Mn-Based Catalysts in the Selective Reduction of NOx with CO: Current Status, Existing Challenges, and Future Perspectives
Abstract
:1. Introduction
2. Types of Mn-Based Catalysts
2.1. Bulk or Supported MnOx Catalysts
2.2. Bulk or Supported Mn-Based Composite Oxide Catalysts
2.3. MnOx as Dopants
3. Synthesis Methods
4. Reaction Mechanism
5. Challenges
5.1. O2
5.2. H2O
5.3. SO2
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Skalska, K.; Miller, J.S.; Ledakowicz, S. Trends in NOx abatement: A review. Sci. Total Environ. 2010, 408, 3976–3989. [Google Scholar] [CrossRef] [PubMed]
- Yun, L.; Li, Y.; Zhou, C.; Lan, L.; Zeng, M.; Mao, M.; Liu, H.; Zhao, X. The formation of CuO/OMS-2 nanocomposite leads to a significant improvement in catalytic performance for NO reduction by CO. Appl. Catal. A Gen. 2017, 530, 1–11. [Google Scholar]
- Wang, C.; Wang, W.; Sardans, J.; An, W.; Zeng, C.; Abid, A.A.; Penuelas, J. Effect of simulated acid rain on CO2, CH4 and N2O fluxes and rice productivity in a subtropical Chinese paddy field. Environ. Pollut. 2018, 243, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Andana, T.; Rappé, K.G.; Gao, F.; Szanyi, J.; Pereira-Hernandez, X.; Wang, Y. Recent advances in hybrid metal oxide-zeolite catalysts for low-temperature selective catalytic reduction of NOx by ammonia. Appl. Catal. B Environ. 2021, 291, 120054. [Google Scholar] [CrossRef]
- Inomata, Y.; Kubota, H.; Hata, S.; Kiyonaga, E.; Morita, K.; Yoshida, K.; Sakaguchi, N.; Toyao, T.; Shimizu, K.I.; Ishikawa, S.; et al. Tungsten-substituted vanadium oxide for low-temperature NOx removal in the presence of water. Nat. Commun. 2021, 12, 557. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Gui, K.; Gu, S.; Wei, Y. Study of the nitric oxide reduction of SCR-NH3 on γ-Fe2O3 catalyst surface with quantum chemistry. Appl. Surf. Sci. 2020, 509, 144659. [Google Scholar] [CrossRef]
- Hu, Y.; Griffiths, K.; Norton, P.R. Surface science studies of selective catalytic reduction of NO: Progress in the last ten years. Surf. Sci. 2009, 603, 1740–1750. [Google Scholar] [CrossRef]
- Jeon, J.; Ham, H.; Xing, F.; Nakaya, Y.; Shimizu, K.-i.; Furukawa, S. PdIn-Based Pseudo-Binary Alloy as a Catalyst for NOx Removal under Lean Conditions. ACS Catal. 2020, 10, 11380–11384. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, S.; Song, S.; Xu, W.; Li, L.; Zhang, Y.; Chen, W.; Li, H.; Jiang, J.; Zhu, T.; et al. Negatively Charged Single-Atom Pt Catalyst Shows Superior SO2 Tolerance in NOx Reduction by CO. ACS Catal. 2023, 13, 224–236. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, S.; Zhu, H.; Xu, W.; Jiang, R.; Zhang, Y.; Yu, J.; Chen, W.; Jia, L.; Jiang, J.; et al. Isolating Contiguous Ir Atoms and Forming Ir-W Intermetallics with Negatively Charged Ir for Efficient NO Reduction by CO. Adv. Mater. 2022, 34, 2205703. [Google Scholar] [CrossRef]
