/SiO2, Ni2P/MCM-41, and Ni2P/SBA-15 Catalysts with Different Dispersions. Energy Fuels 2013, 27, 3400–3409. [Google Scholar] [CrossRef]
- Yang, Y.; Ochoa-Hernández, C.; de la Peña O’Shea, V.A.; Coronado, J.M.; Serrano, D.P. Ni2P/SBA-15 As a Hydrodeoxygenation Catalyst with Enhanced Selectivity for the Conversion of Methyl Oleate into n-Octadecane. ACS Catal. 2012, 2, 592–598. [Google Scholar] [CrossRef]
- Zhang, Z.; Tang, M.; Chen, J. Effects of P/Ni Ratio and Ni Content on Performance of γ-Al2O3-Supported Nickel Phosphides for Deoxygenation of Methyl Laurate to Hydrocarbons. Appl. Surf. Sci. 2016, 360, 353–364. [Google Scholar] [CrossRef]
- Alvarez-Galvan, M.C.; Blanco-Brieva, G.; Capel-Sanchez, M.; Morales-delaRosa, S.; Campos-Martin, J.M.; Fierro, J.L.G. Metal Phosphide Catalysts for the Hydrotreatment of Non-Edible Vegetable Oils. Catal. Today 2018, 302, 242–249. [Google Scholar] [CrossRef]
- Han, J.; Duan, J.; Chen, P.; Lou, H.; Zheng, X. Molybdenum Carbide-Catalyzed Conversion of Renewable Oils into Diesel-like Hydrocarbons. Adv. Synth. Catal. 2011, 353, 2577–2583. [Google Scholar] [CrossRef]
- Gosselink, R.W.; Stellwagen, D.R.; Bitter, J.H. Tungsten-Based Catalysts for Selective Deoxygenation. Angew. Chem. 2013, 125, 5193–5196. [Google Scholar] [CrossRef]
- Edward, F. Catalytic Hydrodeoxygenation. Appl. Catal. A Gen. 2000, 199, 147–190. [Google Scholar]
- Laurent, E.; Delmon, B. Study of the Hydrodeoxygenation of Carbonyl, Carboxylic and Guaiacyl Groups over Sulphided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 Catalysts. I. Catalytic Reaction Schemes. Appl. Catal. A Gen. 1994, 109, 77–96. [Google Scholar] [CrossRef]
- Viljava, T.R.; Saari, E.R.; Krause, A.O. Simultaneous Hydrodesulfurization and Hydrodeoxygenation: Interactions between Mercapto and Methoxy Groups Present in the Same or in Separate Molecules. Appl. Catal. A Gen. 2001, 209, 33–43. [Google Scholar] [CrossRef]
- Kiatkittipong, W.; Phimsen, S.; Kiatkittipong, K.; Wongsakulphasatch, S.; Laosiripojana, N.; Assabumrungrat, S. Diesel-like Hydrocarbon Production from Hydroprocessing of Relevant Refining Palm Oil. Fuel Process. Technol. 2013, 116, 16–26. [Google Scholar] [CrossRef]
- Wang, X.; Li, G.; Ozkan, U.S. Hydrogenation of Hexanal over Sulfided Ni-Mo/γ-Al2O3 Catalysts. J. Mol. Catal. A Chem. 2004, 217, 219–229. [Google Scholar] [CrossRef]
- Liu, F.; Xu, S.; Cao, L.; Chi, Y.; Zhang, T.; Xue, D. A Comparisonof NiMo/Al2O3 Catalysts Prepared by Impregnation and Coprecipitation Methods for Hydrodesulfurization of Dibenzothiophene. J. Phys. Chem. C 2007, 111, 7396–7402. [Google Scholar] [CrossRef]
- Phimsen, S.; Kiatkittipong, W.; Yamada, H.; Tagawa, T.; Kiatkittipong, K.; Laosiripojana, N.; Assabumrungrat, S. Oil Extracted from Spent Coffee Grounds for Bio-Hydrotreated Diesel Production. Energy Convers. Manag. 2016, 126, 1028–1036. [Google Scholar] [CrossRef]
