Strong Magnetic p-n Heterojunction Fe3O4-FeWO4 for Photo-Fenton Degradation of Tetracycline Hydrochloride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization
2.2. Photo-Fenton Reaction Performance
2.3. Different Influencing Factors
2.4. Stability and Recyclability of Catalysts
2.5. Mechanism Analysis
3. Materials and Methods
3.1. Materials
3.2. Catalyst Synthesis
3.2.1. Preparation of Fe3O4
3.2.2. Preparation of FeWO4 Nanomaterials
3.2.3. Preparation of Fe3O4-FeWO4 Composite Catalyst
3.3. Characterization
3.4. Evaluation of Solar Light Irradiation Photocatalytic Activities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, J.; Zhuan, R. Degradation of antibiotics by advanced oxidation processes: An overview. Sci. Total Environ. 2020, 701, 135023. [Google Scholar] [CrossRef]
- Danner, M.-C.; Robertson, A.; Behrends, V.; Reiss, J. Antibiotic pollution in surface fresh waters: Occurrence and effects. Sci. Total Environ. 2019, 664, 793–804. [Google Scholar] [CrossRef] [PubMed]
- Kovalakova, P.; Cizmas, L.; McDonald, T.J.; Marsalek, B.; Feng, M.; Sharma, V.K. Occurrence and toxicity of antibiotics in the aquatic environment: A review. Chemosphere 2020, 251, 126351. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, Y.; Li, Y.; Wang, C.; Kuang, S.; Ren, P.; Xie, B. Persulfate oxidation of tetracycline, antibiotic resistant bacteria, and resistance genes activated by Fe doped biochar catalysts: Synergy of radical and non-radical processes. Chem. Eng. J. 2023, 464, 142558. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, Q.; Ren, Y.; Wang, Y.; Zhu, D.; Wang, J. Ratiometric fluorescent sensor based on europium (III)-functionalized covalent organic framework for selective and sensitive detection of tetracycline. Chem. Eng. J. 2023, 465, 142819. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, Z.; Liang, Y.; Wu, T.; Chen, Y.; Yan, J.; Zhu, Y.; Ding, D. Adsorptive decontamination of antibiotics from livestock wastewater by using alkaline-modified biochar. Environ. Res. 2023, 226, 115676. [Google Scholar] [CrossRef]
- Nian, Q.; Yang, H.; Meng, E.; Wang, C.; Xu, Q.; Zhang, Q. Efficient adsorptive removal of aminoglycoside antibiotics from environmental water. Chemosphere 2023, 337, 139379. [Google Scholar] [CrossRef] [PubMed]
- Zou, M.; Tian, W.; Chu, M.; Lu, Z.; Liu, B.; Xu, D. Magnetically separable laccase-biochar composite enable highly efficient adsorption-degradation of quinolone antibiotics: Immobilization, removal performance and mechanisms. Sci. Total Environ. 2023, 879, 163057. [Google Scholar] [CrossRef]
- Wang, C.; Lin, C.-Y.; Liao, G.-Y. Degradation of antibiotic tetracycline by ultrafine-bubble ozonation process. J. Water Process Eng. 2020, 37, 101463. [Google Scholar] [CrossRef]
- Adamek, E.; Baran, W. Degradation of veterinary antibiotics by the ozonation process: Product identification and ecotoxicity assessment. J. Hazard. Mater. 2024, 469, 134026. [Google Scholar] [CrossRef]
