α-Alkylation of Aliphatic Ketones with Alcohols: Base Type as an Influential Descriptor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization
2.2. α-Alkylation of 2-Butanone with 1-Propanol
2.2.1. Product Distribution in α-Alkylation of Butanone
2.2.2. Activity of Pd/C Catalysts with Added Homogenous Bases
2.2.3. Activity of Pd/C Catalysts with Added Heterogenous Bases
2.2.4. Influence of Different Supports on α-Alkylation Activity of Pd
2.2.5. Product Distribution and Activity of Heterogeneous Catalysts in α-Alkylation Reaction without Added Base
3. Materials and Methods
3.1. Chemical Reagents
3.2. Catalysts Preparation
3.2.1. Preparation of Layered Double Hydroxides (LDHs)
3.2.2. Preparation of Supported Catalysts
3.3. Catalyst Characterization
3.4. Alkylation Reaction Procedure
- %C2-butanone—the amount of 2-butanone converted,
- Aprouducts—the GC peak area of all the products
- A2-butanone—the GC peak area of 2-butanone
- %S3-heptanone—selectivity of 3-heptanone
- A3-heptanone—GC peak area of 3-heptanone
- Aprouducts—GC peak area of all the products
- %Y3-heptanone—yield of 3-heptanone
- %S3-heptanone—selectivity of 3-heptanone
- %C2-butanone—amount of 2-butanone converted
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, D.-Y.; Wang, H.; Chang, C.-R. Recent Advances for Alkylation of Ketones and Secondary Alcohols Using Alcohols in Homogeneous Catalysis. Adv. Synth. Catal. 2022, 364, 3100–3121. [Google Scholar] [CrossRef]
- Gagliardi, A.; Balestra, G.; Maron, J.D.; Mazzoni, R.; Tabanelli, T.; Fabrizio, C. Ethanol to gasoline and sustainable aviation fuel precursors: An innovative cascade strategy over Zr-based multifunctional catalysts in the gas phase. Appl. Catal. B Environ. 2024, 349, 123865. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.N.; German, L.; Harris, A.; Leow, K. Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen, and electrification in aviation. Johns. Matthey Technol. Rev. 2020, 62, 234–299. [Google Scholar] [CrossRef]
- Farooq, D.; Thompson, I.; Ng, K.S. Exploring the feasibility of producing sustainable aviation fuel in the UK using hydrothermal liquefaction technology: A comprehensive techno-economic and environmental assessment. Clean. Eng. Technol. 2020, 1, 100010. [Google Scholar] [CrossRef]
- Huq, N.A.; Hafenstine, G.R.; Huo, X.; Nguyen, H.; Tifft, S.M.; Conklin, D.R.; Stuck, D.; Stunkel, J.; Yang, Z.; Heyne, J.S.; et al. Toward net-zero sustainable aviation fuel with wet waste–derived volatile fatty acids. Proc. Natl. Acad. Sci. USA 2021, 118, e2023008118. [Google Scholar] [CrossRef] [PubMed]
- Ausfelder, F.; Wagemann, K. Power-to-Fuels: E-Fuels as an important option for a climate-friendly mobility of the future. Chem. Ing. Tech. 2020, 92, 21–30. [Google Scholar] [CrossRef]
- Mousdale, D.M. Biofuels: Biotechnology, Chemistry, and Sustainable Development; CRC Press: Boca Raton, FL, USA, 2008; Available online: https://www.crcpress.com/Biofuels-Biotechnology-Chemistry-and-Sustainable-Development/Mousdale/9781420051247 (accessed on 23 October 2015).