- Smejkal, Q.; Smejkalová, L.; Kubička, D. Thermodynamic Balance in Reaction System of Total Vegetable Oil Hydrogenation. Chem. Eng. J. 2009, 146, 155–160. [Google Scholar] [CrossRef]
- Mäki-Arvela, P.; Kubickova, I.; Snåre, M.; Eränen, K.; Murzin, D.Y. Catalytic Deoxygenation of Fatty Acids and Their Derivatives. Energy Fuels 2007, 21, 30–41. [Google Scholar] [CrossRef]
- Morgan, T.; Grubb, D.; Santillan-Jimenez, E.; Crocker, M. Conversion of Triglycerides to Hydrocarbons over Supported Metal Catalysts. Top. Catal. 2010, 53, 820–829. [Google Scholar] [CrossRef]
- Shi, F.; Wang, P.; Duan, Y.; Link, D.; Morreale, B. Recent Developments in the Produc Tion of Liquid Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations. RSC Adv. 2012, 2, 9727–9747. [Google Scholar] [CrossRef]
- Priecel, P.; Kubička, D.; Čapek, L.; Bastl, Z.; Ryšánek, P. The Role of Ni Species in the Deoxygenation of Rapeseed Oil over NiMo-Alumina Catalysts. Appl. Catal. A Gen. 2011, 397, 127–137. [Google Scholar] [CrossRef]
- Boda, L.; Onyestyák, G.; Solt, H.; Lónyi, F.; Valyon, J.; Thernesz, A. Catalytic Hydroconversion of Tricaprylin and Caprylic Acid as Model Reaction for Biofuel Production from Triglycerides. Appl. Catal. A Gen. 2010, 374, 158–169. [Google Scholar] [CrossRef]
- Madsen, A.T.; Christensen, C.H.; Fehrmann, R.; Riisager, A. Hydrodeoxygenation of Waste Fat for Diesel Production: Study on Model Feed with Pt/Alumina Catalyst. Fuel 2011, 90, 3433–3438. [Google Scholar] [CrossRef]
- Domínguez-Barroso, M.V.; Herrera, C.; Larrubia, M.A.; Alemany, L.J. Diesel Oil-like Hydrocarbon Production from Vegetable Oil in a Single Process over Pt–Ni/Al2O3 and Pd/C Combined Catalysts. Fuel Process. Technol. 2016, 148, 110–116. [Google Scholar] [CrossRef]
- Sebos, I.; Matsoukas, A.; Apostolopoulos, V.; Papayannakos, N. Papayannakos Catalytic Hydroprocessing of Cottonseed Oilin Petroleum Diesel Mixtures for Production of Renewable Diesel. Fuel 2009, 88, 145–149. [Google Scholar] [CrossRef]
- Senol, O.I.; Viljava, T.R.; Krause, A.O. Hydrodeoxygenation of Methyl Esters on Sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 Catalysts. Catal. Today 2005, 100, 331–335. [Google Scholar] [CrossRef]
- Şenol, O.İ.; Ryymin, E.M.; Viljava, T.R.; Krause, A.O. Reactions of Methyl Heptanoate Hydrodeoxygenation on Sulphided Catalysts. J. Mol. Catal. A Chem. 2007, 268, 1–8. [Google Scholar] [CrossRef]
- Laurent, E.; Delmon, B. Study of the Hydrodeoxygenation of Carbonyl, Carboxylic and Guaiacyl Groups over Sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 Catalyst: II. Influence of Water, Ammonia and Hydrogen Sulfide. Appl. Catal. A Gen. 1994, 109, 97–115. [Google Scholar] [CrossRef]
- Centeno, A.; Laurent, E.; Delmon, B. Influence of the Support of CoMo Sulfide Catalysts and of the Addition of Potassium and Platinum on the Catalytic Performances for the Hydrodeoxygenation of Carbonyl, Carboxylic and Guaiacol-Type Molecules. J. Catal. 1995, 154, 288–298. [Google Scholar] [CrossRef]