- Wu, F.; Yuan, C.; Ruan, C.; Zheng, M.; Liu, L.; Wang, G.; Chen, G. Coagulation promotes the spread of antibiotic resistance genes in secondary effluents. Environ. Pollut. 2024, 355, 124245. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, J.; Wang, Q.; Xu, D.; Pang, S.; Campos, L.C.; Ren, Z.; Wang, P. Dual function of magnetic field in enhancing antibiotic wastewater treatment by an integrated photocatalysis and fluidized bed biofilm reactor (FBBR). J. Environ. Manag. 2023, 347, 119249. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Liu, Y.; Shan, X.; Nghiem, L.D.; Nguyen, L.N. Removal process of antibiotics during anaerobic treatment of swine wastewater. Bioresour. Technol. 2020, 300, 122707. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Song, X.; Chen, Q.; He, W.; Yang, J.; Li, Y.; Zhang, Y.; Wang, J.; Dionysiou, D.D. Novel durable and recyclable Cu@MoS2/polyacrylamide/copper alginate hydrogel photo-Fenton-like catalyst with enhanced and self-regenerable adsorption and degradation of high concentration tetracycline. Appl. Catal. B Environ. Energy 2024, 344, 123640. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, W.; Liu, D.; Zhou, L.; Huy, N.N.; Wang, L.; Zhang, J.; Liu, Y.; Lei, J. Fe(II) and Pyridinic N complex sites synergy to activate PMS for specific generation of 1O2 to degrade antibiotics with high efficiency. Sci. Total Environ. 2023, 892, 164067. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Abdullah Al-Dhabi, N.; Hu, T.; Soyol-Erdene, T.-O.; Bayanjargal, O.; Liu, E.; Tang, W. Highly efficient degradation of antibiotic metronidazole by an environmental-friendly metal-free dual-cathode electro-Fenton system. Chem. Eng. J. 2024, 492, 152447. [Google Scholar] [CrossRef]
- Wu, X.; Chen, G.; Li, L.; Wang, J.; Wang, G. ZnIn2S4-based S-scheme heterojunction photocatalyst. J. Mater. Sci. Technol. 2023, 167, 184–204. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, H.; Gao, F.; Tan, X.; Cai, Y.; Hu, B.; Huang, Q.; Fang, M.; Wang, X. Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment. EnergyChem 2022, 4, 100078. [Google Scholar] [CrossRef]
- Ge, X.; Meng, G.; Liu, B. Efficient degradation of antibiotics by oxygen vacancy-LaFeO3/polystyrene-driven photo-Fenton system: Highlight the impacts of molecular structures. J. Water Process Eng. 2023, 51, 103428. [Google Scholar] [CrossRef]
- Hou, D.; Luo, J.; Sun, Q.; Zhang, M.; Wang, J. Preparation of Co-CNK-OH and Its Performance in Fenton-like Photocatalytic Degradation of Tetracycline. Catalysts 2023, 13, 715. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Chen, M.; Tang, X.; Zhu, N.; Li, W.; Mei, Q.; Yue, S.; Tang, Y.; Wang, Q. Construction of polynary systems by coupling Cd/CdS with magnetic recyclable CuO/Fe2O3/CuFe2O4 nanocomposite for enhancing photo-Fenton degradation of antibiotics. J. Environ. Chem. Eng. 2023, 11, 111089. [Google Scholar] [CrossRef]
- Dai, H.; Liu, Z.; Ou, L.; Shen, Y.; Ning, Z.; Hu, F.; Peng, X. Iron nanoparticles decorated TiO2 hollow microspheres for boosting degradation of tetracycline in a photo-Fenton catalytic system. J. Environ. Chem. Eng. 2023, 11, 110797. [Google Scholar] [CrossRef]
- Chu, Y.; Liu, C.; Wang, R.; Chen, H. Development of heterogenous electro-Fenton process with immobilized FeWO4 catalyst for the degradation of tetracycline and the treatment of crude oil tank cleaning wastewater in neutral medium. Chem. Eng. J. 2023, 465, 142964. [Google Scholar] [CrossRef]
