Methanol to Aromatics on Hybrid Structure Zeolite Catalysts
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Zeolite Synthesis
3.2. Catalyst Preparation
3.3. Experimental Procedure
3.4. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Freeman, D.; Wells, R.P.K.; Hutchings, G.J. Conversion of Methanol to Hydrocarbons over Ga2O3/H-ZSM-5 and Ga2O3/WO3 Catalysts. J. Catal. 2002, 205, 358–365. [Google Scholar] [CrossRef]
- Yiwen, F.; Ji, T.; Xiaochang, H.; Weibin, S.; Yibing, S.; Changyong, S. Aromatization of Dimethyl Ether over Zn/H-ZSM-5 Catalyst. Chin. J. Catal. 2010, 31, 264–266. [Google Scholar]
- Hartmann, M.; Machoke, A.G.; Schwieger, W. Catalytic test reactions for the evaluation of hierarchical zeolites. Chem. Soc. Rev. 2016, 45, 3313–3330. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.; Jiao, C.; Jiao, Q.; Wang, Q.; Dai, W.; Zheng, J.; Wang, Y.; Li, W.; Li, R. Synthesis of hierarchical ZSM-11 and its catalytic performances during methanol to propylene. Microporous Mesoporous Mater. 2024, 374, 113142. [Google Scholar] [CrossRef]
- Liu, C.; Uslamin, E.A.; van Vreeswijk, S.H.; Yarulina, I.; Ganapathy, S.; Weckhuysen, B.M.; Kapteijn, F.; Pidko, E.A. An integrated approach to the key parameters in methanol-to-olefins reaction catalyzed by MFI/MEL zeolite materials. Chin. J. Catal. 2022, 43, 1879–1893. [Google Scholar] [CrossRef]
- Jang, H.-G.; Ha, K.; Seo, G. Active intermediates formed on phosphorous-modified MTW zeolites in methanol to olefin conversion: An ESR study. Appl. Catal. A Gen. 2015, 499, 168–176. [Google Scholar] [CrossRef]
- Kai, Y.; Jia, X.Y.; Sen, W.; Sheng, F.; He, S.P.; Wang, P.F.; Dong, M.; Qin, Z.F.; Fan, W.B.; Wang, J.G. Effect of framework structure of ZSM-11 and ZSM-5 zeolites on their catalytic performance in the conversion of methanol to olefins. J. Fuel Chem. Technol. 2023, 51, 1652–1662. [Google Scholar]
- Taniguchi, T.; Nakasaka, Y.; Yoneta, K.; Tago, T.; Masuda, T. Size-Controlled Synthesis of Metallosilicates with MTW Structure and Catalytic Performance for Methanol-to-Propylene Reaction. Catal. Lett. 2016, 146, 666–676. [Google Scholar] [CrossRef]
- Conte, M.; Xu, B.; Davies, T.E.; Bartley, J.K.; Carley, A.F.; Taylor, S.H.; Khalid, K.; Hutchings, G.J. Enhanced selectivity to propene in the methanol to hydrocarbons reaction by use of ZSM-5/11 intergrowth zeolite. Microporous Mesoporous Mater. 2012, 164, 207–213. [Google Scholar] [CrossRef]
- Wang, X.; Meng, F.; Chen, H.; Gao, F.; Wang, Y.; Han, X.; Wang, L. Synthesis of a hierarchical ZSM-11/5 composite zeolite of high SiO2/Al2O3 ratio and catalytic performance in the methanol-to-olefins reaction. Comptes Rendus Chim. 2017, 20, 1083–1092. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Askari, S.; Halladj, R.; Tajar, A.F. Facile and selective approach towards synthesis of a series ZSM-5/ZSM-12 catalysts for methanol to hydrocarbons reactions: Applying different synthesis driving force and conditions. Adv. Powder Technol. 2022, 33, 103502. [Google Scholar] [CrossRef]
- Mirshafiee, F.; Khoshbin, R.; Karimzadeh, R. Steam-assisted methanol conversion to green fuel over highly efficient hierarchical structured MFI/BEA composite zeolite synthesized by incorporation method. Renew. Energy 2022, 197, 1061–1068. [Google Scholar] [CrossRef]
- Wang, X.; Guo, S.; Niu, Z. Synthesis of a ZSM-5 (core)/SAPO-11 (shell) composite zeolite and its catalytic performance in the methylation of naphthalene with methanol. RSC Adv. 2023, 13, 2081–2089. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.J.; Jeong, D.J.; Jung, H.S.; Hur, Y.G.; Choung, I.W.; Baik, J.H.; Park, M.J.; Chung, C.-H.; Bae, J.W. Dimethyl ether conversion to hydrocarbons on the closely interconnected FER@ZSM-5 nanostructures. Microporous Mesoporous Mater. 2022, 340, 112034. [Google Scholar] [CrossRef]
