Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen
Abstract
:1. Introduction
2. Results and Discussion
2.1. Green Hydrogen Generation in Fixed-Bed CLH
2.2. Investigation of the Carbon Deposition on the Support Pellets
2.3. Investigation of the Pore Structure Network in the Support Pellets
2.4. Carbon Deposition and Performance of the Oxygen Carrier
3. Materials and Methods
3.1. Synthesis of the Oxygen Carrier
3.2. Chemical Looping Fixed-Bed Set-Up
3.3. Gas Chromatography
3.4. Thermogravimetric Analysis
3.5. SEM/EDX Analysis
3.6. Mercury Porosimetry
3.7. Infrared Spectroscopy
3.8. XRF
3.9. XRD
3.10. µ-CT Measurement
3.11. µ-CT Segmentation Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hossain, A.; Bhagya, T.C.; Mukhanova, E.A.; Soldatov, A.V.; Henaish, A.M.A.; Mao, Y.; Shibli, S.M.A. Engineering Strontium Titanate-Based Photocatalysts for Green Hydrogen Generation: Recent Advances and Achievements. Appl. Catal. B Environ. 2024, 342, 123383. [Google Scholar] [CrossRef]
- Tonelli, D.; Rosa, L.; Gabrielli, P.; Caldeira, K.; Parente, A.; Contino, F. Global Land and Water Limits to Electrolytic Hydrogen Production Using Wind and Solar Resources. Nat. Commun. 2023, 14, 5532. [Google Scholar] [CrossRef]
- Odenweller, A.; Ueckerdt, F.; Nemet, G.F.; Jensterle, M.; Luderer, G. Probabilistic Feasibility Space of Scaling up Green Hydrogen Supply. Nat. Energy 2022, 7, 854–865. [Google Scholar] [CrossRef]
- Hauglustaine, D.; Paulot, F.; Collins, W.; Derwent, R.; Sand, M.; Boucher, O. Climate Benefit of a Future Hydrogen Economy. Commun. Earth Environ. 2022, 3, 295. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, L.; Pang, G.; Wei, X.; Wang, M.; Cheng, K.; Kang, J.; Serra, J.M.; Zhang, Q.; Wang, Y. Direct Conversion of Carbon Dioxide into Liquid Fuels and Chemicals by Coupling Green Hydrogen at High Temperature. Appl. Catal. B Environ. 2023, 324, 122299. [Google Scholar] [CrossRef]
- Gultom, N.S.; Chen, T.S.; Silitonga, M.Z.; Kuo, D.H. Overall Water Splitting Realized by Overall Sputtering Thin-Film Technology for a Bifunctional MoNiFe Electrode: A Green Technology for Green Hydrogen. Appl. Catal. B Environ. 2023, 322, 122103. [Google Scholar] [CrossRef]
- Wang, Y.; Pang, Y.; Xu, H.; Martinez, A.; Chen, K.S. PEM Fuel Cell and Electrolysis Cell Technologies and Hydrogen Infrastructure Development—A Review. Energy Environ. Sci. 2022, 15, 2288–2328. [Google Scholar] [CrossRef]
- Yu, Q.; Zhang, Z.; Qiu, S.; Luo, Y.; Liu, Z.; Yang, F.; Liu, H.; Ge, S.; Zou, X.; Ding, B.; et al. A Ta-TaS2 Monolith Catalyst with Robust and Metallic Interface for Superior Hydrogen Evolution. Nat. Commun. 2021, 12, 6051. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, P.; Poullikkas, A. A Comparative Overview of Hydrogen Production Processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Lee, W.H.; Ko, Y.J.; Kim, J.H.; Choi, C.H.; Chae, K.H.; Kim, H.; Hwang, Y.J.; Min, B.K.; Strasser, P.; Oh, H.S. High Crystallinity Design of Ir-Based Catalysts Drives Catalytic Reversibility for Water Electrolysis and Fuel Cells. Nat. Commun. 2021, 12, 4271. [Google Scholar] [CrossRef]
- Salehmin, M.N.I.; Husaini, T.; Goh, J.; Sulong, A.B. High-Pressure PEM Water Electrolyser: A Review on Challenges and Mitigation Strategies towards Green and Low-Cost Hydrogen Production. Energy Convers. Manag. 2022, 268, 115985. [Google Scholar] [CrossRef]
- Wee, S.Y.; Aris, A.Z. Revisiting the “Forever Chemicals”, PFOA and PFOS Exposure in Drinking Water. npj Clean Water 2023, 6, 57. [Google Scholar] [CrossRef]