- Xu, L.; Wu, X.-Q.; Li, C.-Y.; Liu, N.-P.; An, H.-L.; Ju, W.-T.; Lu, W.; Liu, B.; Wang, X.-F.; Wang, Y.; et al. Sonocatalytic degradation of tetracycline by BiOBr/FeWO4 nanomaterials and enhancement of sonocatalytic effect. J. Clean. Prod. 2023, 394, 136275. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Q.; Zhang, X.; Dong, L.; Zhang, M.; Rao, P.; Gao, N.; Sun, Y.; Deng, J. Development of a heterogenous catalyst FeWO4/Cu2S as peroxymonosulfate activator for effective sulfachloropyridazine elimination. J. Clean. Prod. 2024, 434, 140098. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Q.; Li, J.; Zheng, X.; Liu, Z.; Guan, X. Photochemical conversion of oxalic acid on heterojunction engineered FeWO4/g-C3N4 photocatalyst for high-efficient synchronous removal of organic and heavy metal pollutants. J. Clean. Prod. 2022, 363, 132527. [Google Scholar] [CrossRef]
- Wu, J.-C.; Shen, X.-C.; Wang, H.; Deng, D.-J.; Wu, S.-Q.; Gong, Y.; Zhu, L.-H.; Xu, L.; Li, H.-N. Electronic structure modification of FeWO4 through F doping for enhanced oxygen reduction performance in zinc–air batteries. Mater. Today Phys. 2023, 38, 101274. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Kang, J.; Tang, Y.; Liu, J.; Li, S.; Xu, Z.; Tang, P. The promoted tetracycline visible-light-driven photocatalytic degradation efficiency of g-C3N4/FeWO4 Z-scheme heterojunction with peroxymonosulfate assisting and mechanism. Sep. Purif. Technol. 2022, 296, 121440. [Google Scholar] [CrossRef]
- Xu, H.-Y.; Wang, W.-S.; Li, B.; Zhang, L. Mechanism insights into the enhanced photocatatlytic peroxydisulfate activation by Fe3O4/BiOI heterojunction. Mater. Sci. Eng. B 2023, 294, 116509. [Google Scholar] [CrossRef]
- Shekofteh-Gohari, M.; Habibi-Yangjeh, A. Combination of CoWO4 and Ag3VO4 with Fe3O4/ZnO nanocomposites: Magnetic photocatalysts with enhanced activity through p-n-n heterojunctions under visible light. Solid State Sci. 2017, 74, 24–36. [Google Scholar] [CrossRef]
- Dang, J.; Guo, J.; Wang, L.; Guo, F.; Shi, W.; Li, Y.; Guan, W. Construction of Z-scheme Fe3O4/BiOCl/BiOI heterojunction with superior recyclability for improved photocatalytic activity towards tetracycline degradation. J. Alloys Compd. 2022, 893, 162251. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Wang, X.; Dong, Y.; Pei, T. A magnetically recyclable Fe3O4/ZnIn2S4 type-II heterojunction to boost photocatalytic degradation of gemifloxacin. Appl. Surf. Sci. 2024, 656, 159674. [Google Scholar] [CrossRef]
- Xiao, M.; Li, R.; Hu, X.; Zhu, W.; Yu, Z.; Xiao, H.; Wang, W.; Yang, T. Construction of in-situ carbon-doped TiO2 decorated Fe3O4 heterojunction and their enhanced photocatalytic oxidation of As(III) under visible light. Sep. Purif. Technol. 2022, 300, 121836. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Zhang, X.; Zhao, J.; Hu, Z.; Wang, Z.; Xie, X. Preparation of magnetic nanosphere/nanorod/nanosheet-like Fe3O4/Bi2S3/BiOBr with enhanced (0 0 1) and (1 1 0) facets to photodegrade diclofenac and ibuprofen under visible LED light irradiation. Chem. Eng. J. 2019, 378, 122169. [Google Scholar] [CrossRef]
- Thabet, M.; Abd El-Monaem, E.M.; Alharbi, W.R.; Mohamoud, M.; Abdel-Aty, A.-H.; Ibrahim, I.; Abdel-Lateef, M.A.; Goda, A.E.S.; Seaf Elnasr, T.A.; Wang, R.; et al. Adsorption and photocatalytic degradation activities of a hybrid magnetic mesoporous composite of α-Fe2O3 nanoparticles embedded with sheets-like MgO. J. Water Process Eng. 2024, 60, 105192. [Google Scholar] [CrossRef]