- Hungría, A.B.; Fernández-García, M.; Anderson, J.A.; Martínez-Arias, A. The effect of Ni in Pd-Ni/(Ce, Zr)Ox/Al2O3 catalysts used for stoichiometric CO and NO elimination. Part 2: Catalytic activity and in situ spectroscopic studies. J. Catal. 2005, 235, 262–271. [Google Scholar] [CrossRef]
- Liu, S.; Ji, Y.; Liu, B.; Xu, W.; Chen, W.; Yu, J.; Zhong, Z.; Xu, G.; Zhu, T.; Su, F. Co Single Atoms and CoOx Nanoclusters Anchored on Ce0.75Zr0.25O2 Synergistically Boosts the NO Reduction by CO. Adv. Funct. Mater. 2023, 33, 2303297. [Google Scholar] [CrossRef]
- He, J.; Kang, R.; Wei, X.; Huang, J.; Feng, B.; Nam Hui, K.; San Hui, K.; Wu, D. Comparative study of MCe0.75Zr0.25Oy (M = Cu, Mn, Fe) catalysts for selective reduction of NO by CO: Activity and reaction pathways. Carbon Resour. Convers. 2021, 4, 205–213. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Mu, J.; Fan, S.; Wang, L.; Gan, G.; Qin, M.; Li, J.; Li, Z.; Zhang, D. Facile Design of Highly Effective CuCexCo1−xOy Catalysts with Diverse Surface/Interface Structures toward NO Reduction by CO at Low Temperatures. Ind. Eng. Chem. Res. 2019, 58, 15459–15469. [Google Scholar] [CrossRef]
- Hamada, H.; Haneda, M. A review of selective catalytic reduction of nitrogen oxides with hydrogen and carbon monoxide. Appl. Catal. A Gen. 2012, 421, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Gao, F.; Dang, P.; Tang, X.; Lu, M.; Du, Y.; Zhou, Y.; Yi, H.; Duan, E. Recent advances in NO reduction with CO over copper-based catalysts: Reaction mechanisms, optimization strategies, and anti-inactivation measures. Chem. Eng. J. 2022, 450, 137374. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Liu, Y.; Lian, D.; Chen, M.; Ji, Y.; Xing, L.; Wu, K.; Liu, S. Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions. Catalysts 2022, 12, 1402. [Google Scholar] [CrossRef]
- Liu, S.; Gao, J.; Xu, W.; Ji, Y.; Zhu, T.; Xu, G.; Zhong, Z.; Su, F. A review of the catalysts used in the reduction of NO by CO for gas purification. Chem. Eng. J. 2024, 486, 150285. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Liu, H.; Chen, W.; Zhu, T. Catalytic removal of gaseous pollutant NO using CO: Catalyst structure and reaction mechanism. Environ. Res. 2024, 246, 150285. [Google Scholar] [CrossRef]
- Gholami, Z.; Luo, G.; Gholami, F.; Yang, F. Recent advances in selective catalytic reduction of NOx by carbon monoxide for flue gas cleaning process: A review. Environ. Sci. Pollut. Res. 2021, 63, 68–119. [Google Scholar] [CrossRef]
- Li, S.; Wang, F.; Ng, D.; Shen, B.; Xie, Z. Stability challenges and prospects for the industrial application of non-noble catalysts for selective catalytic reduction of NOx by CO (CO-SCR). ChemCatChem 2024, 16, e202301246. [Google Scholar] [CrossRef]
- Xie, J.; Fang, D.; He, F.; Chen, J.; Fu, Z.; Chen, X. Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature. Catal. Commun. 2012, 28, 77–81. [Google Scholar] [CrossRef]