- Reddy, C.B.; Bharti, R.; Kumar, S.; Das, P. Supported palladium nanoparticle catalyzed α-alkylation of ketones using alcohols as alkylating agents. ACS Sustain. Chem. Eng. 2017, 5, 9683–9691. [Google Scholar] [CrossRef]
- Guillena, G.; Ramon, D.J.; Yus, M. Alcohols as electrophiles in C-C bond-forming reactions: The hydrogen autotransfer process. Angew. Chem. Int. Ed. 2007, 46, 2358–2364. [Google Scholar] [CrossRef]
- Gunanathan, C.; Milstein, D. Applications of acceptorless dehydrogenation and related transformations in chemical synthesis. Science 2013, 341, 249. [Google Scholar] [CrossRef]
- Schranck, J.; Tlili, A.; Beller, M. More sustainable formation of CN and C-C bonds for the synthesis of N-heterocycles. Angew. Chem. Int. Ed. 2013, 52, 7642–7644. [Google Scholar] [CrossRef]
- Bibby, C.E.; Grigg, R.; Price, R. Oxidation of ethanol by cobalt, iron, and rhodium complexes. J. Chem. Soc. Dalton Trans. 1977, 9, 872–876. [Google Scholar] [CrossRef]
- Lofberg, C.; Grigg, R.; Keep, A.; Derrick, A.; Sridharan, V.; Kilner, C. Sequential one-pot bimetallic Ir(III)/Pd(0) catalysed mono-/bisalkylation and spirocyclisation processes of 1,3-dimethylbarbituric acid and allenes. Chem. Commun. 2006, 48, 5000–5002. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, J.; Tian, H.; Yuan, X.; Li, S.; Zhou, C.; Liu, J. Catalyst-Free Dehydrative α-Alkylation of Ketones with Alcohols: Green and Selective Autocatalyzed Synthesis of Alcohols and Ketones. Angew. Chem. 2014, 126, 229–233. [Google Scholar] [CrossRef]
- Kwon, M.S.; Kim, N.; Seo, S.H.; Park, I.S.; Cheedrala, R.K.; Park, J. Recyclable Palladium Catalyst for Highly Selective a Alkylation of Ketones with Alcohols. Angew. Chem. Int. Ed. 2005, 44, 6913–6915. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.M.A.; Uozumi, Y.A. Solid-Phase Self-Organized Catalyst of Nanopalladium with Main-Chain Viologen Polymers: α-Alkylation of Ketones with Primary Alcohols. Org. Lett. 2006, 8, 1375–1378. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.T.; Shan, S.P.; Ramalingam, B.; Seayad, A.M. An efficient heterogenized palladium catalyst for N-alkylation of amines and α-alkylation of ketones using alcohols. RSC Adv. 2015, 5, 42399–42406. [Google Scholar] [CrossRef]
- Jang, J.-S.; Kwon, M.-S.; Kim, H.-G.; Park, J.-W.; Lee, J.-S. Preparation and Catalytic Application of Pd Loaded Titanate Nanotube: Highly Selective α Alkylation of Ketones with Alcohols. Bull. Korean Chem. Soc. 2012, 33, 1617–1621. [Google Scholar] [CrossRef]
- Bai, M.; Xin, H.; Guo, Z.; Guo, D.; Wang, Y.; Zhao, P.; Li, J. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide. Appl. Surf. Sci. 2017, 391, 617–626. [Google Scholar] [CrossRef]
- Jana, S.K.; Kubota, Y.; Tatsumi, T. Selective α-alkylation of ketones with alcohols catalyzed by highly active mesoporous Pd/MgO-Al2O3 type basic solid derived from Pd-supported MgAl-hydrotalcite. Stud. Surf. Sci. Catal. 2007, 165, 701–704. [Google Scholar]
- Onyestyák, G.; Novodárszki, G.; Barthos, R.; Klébert, S.; Wellisch, Á.; Pilbáth, A. Acetone alkylation with ethanol over multifunctional catalysts by a borrowing hydrogen strategy. RSC Adv. 2015, 5, 99502–99509. [Google Scholar] [CrossRef]