- Zebiri, Z.; Debbache, N.; Sehili, T. Sheet-like g-C3N4 for enhanced photocatalytic degradation of naproxen. J. Photochem. Photobiol. A Chem. 2024, 446, 115189. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Liang, W.; Zhang, W. Characterization of Electromagnetic Catalysis and Degradation of Algogenic Odor Using Fe3O4 Nanoparticles with Tannin Coating. ACS EST Eng. 2021, 1, 1542–1552. [Google Scholar] [CrossRef]
- Bojabady, F.; Kamali-Heidari, E.; Sahebian, S. Hydrothermal synthesis of highly aligned Fe3O4 nanosplates on nickel foam. Mater. Chem. Phys. 2023, 305, 127828. [Google Scholar] [CrossRef]
- Ali, M.D.; Aslam, A.; Haider, M.A.; Aftab, Z.e.H.; Fakhar, U.; ud-Din, S.Z.; Ezzine, S.; Ben Farhat, L.; Somaily, H.H. I-V, dielectric, antibacterial, and robust EMI shielding effectiveness properties of graphene/Fe3O4. Inorg. Chem. Commun. 2022, 146, 110039. [Google Scholar] [CrossRef]
- Chakraborty, A.K.; Akter, S.; Ganguli, S.; Haque, M.A.; Nur, A.S.M.; Sabur, M.A. Design of FeWO4@N-TiO2 nanocomposite and its enhanced photocatalytic activity in decomposing methylene blue and phenol under visible light. Environ. Technol. Innov. 2024, 33, 103536. [Google Scholar] [CrossRef]
- Yang, Y.; Logesh, K.; Mehrez, S.; Huynen, I.; Elbadawy, I.; Mohanavel, V.; Alamri, S. Rational construction of wideband electromagnetic wave absorber using hybrid FeWO4-based nanocomposite structures and tested by the free-space method. Ceram. Int. 2023, 49, 2130–2139. [Google Scholar] [CrossRef]
- Hafizi, H.; Lutfor Rahman, M.; Sani Sarjadi, M.; Salim Akhter, M.; Collins, M.N.; O’Reilly, E.J.; Walker, G.M.; Sarkar, S.M. Magnetically recyclable Schiff-based palladium nanocatalyst [Fe3O4@SiNSB-Pd] and its catalytic applications in Heck reaction. Arab. J. Chem. 2022, 15, 103914. [Google Scholar] [CrossRef]
- Boily, J.-F.; Felmy, A.R. On the protonation of oxo- and hydroxo-groups of the goethite (α-FeOOH) surface: A FTIR spectroscopic investigation of surface O–H stretching vibrations. Geochim. Et Cosmochim. Acta 2008, 72, 3338–3357. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Cao, Z.; Zhao, Y.; Wang, Q.; Cheng, H. Heterostructure CoFe2O4/kaolinite composite for efficient degradation of tetracycline hydrochloride through synergetic photo-Fenton reaction. Appl. Clay Sci. 2023, 244, 107102. [Google Scholar] [CrossRef]
- Fan, G.; Cai, C.; Yang, S.; Du, B.; Luo, J.; Chen, Y.; Lin, X.; Li, X.; Wang, Y. Sonophotocatalytic degradation of ciprofloxacin by Bi2MoO6/FeVO4 heterojunction: Insights into performance, mechanism and pathway. Sep. Purif. Technol. 2022, 303, 122251. [Google Scholar] [CrossRef]
- Dong, Y.B.; Lin, H. Ammonia nitrogen removal from aqueous solution using zeolite modified by microwave-sodium acetate. J. Cent. South Univ. 2016, 23, 1345–1352. [Google Scholar] [CrossRef]
