Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy
Abstract
:1. Introduction
2. Theoretical Approach
3. Results
3.1. Catalyst Characterization
3.2. Thermogravimetric Analysis
3.3. Thermal and Catalytic Cracking Kinetics
3.3.1. Apparent Activation Energy (Ea)
3.3.2. Effect of Adding a Metallic Source (Ni, Pt, Pd) to H-USY (15) and H-ZSM-5 (11.5) on the Kinetic Parameters
4. Materials and Methods
4.1. Materials
4.2. Catalyst Preparation
4.3. Catalyst Characterization
4.4. Thermogravimetric Analysis Procedure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mrowiec, B. Plastics in the circular economy (CE). Environ. Prot. Nat. Resour. J. Inst. Environ. Prot. Res. Inst. 2018, 29, 16–19. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef] [PubMed]
- Al-Salem, S.M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manag. 2017, 197, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Mohanraj, C.; Senthilkumar, T.; Chandrasekar, M. A review on conversion techniques of liquid fuel from waste plastic materials. Int. J. Energy Res. 2017, 41, 1534–1552. [Google Scholar] [CrossRef]
- Panda, A.K. Thermo-catalytic degradation of different plastics to drop in liquid fuel using calcium bentonite catalyst. Int. J. Ind. Chem. 2018, 9, 167–176. [Google Scholar] [CrossRef]
- Ratnasari, D.K.; Nahil, M.A.; Williams, P.T. Catalytic pyrolysis of waste plastics using staged catalysis for production of gasoline range hydrocarbon oils. J. Anal. Appl. Pyrolysis 2017, 124, 631–637. [Google Scholar] [CrossRef]
- Almeida, D.; de Fátima Marques, M. Thermal and Catalytic Pyrolysis of Polyethylene Plastic Waste. Polimeros 2015, 26, 1–8. [Google Scholar] [CrossRef]
- Socci, J.; Osatiashtiani, A.; Kyriakou, G.; Bridgwater, T. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Appl. Catal. A Gen. 2019, 570, 218–227. [Google Scholar] [CrossRef]
- Khedri, S.; Elyasi, S. Kinetic analysis for thermal cracking of HDPE: A new isoconversional approach. Polym. Degrad. Stab. 2016, 129, 306–318. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.K. Pyrolysis kinetics of waste high-density polyethylene using thermogravimetric analysis. Int. J. ChemTech Res. 2014, 6, 131–137. [Google Scholar]
- Kumar, A.; Mylapilli, S.V.P.; Reddy, S.N. Thermogravimetric and kinetic studies of metal (Ru/Fe) impregnated banana pseudo-stem (Musa acuminate). Bioresour. Technol. 2019, 285, 121318. [Google Scholar] [CrossRef] [PubMed]
- Kayacan, İ.; Doğan, Ö.M. Pyrolysis of Low and High Density Polyethylene. Part I: Non-isothermal Pyrolysis Kinetics, Energy Sources, Part A Recover. Util. Environ. Eff. 2008, 30, 385–391. [Google Scholar] [CrossRef]
- Encinar, J.M.; González, J.F. Pyrolysis of synthetic polymers and plastic wastes. Kinetic study. Fuel Process. Technol. 2008, 89, 678–686. [Google Scholar] [CrossRef]
- Fernandes, G.J.T.; Fernandes, V.J.; Araujo, A.S. Catalytic degradation of polyethylene over SAPO-37 molecular sieve. Catal. Today 2002, 75, 233–238. [Google Scholar] [CrossRef]
- Budrugeac, P. Theory and practice in the thermoanalytical kinetics of complex processes: Application for the isothermal and non-isothermal thermal degradation of HDPE. Thermochim. Acta 2010, 500, 30–37. [Google Scholar] [CrossRef]
- Araújo, A.S.; Fernandes, V.J.; Araujo, S.A.; Ionashiro, M. Kinetic evaluation of the pyrolysis of high density polyethylene over H-AlMCM-41 material. Stud. Surf. Sci. Catal. 2002, 141, 473–478. [Google Scholar] [CrossRef]
- Street, S.; Centre, E.T.; Street, S. Catalytic degradation of high density polyethylene: An evaluation of mesoporous and microporous catalysts using thermal analysis. Thermochim. Acta 1997, 294, 65–69. [Google Scholar]