- Jin, Q.; Han, L.; Li, N.; Zhang, T.; Gao, E.; Yao, M.; Yao, S.; Wu, Z.; Li, J.; Zhu, J.; et al. Exploring the influence of chemical state of Cu species on CO-SCR performance in spinel-type CuM2O4 (M = Co, Mn, Fe, Ni, and Cr): The synergy between Cu2+ and surface oxygen vacancy. Fuel 2024, 360, 130553. [Google Scholar] [CrossRef]
- Shan, J.; Zhu, Y.; Zhang, S.; Zhu, T.; Rouvimov, S.; Tao, F. Catalytic Performance and in Situ Surface Chemistry of Pure α-MnO2 Nanorods in Selective Reduction of NO and N2O with CO. J. Phy. Chem. C 2013, 117, 8329–8335. [Google Scholar] [CrossRef]
- Boningari, T.; Pavani, S.M.; Ettireddy, P.R.; Chuang, S.S.C.; Smirniotis, P.G. Mechanistic investigations on NO reduction with CO over Mn/TiO2 catalyst at low temperatures. Mol. Catal. 2018, 451, 33–42. [Google Scholar] [CrossRef]
- Zhang, L.; Li, B.; Liu, C.; Tian, H.; Hong, M.; Yin, X.; Feng, X. NO reduction with CO over a highly dispersed Mn/TiO2 catalyst at low temperature: A combined experimental and theoretical study. Nanotechnology 2021, 32, 505717. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, P.M.; Smirniotis, P.G. Selective reduction of NO with CO over titania supported transition metal oxide catalysts. Catal. Lett. 2008, 122, 37–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Chen, Z.; Li, X. Promotional effect for SCR of NO with CO over MnOx-doped Fe3O4 nanoparticles derived from metal-organic frameworks. Chin. J. Chem. Eng. 2022, 46, 113–125. [Google Scholar] [CrossRef]
- Liu, T.; Yao, Y.; Wei, L.; Shi, Z.; Han, L.; Yuan, H.; Li, B.; Dong, L.; Wang, F.; Sun, C. Preparation and Evaluation of Copper Manganese Oxide as a High-Efficiency Catalyst for CO Oxidation and NO Reduction by CO. J. Phy. Chem. C 2017, 121, 12757–12770. [Google Scholar] [CrossRef]
- Li, D.; Yu, Q.; Li, S.-S.; Wan, H.-Q.; Liu, L.-J.; Qi, L.; Liu, B.; Gao, F.; Dong, L.; Chen, Y. The Remarkable Enhancement of CO-Pretreated CuO-Mn2O3/γ-Al2O3 Supported Catalyst for the Reduction of NO with CO: The Formation of Surface Synergetic Oxygen Vacancy. Chem. Eur. J. 2011, 17, 5668–5679. [Google Scholar] [CrossRef]
- Shi, Y.; Chu, Q.; Xiong, W.; Gao, J.; Huang, L.; Zhang, Y.; Ding, Y. A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO. Chem. Eng. Process. 2021, 159, 108232. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.; Zhang, L.; Yu, Y.; He, H. Low-Temperature Selective Catalytic Reduction of NOx on MnO2 Octahedral Molecular Sieves (OMS-2) Doped with Co. Catalysts 2020, 10, 396. [Google Scholar] [CrossRef]
- Fan, F.; Wang, L.; Wang, L.; Liu, J.; Wang, M. Low-Temperature Selective NO Reduction by CO over Copper-Manganese Oxide Spinels. Catalysts 2022, 12, 591. [Google Scholar] [CrossRef]
- Pan, K.L.; Young, C.W.; Pan, G.T.; Chang, M.B. Catalytic reduction of NO by CO with Cu-based and Mn-based catalysts. Catal. Today 2020, 348, 15–25. [Google Scholar] [CrossRef]