- Xie, Z.; Yu, S.; Ma, X.; Li, K.; Ding, L.; Wang, W.; Cullen, D.A.; Meyer, H.M.; Yu, H.; Tong, J.; et al. MoS2 Nanosheet Integrated Electrodes with Engineered 1T-2H Phases and Defects for Efficient Hydrogen Production in Practical PEM Electrolysis. Appl. Catal. B Environ. 2022, 313, 121458. [Google Scholar] [CrossRef]
- The U-Turn on PFAS. Nat. Water 2023, 1, 993. [CrossRef]
- Xiao, F.; Deng, B.; Dionysiou, D.; Karanfil, T.; O’Shea, K.; Roccaro, P.; Xiong, Z.J.; Zhao, D. Cross-National Challenges and Strategies for PFAS Regulatory Compliance in Water Infrastructure. Nat. Water 2023, 1, 1004–1015. [Google Scholar] [CrossRef]
- Yu, J.; Li, Z.; Liu, T.; Zhao, S.; Guan, D.; Chen, D.; Shao, Z.; Ni, M. Morphology Control and Electronic Tailoring of CoxAy (A = P, S, Se) Electrocatalysts for Water Splitting. Chem. Eng. J. 2023, 460, 141674. [Google Scholar] [CrossRef]
- High, M.; Patzschke, C.F.; Zheng, L.; Zeng, D.; Gavalda-Diaz, O.; Ding, N.; Chien, K.H.H.; Zhang, Z.; Wilson, G.E.; Berenov, A.V.; et al. Precursor Engineering of Hydrotalcite-Derived Redox Sorbents for Reversible and Stable Thermochemical Oxygen Storage. Nat. Commun. 2022, 13, 5109. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Imtiaz, Q.; Donat, F.; Müller, C.R.; Li, F. Chemical Looping beyond Combustion—A Perspective. Energy Environ. Sci. 2020, 13, 772–804. [Google Scholar] [CrossRef]
- Bock, S.; Stoppacher, B.; Malli, K.; Lammer, M.; Hacker, V. Techno-Economic Analysis of Fixed-Bed Chemical Looping for Decentralized, Fuel-Cell-Grade Hydrogen Production Coupled with a 3 MWth Biogas Digester. Energy Convers. Manag. 2021, 250, 114801. [Google Scholar] [CrossRef]
- Heiniger, S.P.; Fan, Z.; Lustenberger, U.B.; Stark, W.J. Safe Seasonal Energy and Hydrogen Storage in a 1 : 10 Single-Household-Sized Pilot Reactor Based on the Steam-Iron Process. Sustain. Energy Fuels 2023, 8, 125–132. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, S.; Chhabra, T.; Tariq, S.; Sufyan Javed, M.; Li, H.; Raza Naqvi, S.; Rajendran, S.; Luque, R.; Ahmad, I. Synergic Impact of Renewable Resources and Advanced Technologies for Green Hydrogen Production: Trends and Perspectives. Int. J. Hydrogen Energy 2024, 67, 788–806. [Google Scholar] [CrossRef]
- Khan, S.; Arshad, J.; Arshad, I.; Aftab, S.; Shah, S.S.; Lee, S.L.; Janjua, N.K.; Yusuf, K.; Li, H. Promotional Impact of RuO2 on CuO/Al2O3 Bifunctional Catalyst towards Electro-Oxidation of Hydrazine and Water. Int. J. Hydrogen Energy, 2024; in press. [Google Scholar] [CrossRef]
- Stoppacher, B.; Sterniczky, T.; Bock, S.; Hacker, V. On-Site Production of High-Purity Hydrogen from Raw Biogas with Fixed-Bed Chemical Looping. Energy Convers. Manag. 2022, 268, 115971. [Google Scholar] [CrossRef]
- Wang, I.; Liu, L.; Yu, S.; Lai, N.C.; Gao, Y.; Li, Z.; Liu, J.; Wang, W. Highly Sintering-Resistant Iron Oxide with a Hetero-Oxide Shell for Chemical Looping Water Splitting. Int. J. Hydrogen Energy 2024, 57, 438–449. [Google Scholar] [CrossRef]
- Ma, L.; Qiu, Y.; Li, M.; Cui, D.; Zhang, S.; Zeng, D.; Xiao, R. Efficient Hydrogen Production through the Chemical Looping Redox Cycle of YSZ Supported Iron Oxides. Green Energy Environ. 2021, 6, 875–883. [Google Scholar] [CrossRef]
- Blaschke, F.; Bele, M.; Polak, Š.; Bitschnau, B.; Hacker, V. Core-Shell Iron-Based Oxygen Carrier Material for Highly Efficient Green Hydrogen Production by Chemical Looping. Mater. Today 2024, 75, 37–56. [Google Scholar] [CrossRef]