- Ferrari, M.; Maggi, R.; Delmon, B.; Grange, P. Influence of the Hydrogen Sulfide Partial Pressure and of a Nitrogen Compound on the Hydrodeoxygenation Activity of a CoMo/Carbon Catalyst. J. Catal. 2001, 198, 47–55. [Google Scholar] [CrossRef]
- Ferrari, M.; Bosmans, S.; Maggi, R.; Delmon, B.; Grange, P. CoMo/Carbon Hydrodeoxygenation Catalysts: Influence of the Hydrogen Sulfide Partial Pressure and of the Sulfidation Temperature. Catal. Today 2001, 65, 257–264. [Google Scholar] [CrossRef]
- Alexander, A.-M.; Hargreaves, J.S.J. Alternative Catalytic Materials: Carbides, Nitrides, Phosphides and Amorphous Boron Alloys. Chem. Soc. Rev. 2010, 39, 4388. [Google Scholar] [CrossRef] [PubMed]
- Prins, R.; Bussell, M.E. Metal Phosphides: Preparation, Characterization and Catalytic Reactivity. Catal. Lett. 2012, 142, 1413–1436. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, B. Recent Advances in Transition Metal Phosphide Nanomaterials: Synthesis and Applications in Hydrogen Evolution Reaction. Chem. Soc. Rev. 2016, 45, 1529–1541. [Google Scholar] [CrossRef]
- Pei, Y.; Cheng, Y.; Chen, J.; Smith, W.; Dong, P.; Ajayan, P.M.; Ye, M.; Shen, J. Recent Developments of Transition Metal Phosphides as Catalysts in the Energy Conversion Field. J. Mater. Chem. A 2018, 6, 23220–23243. [Google Scholar] [CrossRef]
- Oyama, S.T.; Gott, T.; Zhao, H.; Lee, Y.-K. Transition Metal Phosphide Hydroprocessing Catalysts: A Review. Catal. Today 2009, 143, 94–107. [Google Scholar] [CrossRef]
- Oyama, S.T. Novel Catalysts for Advanced Hydroprocessing: Transition Metal Phosphides. J. Catal. 2003, 216, 343–352. [Google Scholar] [CrossRef]
- Arun, N.; Sharma, R.V.; Dalai, A.K. Green Diesel Synthesis by Hydrodeoxygenation of Bio-Based Feedstocks: Strategies for Catalyst Design and Development. Renew. Sustain. Energy Rev. 2015, 48, 240–255. [Google Scholar] [CrossRef]
- Carenco, S.; Portehault, D.; Boissière, C.; Mézailles, N.; Sanchez, C. Nanoscaled Metal Borides and Phosphides: Recent Developments and Perspectives. Chem. Rev. 2013, 113, 7981–8065. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, D.A.; Schaidle, J.A.; Ferrell, J.R., III; Wang, J.; Moens, L.; Hensley, J.E. Recent Advances in Heterogeneous Catalysts for Bio-Oil Upgrading via “Ex Situ Catalytic Fast Pyrolysis”: Catalyst Development through the Study of Model Compounds. Green Chem. 2014, 16, 454–490. [Google Scholar] [CrossRef]
- Oyama, S.T.; Wang, X.; Lee, Y.-K.; Chun, W.-J. Active Phase of Ni2P/SiO2 in Hydroprocessing Reactions. J. Catal. 2004, 221, 263–273. [Google Scholar] [CrossRef]
- Oyama, S. Effect of Phosphorus Content in Nickel Phosphide Catalysts Studied by XAFS and Other Techniques. J. Catal. 2002, 210, 207–217. [Google Scholar] [CrossRef]