- Ain, Q.U.; Rasheed, U.; Yaseen, M.; Zhang, H.; Tong, Z. Superior dye degradation and adsorption capability of polydopamine modified Fe3O4-pillared bentonite composite. J. Hazard. Mater. 2020, 397, 122758. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, N.; Wang, H.; Lu, N.; Shang, K.; Li, J.; Wu, Y. Degradation of antibiotic chloramphenicol in water by pulsed discharge plasma combined with TiO2/WO3 composites: Mechanism and degradation pathway. J. Hazard. Mater. 2019, 371, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Li, Y.; He, J.; Saeed, A.; Zhang, K.; Wang, C.; Kong, L.; Liu, J. Rapid degradation of aqueous doxycycline by surface CoFe2O4/H2O2 system: Behaviors, mechanisms, pathways and DFT calculation. Appl. Surf. Sci. 2020, 526, 146557. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, E.; Wang, X.; Jin, Z. Energy band engineering over phosphorus-doped CdS/graphdiyne S-scheme heterojunction for enhance photocatalytic hydrogen production. Chem. Eng. J. 2024, 486, 150060. [Google Scholar] [CrossRef]
- Narewadikar, N.A.; Pedanekar, R.S.; Parale, V.G.; Park, H.H.; Rajpure, K.Y. Spray deposited yttrium incorporated TiO2 photoelectrode for efficient photoelectrocatalytic degradation of organic pollutants. J. Rare Earths 2023, 41, 1929–1937. [Google Scholar] [CrossRef]
- Cao, Y.; Yuan, X.; Chen, H.; Wang, H.; Chen, Y.; Chen, J.; Huang, H.; Mou, Y.; Shangguan, Z.; Li, X. Rapid concurrent photocatalysis-persulfate activation for ciprofloxacin degradation by Bi2S3 quantum dots-decorated MIL-53(Fe) composites. Chem. Eng. J. 2023, 456, 140971. [Google Scholar] [CrossRef]
- Mahrsi, M.I.; Chouchene, B.; Gries, T.; Carré, V.; Medjahdi, G.; Ayari, F.; Balan, L.; Schneider, R. 0D/1D CuO-Cu2O/ZnO p-n heterojunction with high photocatalytic activity for the degradation of dyes and Naproxen. J. Environ. Chem. Eng. 2024, 12, 113072. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Z.; Chen, Y.; Jia, Y.; Wang, Q.; Cheng, H. Heterostructure coal-bearing strata kaolinite/MnFe2O4 composite for activation of peroxydisulfate to efficiently degrade chlortetracycline hydrochloride. Colloids Surf. A Physicochem. Eng. Asp. 2022, 643, 128789. [Google Scholar] [CrossRef]
- Cao, Z.; Jia, Y.; Wang, Q.; Cheng, H. High-efficiency photo-Fenton Fe/g-C3N4/kaolinite catalyst for tetracycline hydrochloride degradation. Appl. Clay Sci. 2021, 212, 106213. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Cahyono, R.N.; Nora, M.; Alharissa, E.Z.; Kunarti, E.S. Degradation of amoxicillin residue under visible light over TiO2 doped with Cr prepared from tannery wastewater. Results Chem. 2024, 7, 101302. [Google Scholar] [CrossRef]
- James, A.; Rodney, J.D.; NK, U. Kinetic Comparison of Photocatalysis with the Photo-Fenton Process on the Removal of Tetracycline Using Bismuth-Modified Lanthanum Orthoferrite Nanostructures. ACS Appl. Nano Mater. 2024, 7, 11560–11574. [Google Scholar] [CrossRef]
- Bharathi, A.M.; Mani, P.; Neppolian, B.; Soo, H.S.; Krishnamurthi, T. Fabrication of a Z-scheme Bi2MoO6/NiFe layered double hydroxide heterojunction for the visible light-driven degradation of tetracycline antibiotics. J. Water Process Eng. 2024, 58, 104813. [Google Scholar] [CrossRef]
- Wen, S.; Tang, X.; Zhou, G.; Song, J.; Ma, R.; Mao, G.; Zhang, L.; Yin, J.; Ang, E.H. Gas-phase self-assembly: Converting 2D graphitic carbon nitride into 1D nanotubes for improved photocatalytic tetracycline degradation. Ceram. Int. 2024, 50, 14686–14696. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, M.; Yu, M.; Zhang, T.; Wang, J.; Bi, J.; Dong, F. Efficient photo-degradation of antibiotics by waste eggshells derived AgBr-CaCO3 heterostructure under visible light. Sep. Purif. Technol. 2023, 314, 123573. [Google Scholar] [CrossRef]