- Blaschke, F.; Bele, M.; Bitschnau, B.; Hacker, V. The Effect of Microscopic Phenomena on the Performance of Iron-Based Oxygen Carriers of Chemical Looping Hydrogen Production. Appl. Catal. B Environ. 2023, 327, 122434. [Google Scholar] [CrossRef]
- Ma, S.; Chen, S.; Soomro, A.; Xiang, W. Effects of Supports on Hydrogen Production and Carbon Deposition of Fe-Based Oxygen Carriers in Chemical Looping Hydrogen Generation. Int. J. Hydrogen Energy 2017, 42, 11006–11016. [Google Scholar] [CrossRef]
- Donat, F.; Müller, C.R. CO2-Free Conversion of CH4 to Syngas Using Chemical Looping. Appl. Catal. B Environ. 2020, 278, 119328. [Google Scholar] [CrossRef]
- Wang, C.; Liu, T.; Xiao, R.; Zeng, D. High-Purity Hydrogen Obtained via a Plasma-Assisted Chemical Looping Process Using Perovskite-Supported Iron Oxides as Oxygen Carriers. Energy Fuels 2023, 37, 14141–14149. [Google Scholar] [CrossRef]
- Cheng, X.; Gu, Z.; Li, F.; Zhu, X.; Wei, Y.; Zheng, M.; Tian, D.; Wang, H.; Li, K. Enhanced Resistance to Carbon Deposition in Chemical-Looping Combustion of Methane: Synergistic Effect of Different Oxygen Carriers via Sequence Filling. Chem. Eng. J. 2021, 421, 129776. [Google Scholar] [CrossRef]
- Bock, S.; Zacharias, R.; Hacker, V. Co-Production of Pure Hydrogen, Carbon Dioxide and Nitrogen in a 10 KW Fixed-Bed Chemical Looping System. Sustain. Energy Fuels 2020, 4, 1417–1426. [Google Scholar] [CrossRef]
- Xiang, D.; Zhao, S. Parameter Optimization and Thermodynamic Analysis of COG Direct Chemical Looping Hydrogen Processes. Energy Convers. Manag. 2018, 172, 1–8. [Google Scholar] [CrossRef]
- Lyngfelt, A.; Brink, A.; Langørgen, Ø.; Mattisson, T.; Rydén, M.; Linderholm, C. 11,000 h of Chemical-Looping Combustion Operation—Where Are We and Where Do We Want to Go? Int. J. Greenh. Gas Control 2019, 88, 38–56. [Google Scholar] [CrossRef]
- Rihko-Struckmann, L.K.; Datta, P.; Wenzel, M.; Sundmacher, K.; Dharanipragada, N.V.R.A.; Poelman, H.; Galvita, V.V.; Marin, G.B. Hydrogen and Carbon Monoxide Production by Chemical Looping over Iron-Aluminium Oxides. Energy Technol. 2016, 4, 304–313. [Google Scholar] [CrossRef]
- Wang, C.; Liu, T.; Qiu, Y.; Gao, Z.; Ou, W.; Song, Y.; Xiao, R.; Zeng, D. Performance of Plasma-Assisted Chemical Looping Hydrogen Generation at Moderate Temperature. Sustain. Energy Fuels 2023, 7, 1204–1212. [Google Scholar] [CrossRef]
- Bock, S.; Zacharias, R.; Hacker, V. Experimental Study on High-Purity Hydrogen Generation from Synthetic Biogas in a 10 KW Fixed-Bed Chemical Looping System. RSC Adv. 2019, 9, 23686–23695. [Google Scholar] [CrossRef]
- Zacharias, R.; Visentin, S.; Bock, S.; Hacker, V. High-Pressure Hydrogen Production with Inherent Sequestration of a Pure Carbon Dioxide Stream via Fixed Bed Chemical Looping. Int. J. Hydrogen Energy 2019, 44, 7943–7957. [Google Scholar] [CrossRef]
- Zacharias, R.; Bock, S.; Hacker, V. The Impact of Manufacturing Methods on the Performance of Pelletized, Iron-Based Oxygen Carriers for Fixed Bed Chemical Looping Hydrogen in Long Term Operation. Fuel Process. Technol. 2020, 208, 106487. [Google Scholar] [CrossRef]
- Hosseini, D.; Abdala, P.M.; Donat, F.; Kim, S.M.; Müller, C.R. Bifunctional Core-Shell Architecture Allows Stable H2 Production Utilizing CH4 and CO2 in a Catalytic Chemical Looping Process. Appl. Catal. B Environ. 2019, 258, 117946. [Google Scholar] [CrossRef]
- Luo, M.; Yi, Y.; Wang, S.; Wang, Z.; Du, M.; Pan, J.; Wang, Q. Review of Hydrogen Production Using Chemical-Looping Technology. Renew. Sustain. Energy Rev. 2018, 81, 3186–3214. [Google Scholar] [CrossRef]