- Stinner, C.; Prins, R.; Weber, T. Binary and Ternary Transition-Metal Phosphides as HDN Catalysts. J. Catal. 2001, 202, 187–194. [Google Scholar] [CrossRef]
- Pöttgen, R.; Hönle, W.; von Schnering, H.G. Phosphides: Solid-State Chemistry. In Encyclopedia of Inorganic and Bioinorganic Chemistry; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Aronsson, B.; Lundstrom, T.; Rundqvist, S.B. Silicides and Phosphides: A Critical Review of Their Preparation, Properties and Crystal Chemistry; Wiley: Methuen, MA, USA; New York, NY, USA, 1965. [Google Scholar]
- Li, K.; Wang, R.; Chen, J. Hydrodeoxygenation of Anisole over Silica-Supported Ni 2 P, MoP, and NiMoP Catalysts. Energy Fuels 2011, 25, 854–863. [Google Scholar] [CrossRef]
- Duan, X.; Teng, Y.; Wang, A.; Kogan, V.; Li, X.; Wang, Y. Role of Sulfur in Hydrotreating Catalysis over Nickel Phosphide. J. Catal. 2009, 261, 232–240. [Google Scholar] [CrossRef]
- He, Z.; Wang, X. Hydrodeoxygenation of Model Compounds and Catalytic Systems for Pyrolysis Bio-Oils Upgrading. Catal. Sustain. Energy 2012, 1, 28–52. [Google Scholar] [CrossRef]
- Bowker, R.H.; Smith, M.C.; Pease, M.L.; Slenkamp, K.M.; Kovarik, L.; Bussell, M.E. Synthesis and Hydrodeoxygenation Properties of Ruthenium Phosphide Catalysts. ACS Catal. 2011, 1, 917–922. [Google Scholar] [CrossRef]
- Hicks, J.C. Advances in C–O Bond Transformations in Lignin-Derived Compounds for Biofuels Production. J. Phys. Chem. Lett. 2011, 2, 2280–2287. [Google Scholar] [CrossRef]
- Talukdar, A.K.; Bhattacharyya, K.G.; Sivasanker, S. Hydrogenation of Phenol over Supported Platinum and Palladium Catalysts. Appl. Catal. A Gen. 1993, 96, 229–239. [Google Scholar] [CrossRef]
- Zhao, H.Y.; Li, D.; Bui, P.; Oyama, S.T. Hydrodeoxygenation of Guaiacol as Model Compound for Pyrolysis Oil on Transition Metal Phosphide Hydroprocessing Catalysts. Appl. Catal. A Gen. 2011, 391, 305–310. [Google Scholar] [CrossRef]
- Shi, H.; Chen, J.; Yang, Y.; Tian, S. Catalytic Deoxygenation of Methyl Laurate as a Model Compound to Hydrocarbons on Nickel Phosphide Catalysts: Remarkable Support Effect. Fuel Process. Technol. 2014, 118, 161–170. [Google Scholar] [CrossRef]
- Lee, Y.; Oyama, S. Bifunctional Nature of a SiO2-Supported Ni2P Catalyst for Hydrotreating: EXAFS and FTIR Studies. J. Catal. 2006, 239, 376–389. [Google Scholar] [CrossRef]
- Yang, Y.; Ochoa-Hernández, C.; Pizarro, P.; de la Peña O’Shea, V.A.; Coronado, J.M.; Serrano, D.P. Influence of the Ni/P Ratio and Metal Loading on the Performance of NixPy/SBA-15 Catalysts for the Hydrodeoxygenation of Methyl Oleate. Fuel 2015, 144, 60–70. [Google Scholar] [CrossRef]
- Koranyi, T.; Vit, Z.; Poduval, D.; Ryoo, R.; Kim, H.; Hensen, E. SBA-15-Supported Nickel Phosphide Hydrotreating Catalysts. J. Catal. 2008, 253, 119–131. [Google Scholar] [CrossRef]