- Cho, C.S. A palladium-catalyzed route for α-alkylation of ketones by primary alcohols. J. Mol. Catal. A Chem. 2005, 240, 55–60. [Google Scholar] [CrossRef]
- Yang, D.; Wang, H.; Liuc, C.; Chang, C.-R. Palladium single-atom catalyst supported on ceria for α-alkylation of ketones with primary alcohols. Catal. Sci. Technol. 2023, 13, 3174–3181. [Google Scholar] [CrossRef]
- Anbarasan, P.; Baer, Z.C.; Sreekumar, S.; Gross, E.; Binder, J.B.; Blanch, H.W.; Clark, D.S.; Toste, F.D. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 2012, 491, 235–239. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Li, Q.; Feng, J.; Liu, Q.; Zhang, Z.; Wang, X.; Zhang, X.; Mu, X. Direct α-Alkylation of Ketones with Alcohols in Water. ChemSusChem 2014, 7, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Sreekumar, S.; Baer, Z.C.; Gross, E.; Padmanaban, S.; Goulas, K.; Gunbas, G.; Alayoglu, S.; Blanch, H.W.; Clark, D.S.; Toste, F.D. Chemocatalytic upgrading of tailored fermentation products toward biodiesel. ChemSusChem 2014, 7, 2445–2448. [Google Scholar] [CrossRef]
- Onyestyák, G.; Novodárszki, G.; Wellisch, Á.F.; Pilbáth, A. Upgraded biofuel from alcohol–acetone feedstocks over a two-stage flow-through catalytic system. Catal. Sci. Technol. 2016, 6, 4516–4524. [Google Scholar] [CrossRef]
- Vo, H.T.; Yeo, S.M.; Dahnum, D.; Jae, J.; Hong, C.S.; Lee, H. Pd/C-CaO-catalyzed α-alkylation and hydrodeoxygenation of an acetone-butanol-ethanol mixture for biogasoline synthesis. Chem. Eng. J. 2017, 313, 1486–1493. [Google Scholar] [CrossRef]
- Keogh, J.; Deshmukh, G.; Manyar, H. Green Synthesis of Glycerol Carbonate via Transesterification of Glycerol Using Mechanochemically Prepared Sodium Aluminate Catalysts. Fuel 2022, 310, 122484. [Google Scholar] [CrossRef]
- Keogh, J.; Jeffrey, C.; Tiwari, M.S.; Manyar, H. Kinetic Analysis of Glycerol Esterification Using Tin Exchanged Tungstophosphoric Acid on K-10. Ind. Eng. Chem. Res. 2023, 62, 19095–19103. [Google Scholar] [CrossRef]
- Manyar, H.; Yadav, G.D. Synthesis of a Novel Redox Material UDCaT-3: An Efficient and Versatile Catalyst for Selective Oxidation, Hydroxylation and Hydrogenation Reactions. Adv. Syn. Catal. 2008, 350, 2286. [Google Scholar] [CrossRef]
- Skillen, N.; Ralphs, K.; Craig, D.; McCalmont, S.; Muzio, A.F.V.; O’Rourke, C.; Manyar, H.; Robertson, P. Photocatalytic Reforming of Glycerol to H2 in a Thin Film Pt-TiO2 Recirculating Photo Reactor. J. Chem. Technol. Biotechnol. 2020, 95, 2619–2627. [Google Scholar] [CrossRef]
- Pandit, K.; Jeffrey, C.; Keogh, J.; Tiwari, M.S.; Artioli, N.; Manyar, H. Techno-Economic Assessment and Sensitivity Analysis of Glycerol Valorization to Biofuel Additives via Esterification. Ind. Eng. Chem. Res. 2023, 62, 9201–9210. [Google Scholar] [CrossRef]
- Jakubek, T.; Ralphs, K.; Kotarba, A.; Manyar, H. Nanostructured Potassium-Manganese Oxides Decorated with Pd Nanoparticles as Efficient Catalysts for Low-Temperature Soot Oxidation. Catal. Lett. 2019, 149, 100–106. [Google Scholar] [CrossRef]
- O’Donnell, R.; Ralphs, K.; Grolleau, M.; Manyar, H.; Artioli, N. Doping Manganese Oxides with Ceria and Ceria Zirconia Using a One-Pot Sol–Gel Method for Low Temperature Diesel Oxidation Catalysts. Top. Catal. 2020, 63, 351–362. [Google Scholar] [CrossRef]