- Shi, X.; Chu, B.; Wang, F.; Wei, X.; Teng, L.; Fan, M.; Li, B.; Dong, L.; Dong, L. Mn-Modified CuO, CuFe2O4, and γ-Fe2O3 Three-Phase Strong Synergistic Coexistence Catalyst System for NO Reduction by CO with a Wider Active Window. ACS Appl. Mater. Int. 2018, 10, 40509–40522. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xing, Y.; Su, W.; Li, K.; Zhang, W. Bifunctional Mn-Cu-CeOx/γ-Al2O3 catalysts for low-temperature simultaneous removal of NOx and CO. Fuel 2022, 321, 124050. [Google Scholar] [CrossRef]
- Gholami, F.; Gholami, Z.; Tomas, M.; Vavrunkova, V.; Mirzaei, S.; Vakili, M. Promotional Effect of Manganese on Selective Catalytic Reduction of NO by CO in the Presence of Excess O2 over M@La-Fe/AC (M = Mn, Ce) Catalyst. Catalysts 2020, 10, 1322. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, S.; Wang, Y.; Xu, W.; Gao, J.; Yu, S.; Su, F.; Zhu, T. Hollow Mn-doped CeO2@Co3O4 catalyst for NO reduction by CO. J. Catal. 2024, 430, 115311. [Google Scholar] [CrossRef]
- Li, X.; Ren, S.; Chen, Z.; Wang, M.; Chen, L.; Chen, H.; Yin, X. A Review of Mn-Based Catalysts for Abating NOx and CO in Low-Temperature Flue Gas: Performance and Mechanisms. Molecules 2023, 28, 6885. [Google Scholar] [CrossRef]
- Wei, L.; Liu, T.; Wu, Y.; Liu, H.; Dong, L.; Li, B. Design of co-symbiotic FexMnyO catalysts for NO reduction by CO. Catal. Sci. Technol. 2020, 10, 7894–7903. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Fu, W.; Zhang, L.; Zeng, J.; Zhu, G. Study on the CO-SCR anti-sulfur and denitration performance of V-doped OMS-2 catalysts. Ceram. Inter. 2021, 47, 33120–33126. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Zhang, L.; Zeng, J.; He, H. Anti-sulfur selective catalytic reduction of NOx on Sb-doped OMS-2. Appl. Catal. A Gen. 2022, 641, 118684. [Google Scholar] [CrossRef]
- Luo, B.; Wang, Z.; Huang, J.; Ning, S.; Deng, W.; Zhao, B.; Su, Y. Study on CO-SCR denitrification performance of Ho-modified OMS-2 catalyst. J. Environ. Chem. Eng. 2023, 11, 119050. [Google Scholar] [CrossRef]
- Yao, X.; Xiong, Y.; Sun, J.; Gao, F.; Deng, Y.; Tang, C.; Dong, L. Influence of MnO2 modification methods on the catalytic performance of CuO/CeO2 for NO reduction by CO. J. Rare Earths 2014, 32, 131–138. [Google Scholar] [CrossRef]
- Deng, C.S.; Qian, J.N.; Yu, C.X.; Yi, Y.N.; Zhang, P.; Li, W.; Dong, L.H.; Li, B.; Fan, M.G. Influences of doping and thermal stability on the catalytic performance of CuO/Ce20M1Ox(M = Zr, Cr, Mn, Fe, Co, Sn) catalysts for NO reduction by CO. Rsc. Adv. 2016, 6, 113630–113647. [Google Scholar] [CrossRef]
- Liu, S.; Ji, Y.; Xu, W.; Zhang, J.; Jiang, R.; Li, L.; Jia, L.; Zhong, Z.; Xu, G.; Zhu, T.; et al. Hierarchically interconnected porous MnxCo3-xO4 spinels for Low-temperature catalytic reduction of NO by CO. J. Catal. 2022, 406, 72–86. [Google Scholar] [CrossRef]