- Garforth, A.; Yeuh-Hui, L.I.N.; Sharratt, P.; Dwyer, J. Catalytic Polymer Degradation for Producing Hydrocarbons over Zeolites. Stud. Surf. Sci. Catal. 1999, 121, 197–202. [Google Scholar] [CrossRef]
- Coelho, A.; Costa, L.; Marques, M.D.M.; Fonseca, I.; Lemos, M.A.; Lemos, F. Using simultaneous DSC/TG to analyze the kinetics of polyethylene degradation-catalytic cracking using HY and HZSM-5 zeolites. React. Kinet. Mech. Catal. 2010, 99, 5–15. [Google Scholar] [CrossRef]
- Munir, D.; Abdullah; Piepenbreier, F.; Usman, M.R. Hydrocracking of a plastic mixture over various micro-mesoporous composite zeolites. Powder Technol. 2017, 316, 542–550. [Google Scholar] [CrossRef]
- Munir, D.; Irfan, M.F.; Usman, M.R. Hydrocracking of virgin and waste plastics: A detailed review. Renew. Sustain. Energy Rev. 2018, 90, 490–515. [Google Scholar] [CrossRef]
- Khawam, A.; Flanagan, D.R. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim. Acta 2005, 436, 101–112. [Google Scholar] [CrossRef]
- Ashraf, A.; Sattar, H.; Munir, S. A comparative applicability study of model-fitting and model-free kinetic analysis approaches to non-isothermal pyrolysis of coal and agricultural residues. Fuel 2019, 240, 326–333. [Google Scholar] [CrossRef]
- Murichan, N.; Cherntongchai, P. Kinetic Analysis of Thermal Degradation of Polyolefin Mixtures. Int. J. Chem. Eng. Appl. 2014, 5, 169–175. [Google Scholar] [CrossRef]
- Sánchez-Jiménez, P.E.; Pérez-Maqueda, L.A.; Perejón, A.; Criado, J.M. Clarifications regarding the use of model-fitting methods of kinetic analysis for determining the activation energy from a single non-isothermal curve. Chem. Cent. J. 2013, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Janković, B.; Adnadević, B.; Jovanović, J. Application of model-fitting and model-free kinetics to the study of non-isothermal dehydration of equilibrium swollen poly (acrylic acid) hydrogel: Thermogravimetric analysis. Thermochim. Acta 2007, 452, 106–115. [Google Scholar] [CrossRef]
- Ravari, F.; Noori, M.; Ehsani, M. Thermal Stability and Degradation Kinetic Studies of PVA/RGO Using the Model-fitting and Isoconversional (model-free) Methods. Fibers Polym. 2019, 20, 472–480. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Chrissa, K.; Laura, M.; Lorenzo, D.; Koga, N.; Pijolat, M.; Roduit, B.; Sbirrazzuoli, N.; Josep, J. Thermochimica Acta ICTAC Kinetics Committee recommendations for collecting experimental thermal analysis data for kinetic computations. Thermochim. Acta 2014, 590, 1–23. [Google Scholar] [CrossRef]
- Yao, F.; Wu, Q.; Lei, Y.; Guo, W.; Xu, Y. Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 2008, 93, 90–98. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Antonakou, E.V.; Redhwi, H.H.; Achilias, D.S. Kinetic analysis of thermal and catalytic degradation of polymers found in waste electric and electronic equipment. Thermochim. Acta 2019, 675, 69–76. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. General Treatment of the Thermogravimetry of Polymers. J. Res. Natl. Bur. Standars-Phys. Chem. 1996, 70, 344–346. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.H. The “temperature integral”—Its use and abuse. Thermochim. Acta 1997, 300, 83–92. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Kissinger, H.E. Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 1956, 57, 217. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Kumar, S.A.P.; Nagarajan, R.; Prasad, K.M.; Anand, B.; Murugavelh, S. Thermogravimetric study and kinetics of banana peel pyrolysis: A comparison of “model-free” methods. Biofuels 2019, 13, 129–138. [Google Scholar] [CrossRef]
- Doyle, C.D. Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 1962, 6, 639–642. [Google Scholar] [CrossRef]