- Lietti, L.; Righini, L.; Castoldi, L.; Artioli, N.; Forzatti, P. Labeled 15NO study on N2 and N2O formation over Pt-Ba/Al2O3 NSR catalysts. Top. Catal. 2013, 56, 7–13. [Google Scholar] [CrossRef]
- Maddaloni, M.; Centeno-Pedrazo, A.; Avanzi, S.; Mazumdar, N.J.; Manyar, H.; Artioli, N. Novel Ionic Liquid synthesis of highly selective catalysts for the direct hydrogenation of CO2 to short chain hydrocarbons. Catalysts 2023, 13, 1499. [Google Scholar] [CrossRef]
- Ethiraj, J.; Wagh, D.; Manyar, H. Advances in Upgrading Biomass to Biofuels and Oxygenated Fuel Additives Using Metal Oxide Catalysts. Energy Fuel. 2022, 36, 1189–1204. [Google Scholar] [CrossRef]
- Naresh, D.; Kumar, V.P.; Harisekhar, M.; Nagaraju, N.; Putrakumar, B.; Chary, K.V.R. Characterization and functionalities of Pd/hydrotalcite catalysts. Appl. Sur. Sci. 2014, 314, 199–207. [Google Scholar] [CrossRef]
- Zeng, H.-y.; Feng, Z.; Deng, X.; Li, Y.-q. Activation of Mg–Al hydrotalcite catalysts for transesterification of rape oil. Fuel 2008, 87, 3071–3076. [Google Scholar] [CrossRef]
- Shimizu, K.-i. Heterogeneous catalysis for the direct synthesis of chemicals by borrowing hydrogen methodology. Catal. Sci. Technol. 2015, 5, 1412–1427. [Google Scholar] [CrossRef]
- Ponnuru, K.; Manayil, J.C.; Cho, H.J.; Osatiashtiani, A.; Fan, W.; Wilson, K.; Jentoft, F.C. Tuning solid catalysts to control regioselectivity in cross aldol condensations with unsymmetrical ketones for biomass conversion. Mol. Catal. 2018, 458, 247–260. [Google Scholar] [CrossRef]
- Chottiratanachote, A.; Suttipong, M.; Rashid, U.; Parasuk, V.; Kondo, J.N.; Yokoi, T.; Alsalme, A.; Ngamcharussrivichai, C. Selective Synthesis of Renewable Bio-Jet Fuel Precursors from Furfural and 2-Butanone via Heterogeneously Catalyzed Aldol Condensation. Catalysts 2023, 13, 242. [Google Scholar] [CrossRef]
- Sheng, X.; Li, N.; Li, G.; Wang, W.; Wang, A.; Cong, Y.; Wang, X.; Zhang, T. Direct synthesis of gasoline and diesel range branched alkanes with acetone from lignocellulose. Green Chem. 2016, 18, 3707–3711. [Google Scholar] [CrossRef]
- Cavani, F.; Trifirò, F.; Vaccari, A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal. Today 1991, 11, 173–301. [Google Scholar] [CrossRef]
- Suarsih, E.; Kita, Y.; Kamata, K.; Hara, M. A heterogeneous cobalt catalyst for C-C bond formation by a borrowing hydrogen strategy. Catal. Sci. Technol. 2022, 12, 4113–4117. [Google Scholar] [CrossRef]
- Zhu, Q.; Shen, C.; Wang, J.; Tan, T. Upgrade of Solvent-Free Acetone–Butanol–Ethanol Mixture to High-Value Biofuels over Ni-Containing MgO–SiO2 Catalysts with Greatly Improved Water-Resistance. ACS Sustain. Chem. Eng. 2017, 5, 8181–8191. [Google Scholar] [CrossRef]
- Fridrich, B.; Stuart, M.C.A.; Barta, K. Selective Coupling of Bioderived Aliphatic Alcohols with Acetone Using Hydrotalcite Derived Mg–Al Porous Metal Oxide and Raney Nickel. ACS Sustain. Chem. Eng. 2018, 6, 8468–8475. [Google Scholar] [CrossRef] [PubMed]
- Corma, A.; Hamid, S.; Iborra, S.; Velty, A. Lewis and Brönsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J. Catal. 2005, 234, 340–347. [Google Scholar] [CrossRef]
- Neimark, A.V.; Kheifets, L.I.; Fenelonov, V.B. Theory of preparation of supported catalysts. Ind. Eng. Chem. Prod. Res. Dev. 1981, 20, 439–450. [Google Scholar] [CrossRef]