- Wan, H.; Li, D.; Dai, Y.; Hu, Y.; Liu, B.; Dong, L. Catalytic behaviors of CuO supported on Mn2O3 modified γ-Al2O3 for NO reduction by CO. J. Mol. Catal. A Chem. 2010, 332, 32–44. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Zhao, Q.D.; Xiong, W.; Ding, Y.; Sun, J.H.; Huang, Y.L.; Zhao, Z.F. A stable spherical MOF-derived Mnx-Fe2O3/C catalysts for low-temperature CO-SCR. Chem. Eng. J. 2023, 475, 146388. [Google Scholar] [CrossRef]
- Liu, T.; Wei, L.; Yao, Y.; Dong, L.; Li, B. La promoted CuO-MnOx catalysts for optimizing SCR performance of NO with CO. Appl. Surf. Sci. 2021, 546, 148971. [Google Scholar] [CrossRef]
- Wang, L.; Cheng, X.; Wang, Z.; Ma, C.; Qin, Y. Investigation on Fe-Co binary metal oxides supported on activated semi-coke for NO reduction by CO. Appl. Catal. B Environ. 2017, 201, 636–651. [Google Scholar] [CrossRef]
- Huang, B.-f.; Wang, D.-f.; Li, J.-l.; Shi, Z. Cu-Fe/activated carbon catalyst for low-temperature CO-selective catalytic: Modification and denitration mechanism. Environ. Prog. Sustain. Energy 2022, 41, e13827. [Google Scholar] [CrossRef]
- Li, J.; Zhu, J.; Fu, S.; Tao, L.; Chu, B.; Qin, Q.; Wang, J.; Li, B.; Dong, L. Insight into copper-cerium catalysts with different Cu valence states for CO-SCR and in-situ DRIFTS study on reaction mechanism. Fuel 2023, 339, 126962. [Google Scholar] [CrossRef]
- Sun, Y.; Wu, Y.; Bai, Y.; Wu, X.; Wang, H.; Wu, Z. High performance iridium loaded on natural halloysite nanotubes for CO-SCR reaction. Fuel 2024, 357, 129938. [Google Scholar] [CrossRef]
- Tao, L.; Wang, J.; Qin, Q.; Chu, B.; Gao, P.; Qiu, J.; Li, Q.; Du, X.; Dong, L.; Li, B. Simple anion-modified layered double oxides use for controlling Cu valence states for low-temperature CO-SCR. Surf. Interfaces 2024, 44, 103654. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Yu, F.; Pan, K.; Zhao, H.; Gao, F.; Zhou, M.; Dai, B.; Dan, J. CuCeOx/VMT powder and monolithic catalyst for CO-selective catalytic reduction of NO with CO. New J. Chem. 2022, 46, 10422–10432. [Google Scholar] [CrossRef]
- Du, Y.; Gao, F.; Tang, X.; Yi, H.; Zhou, Y.; Zhao, S.; Duan, E.; Wang, J.; Qi, Z. Mechanistic insight into the enhanced NO reduction by CO over a pre-reduced CuxOy-CeO2 multiphase catalyst. J. Environ. Chem. Eng. 2023, 11, 110386. [Google Scholar] [CrossRef]
- Liu, T.; Qian, J.; Yao, Y.; Shi, Z.; Han, L.; Liang, C.; Li, B.; Dong, L.; Fan, M.; Zhang, L. Research on SCR of NO with CO over the Cu0.1La0.1Ce0.8O mixed-oxide catalysts: Effect of the grinding. Mol. Catal. 2017, 430, 43–53. [Google Scholar] [CrossRef]
- Yan, X.; Liu, J.; Yang, Y.; Wang, Z.; Zheng, Y. A catalytic reaction scheme for NO reduction by CO over Mn-terminated LaMnO3 perovskite: A DFT study. Fuel Process. Technol. 2021, 216, 106798. [Google Scholar] [CrossRef]