- Murray, P.; White, J. Kinetics of the thermal dehydration of clay. Part IV. Interpretation of the differential thermal analysis of the clay minerals. Trans. Br. Ceram. Soc. 1955, 54, 204–238. [Google Scholar]
- Wong, S.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Catalytic Cracking of LDPE Dissolved in Benzene Using Nickel-Impregnated Zeolites. Ind. Eng. Chem. Res. 2016, 55, 2543–2555. [Google Scholar] [CrossRef]
- Hamidzadeh, M.; Ghassemzadeh, M.; Tarlani, A.; Sahebdelfar, S. The effect of hydrothermal impregnation of Ni, Co, and Cu on HZSM-5 in the nitrogen oxide removal. Int. J. Environ. Sci. Technol. 2018, 15, 93–104. [Google Scholar] [CrossRef]
- Awala, H.; Gilson, J.P.; Retoux, R.; Boullay, P.; Goupil, J.M.; Valtchev, V.; Mintova, S. Template-free nanosized faujasite-type zeolites. Nat. Mater. 2015, 14, 447–451. [Google Scholar] [CrossRef]
- Caldeira, V.P.S.; Santos, A.G.D.; Oliveira, D.S.; Lima, R.B.; Souza, L.D.; Pergher, S.B.C. Polyethylene catalytic cracking by thermogravimetric analysis: Effects of zeolitic properties and homogenization process. J. Therm. Anal. Calorim. 2017, 130, 1939–1951. [Google Scholar] [CrossRef]
- Abbasa, A.S.; Saber, M.G. Kinetics of Thermal Pyrolysis of High-Density Polyethylene. Iraqi J. Chem. Pet. Eng. 2018, 19, 13–19. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, X.; Miller, J.B.; Huber, G.W. The Chemistry and Kinetics of Polyethylene Pyrolysis: A Process to Produce Fuels and Chemicals. ChemSusChem 2020, 13, 1764–1774. [Google Scholar] [CrossRef]
- Anene, A.F.; Fredriksen, S.B.; Sætre, K.A.; Tokheim, L.A. Experimental study of thermal and catalytic pyrolysis of plastic waste components. Sustainability 2018, 10, 3979. [Google Scholar] [CrossRef]
- Costa, C.S.; Ribeiro, M.R.; Silva, J.M. Hydrocracking of HDPE over H-USY and mesostructure acidic materials: Accessibility and acidity effects. In Proceedings of the 8th International Symposium on Energy from Biomass and Waste—Venice 2020, Venice, Italy, 16–19 November 2020. [Google Scholar]
- Costa, C.S.; Thi, H.D.; Van Geem, K.M.; Ribeiro, M.R.; Silva, J.M. Assessment of acidity and the zeolite porous structure on hydrocracking of HDPE. Sustain. Energy Fuels 2022, 6, 3611–3625. [Google Scholar] [CrossRef]
- Shahbeig, H.; Nosrati, M. Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment. Renew. Sustain. Energy Rev. 2020, 119, 109567. [Google Scholar] [CrossRef]
- Das, P.; Tiwari, P. Thermal degradation kinetics of plastics and model selection. Thermochim. Acta 2017, 654, 191–202. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Sharma, B.K.; Khan, A.R.; Arnold, J.C.; Alston, S.M.; Chandrasekaran, S.R.; Al-Dhafeeri, A.T. Thermal degradation kinetics of virgin polypropylene (PP) and PP with starch blends exposed to natural weathering. Ind. Eng. Chem. Res. 2017, 56, 5210–5220. [Google Scholar] [CrossRef]
- Mortezaeikia, V.; Tavakoli, O.; Khodaparasti, M.S. A review on kinetic study approach for pyrolysis of plastic wastes using thermogravimetric analysis. J. Anal. Appl. Pyrolysis 2021, 160, 105340. [Google Scholar] [CrossRef]
- Dhaundiyal, A.; Singh, S.B.; Hanon, M.M.; Rawat, R. Determination of Kinetic Parameters for the Thermal Decomposition of Parthenium hysterophorus. Environ. Clim. Technol. 2018, 22, 5–21. [Google Scholar] [CrossRef]
- Volli, V.; Purkait, M.K. Physico-chemical properties and thermal degradation studies of commercial oils in nitrogen atmosphere. Fuel 2014, 117, 1010–1019. [Google Scholar] [CrossRef]
- Sinfrônio, F.S.M.; Santos, J.C.O.; Pereira, L.G.; Souza, A.G.; Conceição, M.M.; Fernandes, V.J.; Fonseca, V.M. Kinetic of thermal degradation of low-density and high-density polyethylene by non-isothermal thermogravimetry. J. Therm. Anal. Calorim. 2005, 79, 393–399. [Google Scholar] [CrossRef]