- Pinna, F. Supported metal catalysts preparation. Catal. Today 1998, 41, 129–137. [Google Scholar] [CrossRef]
Sr. No. | Catalyst | BET Surface Area, m2/g | Pore Volume, cm3/g |
---|---|---|---|
1 | 5%Pd/Mg3Al1 | 130 | 0.27 |
2 | 5%Pd/Ba1.2Mg1.8Al1 | 116 | 0.24 |
3 | 5%Pd/Ba1.2Mg3Al1 | 106 | 0.29 |
4 | 2.5%Ni/Ba1.2Mg3Al1 | 147 | 0.31 |
5 | 5%Ni/Ba1.2 Mg3Al1 | 125 | 0.32 |
6 | 10%Ni/Ba1.2Mg3Al1 | 122 | 0.27 |
Entry | Base | Conversion, % | Product Selectivity, % | |||
---|---|---|---|---|---|---|
S-Alkylated Ketones | B-Alkylated Ketones | Long Chain Alcohol | 2-Butanol | |||
1 | - | 25.0 | 0.0 | 12.0 | 0 | 88.0 |
2 | NaOH a | 39.0 | 24.0 | 42.0 | 1.0 | 33.0 |
3 | NaOH | 91 | 40.0 | 42.0 | 7.0 | 11.0 |
4 | KF | 1.0 | 22.0 | 72.0 | 0 | 7.0 |
5 | Hunig’s base b | 10.0 | 0.0 | 12.0 | 0 | 88.0 |
6 | NaOH c | 73 | 41.0 | 50.0 | 5 | 5.0 |
Entry | Base | Conversion, % | Product Selectivity, % | |||
---|---|---|---|---|---|---|
S-Alkylated Ketones | B-Alkylated Ketones | Long Chain Alcohol | 2-Butanol | |||
1 | CeZrO2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
2 | MgO | 27.0 | 1.5 | 2.0 | 0.0 | 96.5 |
3 | HT | 18.0 | 4.5 | 4.0 | 0.0 | 91.5 |
4 | CHT a | 30.0 | 3 | 3.0 | 0.0 | 94.0 |
5 | 5%Ba/HT | 51.0 | 19.5 | 16.5 | 1.0 | 63.0 |
6 | 30%KF/Al2O3 | 28.0 | 0.0 | 0.3 | 0.0 | 99.7 |
7 | 5%Pd/CeZrO2 b | 55.0 | 1.0 | 3.3 | 0.0 | 96.0 |
Entry | Supports | Conversion, % | Product Selectivity, % | |||
---|---|---|---|---|---|---|
S-Alkylated Ketones | B-Alkylated Ketones | Long Chain Alcohol | 2-Butanol | |||
1 | BaSO4 | 94.0 | 32.0 | 52.0 | 4.0 | 12.0 |
2 | C | 91.0 | 40.0 | 42.0 | 7.0 | 11.0 |
3 | HT | 87.0 | 26.0 | 39.0 | 4.5 | 30.0 |
4 | CeZrO2 | 85.0 | 29.0 | 51.0 | 4.0 | 16.0 |
5 | CaCO3 | 84.0 | 36.0 | 33.0 | 4.0 | 27.0 |
6 | Al2O3 | 82.5 | 24.0 | 43.0 | 5.0 | 28.0 |
7 | Al2O3 a | 68.0 | 17.0 | 36.0 | 4.0 | 43.0 |
8 | 5%Ba/TiO2 | 61.0 | 2.0 | 8.0 | 1.0 | 89.0 |
Sr. No. | LDHs Composition | Notations |
---|---|---|
1 | MgOH-Al(OH)3 (3:1) | Mg3Al1 |
2 | BaOH-MgOH-Al(OH)3 (1.2:1.8:1) | Ba1.2Mg1.8Al1 |
3 | BaOH-MgOH-Al(OH)3 (1.2:3:1) | Ba1.2Mg3Al1 |
4 | NiOH-MgOH-Al(OH)3 (1:3:1) | Ni1Mg3Al1 |
5 | NiOH-MgOH-Fe(OH)3 (3:1:1) | Ni3Mg1Fe1 |
6 | NiOH-Fe(OH)3 (3:1) | Ni3Fe1 |
7 | MgOH-Fe(OH)3 (3:1) | Mg3Fe1 |
8 | MgOH-Fe(OH)3 (2:1) | Mg2Fe1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mane, R.; Hui, L.; Centeno-Pedrazo, A.; Goguet, A.; Artioli, N.; Manyar, H. α-Alkylation of Aliphatic Ketones with Alcohols: Base Type as an Influential Descriptor. Catalysts 2024, 14, 463. https://doi.org/10.3390/catal14070463
Mane R, Hui L, Centeno-Pedrazo A, Goguet A, Artioli N, Manyar H. α-Alkylation of Aliphatic Ketones with Alcohols: Base Type as an Influential Descriptor. Catalysts. 2024; 14(7):463. https://doi.org/10.3390/catal14070463
Chicago/Turabian StyleMane, Rasika, Li Hui, Ander Centeno-Pedrazo, Alexandre Goguet, Nancy Artioli, and Haresh Manyar. 2024. "α-Alkylation of Aliphatic Ketones with Alcohols: Base Type as an Influential Descriptor" Catalysts 14, no. 7: 463. https://doi.org/10.3390/catal14070463
APA StyleMane, R., Hui, L., Centeno-Pedrazo, A., Goguet, A., Artioli, N., & Manyar, H. (2024). α-Alkylation of Aliphatic Ketones with Alcohols: Base Type as an Influential Descriptor. Catalysts, 14(7), 463. https://doi.org/10.3390/catal14070463