- Liu, J.; Zang, P.; Liu, X.; Mi, J.; Wang, Y.; Zhang, G.; Chen, J.; Zhang, Y.; Li, J. A novel highly active catalyst form CuFeMg layered double oxides for the selective catalytic reduction of NO by CO. Fuel 2022, 317, 123469. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Duan, J.; Bi, S. Insights into deNOx processing over Ce-modified Cu-BTC catalysts for the CO-SCR reaction at low temperature by in situ DRIFTS. Sep. Purif. Technol. 2020, 234, 116081. [Google Scholar] [CrossRef]
- Amano, F.; Suzuki, S.; Yamamoto, T.; Tanaka, T. One-electron reducibility of isolated copper oxide on alumina for selective NO-CO reaction. Appl. Catal. B Environ. 2006, 64, 282–289. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Wang, F.; Xie, Z.; Hao, Z.; Liu, L.; Shen, B. Promotion effect of Ni doping on the oxygen resistance property of Fe/CeO2 catalyst for CO-SCR reaction: Activity test and mechanism investigation. J. Hazard. Mater. 2022, 431, 128622. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Wang, L.; Wang, Z.; Zhang, M.; Ma, C. Catalytic Performance of NO Reduction by CO over Activated Semicoke Supported Fe/Co Catalysts. Ind. Eng. Chem. Res. 2016, 55, 12710–12722. [Google Scholar] [CrossRef]
- Li, S.; Wang, F.; Xie, Z.; Ng, D.; Shen, B. A novel core-shell structured Fe@CeO2-ZIF-8 catalyst for the reduction of NO by CO. J. Catal. 2023, 421, 240–251. [Google Scholar] [CrossRef]
- Liu, S.; Xue, W.; Ji, Y.; Xu, W.; Chen, W.; Jia, L.; Zhu, T.; Zhong, Z.; Xu, G.; Mei, D.; et al. Interfacial oxygen vacancies at Co3O4-CeO2 heterointerfaces boost the catalytic reduction of NO by CO in the presence of O2. Appl. Catal. B Environ. 2023, 323, 122151. [Google Scholar] [CrossRef]
- Sun, P.; Li, X.; Cheng, X.; Wang, Z.; Wang, P. Transition metal modified Mn-based catalysts for CO-SCR in the presence of excess oxygen. Process Saf. Environ. Protect. 2023, 176, 389–401. [Google Scholar] [CrossRef]
- Huang, B.; Shi, Z.; Yang, Z.; Dai, M.; Wen, Z.; Li, W.; Zi, G.; Luo, L. Mechanism of CO selective catalytic reduction denitration on Fe-Mn/AC catalysts at medium and low temperatures under oxygen atmosphere. Chem. Eng. J. 2022, 446, 137412. [Google Scholar] [CrossRef]
- Ji, Y.; Chen, X.; Liu, S.; Song, S.; Xu, W.; Jiang, R.; Chen, W.; Li, H.; Zhu, T.; Li, Z.; et al. Tailoring the Electronic Structure of Single Ag Atoms in Ag/WO3 for Efficient NO Reduction by CO in the Presence of O2. ACS Catal. 2023, 13, 1230–1239. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, D.; Zhu, B.; Cheng, B.; Yu, J.; Yu, H. Enhancing photocatalytic H2O2 production with Au co-catalysts through electronic structure modification. Nat. Commun. 2024, 15, 3212. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Hui, S. Adsorption of NO and O2 on MnO2 and (MnO2)3/Al2O3. Appl. Surf. Sci. 2021, 569, 150994. [Google Scholar] [CrossRef]