- Dineshbabu, N.; Jayaprakash, R.N.; Karuppasamy, P.; Arun, T.; Vijaya, J.J.; Nimshi, R.E.; Pandian, M.S.; Packiam, S.M.; Ramasamy, P. Investigation on Tetracycline degradation and bactericidal properties of binary and ternary ZnO/NiO/g-C3N4 composites prepared by a facile co-precipitation method. J. Environ. Chem. Eng. 2022, 10, 107368. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, J.; Chen, X.; Wang, L.; Cai, W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway. Chem. Eng. J. 2019, 369, 745–757. [Google Scholar] [CrossRef]
- Zheng, J.; Fan, C.; Li, X.; Yang, Q.; Wang, D.; Duan, A.; Ding, J.; Rong, S.; Chen, Z.; Luo, J.; et al. Enhanced photodegradation of tetracycline hydrochloride by hexameric AgBr/Zn-Al MMO S-scheme heterojunction photocatalysts: Low metal leaching, degradation mechanism and intermediates. Chem. Eng. J. 2022, 446, 137371. [Google Scholar] [CrossRef]
- Ni, X.; Zhang, J.; Zhao, L.; Wang, F.; He, H.; Dramou, P. Study of the solvothermal method time variation effects on magnetic iron oxide nanoparticles (Fe3O4) features. J. Phys. Chem. Solids 2022, 169, 110855. [Google Scholar] [CrossRef]
- Shi, X.; Wang, L.; Zuh, A.A.; Jia, Y.; Ding, F.; Cheng, H.; Wang, Q. Photo-Fenton reaction for the degradation of tetracycline hydrochloride using a FeWO4/BiOCl nanocomposite. J. Alloys Compd. 2022, 903, 163889. [Google Scholar] [CrossRef]
- Qin, L.; Zeng, G.; Lai, C.; Huang, D.; Zhang, C.; Cheng, M.; Yi, H.; Liu, X.; Zhou, C.; Xiong, W.; et al. Synthetic strategies and application of gold-based nanocatalysts for nitroaromatics reduction. Sci. Total Environ. 2019, 652, 93–116. [Google Scholar] [CrossRef]
Material | Dosage | Target | Concentration of Antibiotics | Knor (min−1 mg−1) | Photocatalytic Degradation | Ref |
---|---|---|---|---|---|---|
50%-Fe3O4/FWO | 25 mg | TCH | 30 mg/L | 0.0019 | 91% | This work |
Fe/g-C3N4/kaolinite | 25 mg | TC | 20 ppm | 0.0007 | 89% | [55] |
TiO2-Cr | 10 mg | amoxicillin | 5 mg/L | 0.0004 | 100% | [56] |
Bi0.05La0.95FeO3 | 100 mg | TC | 40 ppm | 0.0003 | 79.57% | [57] |
Bi2MoO6/NiFe LDH | 50 mg | TC | 10 mg/L | 0.0004 | 95% | [58] |
nitrogen-deficient and boron-doped g-C3N4 nanotube (BCNNT) | 50 mg | TC | 20 mg/L | 0.0011 | 80% | [59] |
15%-AgBr-CaCO3 | 20 mg | TC | 20 mg/L | 0.0003 | 85% | [60] |
ZnO/NiO/gC3N4 | 40 mg | TC | 30 ppm | 0.0013 | 91.49% | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, B.; Cheng, G.; Chen, J.; Chen, X.; Wang, Q. Strong Magnetic p-n Heterojunction Fe3O4-FeWO4 for Photo-Fenton Degradation of Tetracycline Hydrochloride. Catalysts 2024, 14, 453. https://doi.org/10.3390/catal14070453
Bai B, Cheng G, Chen J, Chen X, Wang Q. Strong Magnetic p-n Heterojunction Fe3O4-FeWO4 for Photo-Fenton Degradation of Tetracycline Hydrochloride. Catalysts. 2024; 14(7):453. https://doi.org/10.3390/catal14070453
Chicago/Turabian StyleBai, Binger, Guanrong Cheng, Jian Chen, Xiaoping Chen, and Qizhao Wang. 2024. "Strong Magnetic p-n Heterojunction Fe3O4-FeWO4 for Photo-Fenton Degradation of Tetracycline Hydrochloride" Catalysts 14, no. 7: 453. https://doi.org/10.3390/catal14070453
APA StyleBai, B., Cheng, G., Chen, J., Chen, X., & Wang, Q. (2024). Strong Magnetic p-n Heterojunction Fe3O4-FeWO4 for Photo-Fenton Degradation of Tetracycline Hydrochloride. Catalysts, 14(7), 453. https://doi.org/10.3390/catal14070453