- He, J.; Yang, Q.; Song, Z.; Chang, W.; Huang, C.; Zhu, Y.; Ma, X.; Wang, X. Improving the Carbon Resistance of Iron-Based Oxygen Carrier for Hydrogen Production via Chemical Looping Steam Methane Reforming: A Review. Fuel 2023, 351, 128864. [Google Scholar] [CrossRef]
- Ma, S.; Chen, S.; Zhu, M.; Zhao, Z.; Hu, J.; Wu, M.; Toan, S.; Xiang, W. Enhanced Sintering Resistance of Fe2O3/CeO2 Oxygen Carrier for Chemical Looping Hydrogen Generation Using Core-Shell Structure. Int. J. Hydrogen Energy 2019, 44, 6491–6504. [Google Scholar] [CrossRef]
- Cho, P.; Mattisson, T.; Lyngfelt, A. Carbon Formation on Nickel and Iron Oxide-Containing Oxygen Carriers for Chemical-Looping Combustion. Ind. Eng. Chem. Res. 2005, 44, 668–676. [Google Scholar] [CrossRef]
- Laroche, G.; Fitremann, J.; Gherardi, N. FTIR-ATR Spectroscopy in Thin Film Studies: The Importance of Sampling Depth and Deposition Substrate. Appl. Surf. Sci. 2013, 273, 632–637. [Google Scholar] [CrossRef]
- Kang, M.J.; Yoon, D.H. Effects of Surface Hydroxyl Ions on the Color of Sintered Al2O3 Characterized by X-ray Photoelectron and Infrared Spectroscopy. J. Eur. Ceram. Soc. 2022, 42, 7508–7515. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing Amorphous Silica, Short-Range-Ordered Silicates and Silicic Acid Species by FTIR. Sci. Reports 2022, 12, 11708. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Enakonda, L.R.; Saih, Y.; Loptain, S.; Gary, D.; Del-Gallo, P.; Basset, J.M. Catalytic Methane Decomposition over Fe-Al2O3. ChemSusChem 2016, 9, 1243–1248. [Google Scholar] [CrossRef]
- Watt-Smith, M.J.; Rigby, S.P.; Chudek, J.A.; Fletcher, R.S. Simulation of Mercury Porosimetry Using MRI Images of Porous Media. Stud. Surf. Sci. Catal. 2007, 160, 177–184. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Vu, M.H.; Grimbergen, G.; Nyholm, T.; Löfstedt, T. Evaluation of Multislice Inputs to Convolutional Neural Networks for Medical Image Segmentation. Med. Phys. 2020, 47, 6216–6231. [Google Scholar] [CrossRef]
- Gostick, J.T.; Khan, Z.A.; Tranter, T.G.; Kok, M.D.; Agnaou, M.; Sadeghi, M.; Jervis, R. PoreSpy: A Python Toolkit for Quantitative Analysis of Porous Media Images. J. Open Source Softw. 2019, 4, 1296. [Google Scholar] [CrossRef]
- Gostick, J.; Aghighi, M.; Hinebaugh, J.; Tranter, T.; Hoeh, M.A.; Day, H.; Spellacy, B.; Sharqawy, M.H.; Bazylak, A.; Burns, A.; et al. OpenPNM: A Pore Network Modeling Package. Comput. Sci. Eng. 2016, 18, 60–74. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaschke, F.; Prasad, B.P.; Charry, E.M.; Halper, K.; Fuchs, M.; Resel, R.; Zojer, K.; Lammer, M.; Hasso, R.; Hacker, V. Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen. Catalysts 2024, 14, 515. https://doi.org/10.3390/catal14080515
Blaschke F, Prasad BP, Charry EM, Halper K, Fuchs M, Resel R, Zojer K, Lammer M, Hasso R, Hacker V. Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen. Catalysts. 2024; 14(8):515. https://doi.org/10.3390/catal14080515
Chicago/Turabian StyleBlaschke, Fabio, Biswal Prabhu Prasad, Eduardo Machado Charry, Katharina Halper, Maximilian Fuchs, Roland Resel, Karin Zojer, Michael Lammer, Richard Hasso, and Viktor Hacker. 2024. "Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen" Catalysts 14, no. 8: 515. https://doi.org/10.3390/catal14080515
APA StyleBlaschke, F., Prasad, B. P., Charry, E. M., Halper, K., Fuchs, M., Resel, R., Zojer, K., Lammer, M., Hasso, R., & Hacker, V. (2024). Advancing Green Hydrogen Purity with Iron-Based Self-Cleaning Oxygen Carriers in Chemical Looping Hydrogen. Catalysts, 14(8), 515. https://doi.org/10.3390/catal14080515