- Deliy, I.; Shamanaev, I.; Gerasimov, E.; Pakharukova, V.; Yakovlev, I.; Lapina, O.; Aleksandrov, P.; Bukhtiyarova, G. HDO of Methyl Palmitate over Silica-Supported Ni Phosphides: Insight into Ni/P Effect. Catalysts 2017, 7, 298. [Google Scholar] [CrossRef]
- Xin, H.; Guo, K.; Li, D.; Yang, H.; Hu, C. Production of High-Grade Diesel from Palmitic Acid over Activated Carbon-Supported Nickel Phosphide Catalysts. Appl. Catal. B Environ. 2016, 187, 375–385. [Google Scholar] [CrossRef]
Property | Value Range | Importance |
---|---|---|
Density (g/cm3 at 15 °C) | 0.88–0.93 | Influences fuel atomisation and combustion efficiency |
Viscosity (mm2/s at 40 °C) | 30–50 | Affects fuel flow and injection system performance |
Acid Value (mg KOH/g) | <2 | High values result in catalyst poisoning |
Iodine Value (g I2/100 g) | 80–140 | Illustrates the unsaturation degree, affecting oxidative stability |
Saponification Value (mg KOH/g) | 180–200 | In relation to the average molecular weight of the fatty acids |
Moisture Content (%) | <0.5 | High moisture can lead to hydrolysis and catalyst deactivation |
Phosphorus Content (ppm) | <10 | High phosphorus can cause catalyst poisoning |
Metal Content (ppm) | <5 (Na, K, Ca, Mg) | Metals can form deposits and poison the catalyst |
Component | Sludge Palm Oil (%) | Waste Vegetable Oil (%) |
---|---|---|
Palmitic acid (C16:0) | 25–30 | 10–20 |
Stearic acid (C18:0) | 3–5 | 4–6 |
Oleic acid (C18:1) | 35–45 | 30–50 |
Linoleic acid (C18:2) | 5–10 | 10–30 |
Linolenic acid (C18:3) | <1 | 0–3 |
Free Fatty Acids (FFA) | 2–10 | 5–15 |
Catalyst | Surface Area (m2 g−1) | Mean Pore Diameter (nm) | Total Pore Volume (cm3 g−1) |
---|---|---|---|
NiS/γ-Al2O3 | 75.9 | 5.9 | 0.11 |
NiP/γ-Al2O3 | 54.7 | 3.3 | 0.05 |
NiC/γ-Al2O3 | 75.8 | 5.6 | 0.07 |
NiO/γ-Al2O3 | 143.3 | 8.2 | 0.35 |
γ-Al2O3 | 179.0 | 8.8 | 0.40 |
Catalyst | Surface Area (m2 g−1) | Mean Pore Diameter (nm) | Crystallite Size (nm) | Total Pore Volume (cm3 g−1) | Average Particle Size (μm) |
---|---|---|---|---|---|
Pd/C | 820 | 4.2 | 3.6 | 0.85 | 15 |
NiMo/γ-Al2O3 | 160 | 7.1 | 1.3 | 0.22 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mussa, N.-S.; Toshtay, K.; Capron, M. Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review. Catalysts 2024, 14, 452. https://doi.org/10.3390/catal14070452
Mussa N-S, Toshtay K, Capron M. Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review. Catalysts. 2024; 14(7):452. https://doi.org/10.3390/catal14070452
Chicago/Turabian StyleMussa, Nur-Sultan, Kainaubek Toshtay, and Mickael Capron. 2024. "Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review" Catalysts 14, no. 7: 452. https://doi.org/10.3390/catal14070452
APA StyleMussa, N. -S., Toshtay, K., & Capron, M. (2024). Catalytic Applications in the Production of Hydrotreated Vegetable Oil (HVO) as a Renewable Fuel: A Review. Catalysts, 14(7), 452. https://doi.org/10.3390/catal14070452