- Xia, Z.; Zhang, R.; Duan, J.; Liu, Y.; Li, Z.; Gou, X. Performance of Mn-Ce-Fe/FA Catalysts on Selective Catalytic Reduction of NOx with CO under Different Atmospheres. Energies 2023, 16, 3859. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, L.; Cao, G.; Cui, Y.; Feng, L.; Jia, L.; Zhang, X.; Li, J.; Liu, B. Monolithic CuMnO2-Nanosheet-Based Catalysts In Situ Grown on Stainless Steel Mesh for Selective Catalytic Reduction of NO with CO. ACS Appl. Nano Mater. 2023, 6, 4803–4811. [Google Scholar] [CrossRef]
- Deng, C.; Huang, Q.; Zhu, X.; Hu, Q.; Su, W.; Qian, J.; Dong, L.; Li, B.; Fan, M.; Liang, C. The influence of Mn-doped CeO2 on the activity of CuO/CeO2 in CO oxidation and NO plus CO model reaction. Appl. Surf. Sci. 2016, 389, 1033–1049. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Shi, K.; Luo, L.; Jiang, H.; He, Y.; Zhao, Y.; He, J.; Lin, L.; Sun, Z.; et al. Single-Atom Mn Catalysts via Integration with Mn Sub Nano-Clusters Synergistically Enhance Oxygen Reduction Reaction. Small 2024, 20, 2309727. [Google Scholar] [CrossRef]
- Wang, J.; Xu, Z.; Xu, Y.; Liu, S.; Qiu, J.; Wang, Z.; Wang, Y.; Weng, Y.; Cao, H.; Wang, S.; et al. Mn single atoms for one-electron photoozonation of aqueous organics. Appl. Catal. B Environ. Energy 2024, 349, 123900. [Google Scholar] [CrossRef]
Catalyst | Gas Composition (%) | GHSV or WHSV | Temperature (°C) | NO Conversion (%) | CO Conversion (%) | N2 Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
NO | CO | O2 | SO2 | H2O | |||||||
α-MnO2 nanorods | 5.0 | 5.0 | --- | --- | --- | 30,000 mL h−1 g−1 | 400 | 85 | --- | 80 | [24] |
MnO2/TiO2 | 0.4 | 0.4 | 2.0 | --- | --- | 50,000 h−1 | 200 | 95 | --- | --- | [25] |
Mn/TiO2 | 3.0 | 3.0 | --- | --- | --- | 20,000 h−1 | 450 | 100 | --- | 90 | [26] |
MnOx/TiO2 | 0.4 | 0.4 | 2.0 | --- | --- | 50,000 h−1 | 175 | 100 | --- | 100 | [27] |
2MnOx-Fe3O4 | 1.0 | 2.0 | --- | --- | --- | 23,000 h−1 | 400 | 90 | --- | 70 | [28] |
Cu1.5Mn1.5O4 | 5.0 | 10.0 | --- | --- | --- | 24,000 mL h−1 g−1 | 250 | 100 | 45 | 95 | [29] |
CuO-Mn2O3/γ-Al2O3 | 5.0 | 10.0 | --- | --- | --- | 24,000 h−1 | 300 | 70 | --- | 85 | [30] |
NiMn-MOF-74 | 0.5 | 1.0 | --- | 0.1 | 5.0 | 30,000 h−1 | 200 | 100 | --- | --- | [31] |
Co0.3-OMS-2 | 0.5 | 0.5 | --- | 1.0 | --- | 24,000 mL h−1 g−1 | 150 | 95 | --- | 80 | [32] |
CuxMn3−xO4 | 1.0 | 2.0 | --- | --- | --- | 30,000 h−1 | 200 | 100 | --- | 55 | [33] |
Cu-Ce-Fe-Mn/TiO2 | 0.02 | 0.02 | 1.0 | --- | --- | 10,000 h−1 | 200 | 100 | 82 | --- | [34] |
0.010MnFeCu | 5.0 | 10.0 | --- | 1.0 | 10.0 | 15,000 mL h−1 g−1 | 300 | 100 | --- | 100 | [35] |
Mn@La3-Fe1/AC | 0.25 | 5.0 | 10.0 | --- | --- | 26,000 h−1 | 400 | 93.8 | --- | --- | [36] |
MnxCo3−xO4 | 1.0 | 2.0 | 5.0 | 0.05 | 5.0 | 20,000 h−1 | 180 | 100 | --- | 100 | [37] |
Mn-CeO2@Co3O4 | 1.0 | 2.0 | 5.0 | 0.05 | 10.0 | 24,000 h−1 | 200 | 82 | 100 | 78 | [38] |
Cu-Mn2 | 0.6 | 1.6 | 5.0 | --- | --- | 15,000 h−1 | 400 | 90 | 100 | 87 | [39] |