- Magomedova, M.V.; Starozhitskaya, A.V.; Davidov, I.A.; Tsaplin, D.E.; Maximov, A.L. Dimethyl Ether to Olefins on Hybrid Intergrowth Structure Zeolites. Catalysts 2023, 13, 570. [Google Scholar] [CrossRef]
- Xiao, J.; Wei, J. Diffusion mechanism of hydrocarbons in zeolites—I. Theory. Chem. Eng. Sci. 1992, 47, 1123–1141. [Google Scholar] [CrossRef]
- Froment, G.F.; Bischoff, K.B.; De Wilde, J. Chemical Reactor Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Maksimov, A.L.; Magomedova, M.V.; Afokin, M.I.; Tsaplin, D.E.; Kulikov, L.A.; Ionin, D.A. Method for Producing an HZSM-Type Zeolite (Variants) and Method for Producing Aromatic Hydrocarbons of the C6-C11 Fraction. RUS Patent RU2753263C1, 12 August 2021. [Google Scholar]
- Tsaplin, D.E.; Kulikov, L.A.; Maksimov, A.L.; Karakhanov, E.A. Method for Obtaining a Composite Material with a Hierarchical Structure. RUS Patent RU2773945C1, 14 June 2022. [Google Scholar]
- Magomedova, M.V.; Peresypkina, E.G.; Ionin, D.A.; Afokin, M.I.; Golubev, K.B.; Khadzhiev, S.N. Effect of Feedstock and Gas Atmosphere Composition on Selectivity and Distribution of Hydrocarbon Groups in Gasoline Synthesis from Oxygenates. Pet. Chem. 2017, 57, 1052–1057. [Google Scholar] [CrossRef]
- Maximov, A.L.; Magomedova, M.V.; Galanova, E.G.; Afokin, M.I.; Ionin, D.A. Primary and secondary reactions in the synthesis of hydrocarbons from dimethyl ether over a Pd-Zn-HZSM-5/Al2O3 catalyst. Fuel Process. Technol. 2020, 199, 106281. [Google Scholar] [CrossRef]
- Verboekend, D.; Mitchell, S.; Milina, M.; Groen, J.C.; Pérez-Ramírez, J. Full Compositional Flexibility in the Preparation of Mesoporous MFI Zeolites by Desilication. J. Phys. Chem. C 2011, 115, 14193–14203. [Google Scholar] [CrossRef]
MFI/Al2O3 | MFI-MEL/Al2O3 | MFI-MTW/Al2O3 | MFI-MCM-41/Al2O3 | |
---|---|---|---|---|
Micropore volume, cm3/g | 0.057 | 0.088 | 0.012 | 0.04 |
Micropore diameter, nm | 0.9 | 0.91 | 0.69 | 0.63 |
Mesopore volume, cm3/g | 0.142 | 0.198 | 0.431 | 0.300 |
Mesopore diameter, nm | 8.27 | 5.79 | 19.67 | 7.58 |
Yield, wt.C%: | ||||
DME | 0.4 | 0.4 | 15.1 | 0.5 |
Lower olefins C2–C4 | 0.2 | 0.6 | 3.1 | 0.5 |
Gaseous hydrocarbons C1–C4 | 35.7 | 24.3 | 18.8 | 26.6 |
Liquid hydrocarbons C5–C11 | 36.2 | 52.4 | 34.6 | 54.3 |
Mass ratio gas/liquid | 1.0 | 0.5 | 0.6 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magomedova, M.V.; Galanova, E.G.; Starozhitskaya, A.V.; Afokin, M.I.; Matevosyan, D.V.; Egazaryants, S.V.; Tsaplin, D.E.; Maximov, A.L. Methanol to Aromatics on Hybrid Structure Zeolite Catalysts. Catalysts 2024, 14, 461. https://doi.org/10.3390/catal14070461
Magomedova MV, Galanova EG, Starozhitskaya AV, Afokin MI, Matevosyan DV, Egazaryants SV, Tsaplin DE, Maximov AL. Methanol to Aromatics on Hybrid Structure Zeolite Catalysts. Catalysts. 2024; 14(7):461. https://doi.org/10.3390/catal14070461
Chicago/Turabian StyleMagomedova, Maria V., Ekaterina G. Galanova, Anastasia V. Starozhitskaya, Mikhail I. Afokin, David V. Matevosyan, Sergey V. Egazaryants, Dmitry E. Tsaplin, and Anton L. Maximov. 2024. "Methanol to Aromatics on Hybrid Structure Zeolite Catalysts" Catalysts 14, no. 7: 461. https://doi.org/10.3390/catal14070461
APA StyleMagomedova, M. V., Galanova, E. G., Starozhitskaya, A. V., Afokin, M. I., Matevosyan, D. V., Egazaryants, S. V., Tsaplin, D. E., & Maximov, A. L. (2024). Methanol to Aromatics on Hybrid Structure Zeolite Catalysts. Catalysts, 14(7), 461. https://doi.org/10.3390/catal14070461