CuMnO2 | 1.0 | 2.0 | --- | --- | --- | 13,000 h−1 | 300 | 100 | --- | 80 | [40] |
Vx-OMS-2 | 0.5 | 0.5 | --- | 1.0 | --- | 24,000 mL h−1 g−1 | 300 | 95 | --- | --- | [41] |
Sb0.2-OMS-2 | 0.05 | 0.05 | --- | --- | --- | --- | 300 | 100 | 90 | --- | [42] |
Hox-OMS-2 | 0.05 | 0.05 | 0.05 | --- | --- | 15,000 h−1 | 225 | 100 | 99 | --- | [43] |
Catalyst | Gas Composition (%) | GHSV or WHSV | Temperature (°C) | NO Conversion (%) | CO Conversion (%) | N2 Selectivity (%) | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
NO | CO | O2 | SO2 | H2O | |||||||
MnOx/TiO2 | 0.4 | 0.4 | 2.0 | --- | --- | 50,000 h−1 | 175 | 100 | --- | 100 | [29] |
NiMn-MOF-74 | 0.5 | 1.0 | --- | 0.1 | 5.0 | 30,000 h−1 | 200 | 100 | --- | --- | [25] |
Cu-Ce-Fe-Mn/TiO2 | 0.02 | 0.02 | 1.0 | --- | --- | 10,000 h−1 | 200 | 100 | 82 | --- | [28] |
Mn-CeO2@Co3O4 | 1.0 | 2.0 | 5.0 | 0.05 | 10.0 | 24,000 h−1 | 200 | 82 | 100 | 78 | [38] |
MnxCo3−xO4 | 1.0 | 2.0 | 5.0 | 0.05 | 5.0 | 20,000 h−1 | 180 | 100 | --- | 100 | [37] |
Cu1.2FeMg2.8-LDO | 0.03 | 0.12 | 1.0 | 0.05 | 5.0 | 60,000 mL g−1h−1 | 225 | 100 | --- | 100 | [59] |
Ce-Cu-BTC | 0.1 | 0.1 | 5 | --- | --- | --- | 300 | 100 | 70 | 100 | [60] |
CuO/TiO2 | 1.0 | 1.0 | 0.5 | --- | --- | 12,000 h−1 | 250 | 100 | --- | 90 | [61] |
NiFe/CeO2 | 0.05 | 0.5 | 0.5 | --- | --- | 22,800 h−1 | 250 | 100 | --- | 100 | [62] |
Fe-Co/ASC | 0.1 | 0.5 | 0.1 | --- | --- | 20,000 h−1 | 300 | 100 | 100 | 100 | [63] |
Fe@CeO2-ZIF-8 | 0.5 | 0.1 | --- | --- | 5.0 | 22,800 h−1 | 300 | 100 | 50 | 99 | [64] |
Co3O4-CeO2-IOV | 0.1 | 0.2 | 5.0 | 0.05 | 10.0 | 20,000 h−1 | 200 | 100 | 100 | 100 | [65] |
Co SA + CoOx NC/CZO | 0.1 | 0.2 | 5.0 | 0.05 | 5.0 | 20,000 h−1 | 250 | 100 | 100 | 100 | [12] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, D.; Chen, M.; Wang, H.; Li, C.; Liu, B.; Dai, G.; Hou, S.; Liu, Y.; Ji, Y. Mn-Based Catalysts in the Selective Reduction of NOx with CO: Current Status, Existing Challenges, and Future Perspectives. Catalysts 2024, 14, 462. https://doi.org/10.3390/catal14070462
Lian D, Chen M, Wang H, Li C, Liu B, Dai G, Hou S, Liu Y, Ji Y. Mn-Based Catalysts in the Selective Reduction of NOx with CO: Current Status, Existing Challenges, and Future Perspectives. Catalysts. 2024; 14(7):462. https://doi.org/10.3390/catal14070462
Chicago/Turabian StyleLian, Dianxing, Mohaoyang Chen, Huanli Wang, Chenxi Li, Botao Liu, Guiyao Dai, Shujun Hou, Yuxi Liu, and Yongjun Ji. 2024. "Mn-Based Catalysts in the Selective Reduction of NOx with CO: Current Status, Existing Challenges, and Future Perspectives" Catalysts 14, no. 7: 462. https://doi.org/10.3390/catal14070462
APA StyleLian, D., Chen, M., Wang, H., Li, C., Liu, B., Dai, G., Hou, S., Liu, Y., & Ji, Y. (2024). Mn-Based Catalysts in the Selective Reduction of NOx with CO: Current Status, Existing Challenges, and Future Perspectives. Catalysts, 14(7), 462. https://doi.org/10.3390/catal14070462