- Peterson, J.D.; Vyazovkin, S.; Wight, C.A. Kinetics of the thermal and thermo-oxidative degradation of polystyrene, polyethylene and poly(propylene). Macromol. Chem. Phys. 2001, 202, 775–784. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Sbirrazzuoli, N. Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromol. Rapid Commun. 2006, 27, 1515–1532. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Lin, Y.H.; Hwu, W.H.; Ger, M.D.; Yeh, T.F.; Dwyer, J. A combined kinetic and mechanistic modelling of the catalytic degradation of polymers. J. Mol. Catal. A Chem. 2001, 171, 143–151. [Google Scholar] [CrossRef]
- Weitkamp, J. Catalytic Hydrocracking-Mechanisms and Versatility of the Process. ChemCatChem 2012, 4, 292–306. [Google Scholar] [CrossRef]
- Tao, M.; Meng, X.; Xin, Z.; Bian, Z.; Lv, Y.; Gu, J. General Synthesis and characterization of well dispersed nickel-incorporated SBA-15 and its high activity in syngas methanation reaction. Appl. Catal. A Gen. 2016, 516, 127–134. [Google Scholar] [CrossRef]
- Ramdoss, P.K.; Tarrer, A.R. High-temperature liquefaction of waste plastics. Fuel 1998, 77, 293–299. [Google Scholar] [CrossRef]
- Miskolczi, N.; Juzsakova, T. Preparation and application of metal loaded ZSM-5 and y-zeolite catalysts for thermo-catalytic pyrolysis of real end of life vehicle plastics waste. J. Energy Inst. 2019, 92, 118–127. [Google Scholar] [CrossRef]
- Costa, C.S.; Muñoz, M.; Ribeiro, M.R.; Silva, J.M. A thermogravimetric study of HDPE conversion under a reductive atmosphere. Catal. Today 2020, 379, 192–204. [Google Scholar] [CrossRef]
Method | Expression | Plot |
---|---|---|
Flynn-Wall-Ozawa (FWO) | vs. 1/T | |
Kissinger–Akahira–Sunose (KAS) | vs. 1/T |
Catalyst | Crystallinity (%) | Sext (m2/g) | Vmicro (cm3/g) | Vmeso (cm3/g) | Vtotal (cm3/g) | Weak Acidity (μmol/g) | Strong Acidity (μmol/g) | Total Acidity (μmol/g) |
---|---|---|---|---|---|---|---|---|
H-USY (15) | 100 | 189 | 0.25 | 0.23 | 0.48 | 332 | 319 | 651 |
Ni (5)/H-USY (15) | 97.4 | 170 | 0.24 | 0.24 | 0.48 | 288 | 245 | 533 |
Pt (0.5)/H-USY (15) | 93.7 | 184 | 0.24 | 0.24 | 0.48 | 364 | 256 | 620 |
Pd (0.5)/H-USY (15) | 93.7 | 180 | 0.24 | 0.23 | 0.47 | 324 | 301 | 625 |
HZSM-5 (11.5) | 100 | 114 | 0.13 | 0.10 | 0.23 | 740 | 530 | 1270 |
Ni (5)/H-ZSM-5 (11.5) | 91.2 | 78 | 0.12 | 0.07 | 0.19 | 670 | 500 | 1170 |
Pt (0.5)/H-ZSM-5 (11.5) | 95.7 | 61 | 0.10 | 0.05 | 0.15 | 650 | 530 | 1180 |
Pd (0.5)/H-ZSM-5 (11.5) | 97.6 | 77 | 0.10 | 0.06 | 0.17 | 650 | 500 | 1150 |
Sample | β (°C/min) | Temperature (°C) | |||
---|---|---|---|---|---|
T5% | T50% | T95% | Tm | ||
HDPE | 5 | 433 | 463 | 473 | 468 |
10 | 433 | 478 | 488 | 480 | |
15 | 455 | 484 | 494 | 488 | |
20 | 463 | 489 | 501 | 493 | |
HDPE + H-USY (15) | 5 | 255 | 354 | 398 | 392 |
10 | 271 | 370 | 410 | 399 | |
15 | 289 | 382 | 418 | 408 | |
20 | 292 | 394 | 431 | 418 | |
HDPE + H-ZSM-5 (11.5) | 5 | 283 | 362 | 397 | 389 |
10 | 318 | 407 | 428 | 421 | |
15 | 325 | 413 | 430 | 432 | |
20 | 329 | 421 | 443 | 442 |
x | FWO | KAS | |||||
---|---|---|---|---|---|---|---|
Ea (kJ/mol) | ln(A/G(x)) | R2 | Ea (kJ/mol) | ln(A/G(x)) | R2 | ||
HDPE | 0.2 | 212.5 | 33.8 | 1.000 | 211.2 | 33.5 | 1.000 |
0.3 | 220.9 | 34.9 | 1.000 | 220.0 | 34.8 | 1.000 | |
0.4 | 226.9 | 35.8 | 0.999 | 226.2 | 35.6 | 0.999 | |
0.5 | 229.2 | 36.0 | 0.999 | 228.6 | 35.9 | 0.999 | |
0.6 | 232.0 | 36.3 | 0.999 | 231.5 | 36.2 | 0.999 | |
0.7 | 232.7 | 36.3 | 0.999 | 232.3 | 36.2 | 0.999 | |
0.8 | 233.0 | 36.2 | 0.999 | 233.0 | 36.1 | 0.999 | |
0.9 | 234.1 | 36.3 | 0.999 | 233.7 | 36.1 | 0.999 | |
Av. | 227.7 | 35.7 | 0.999 | 227.1 | 35.6 | 0.999 | |
HDPE+ H-USY (15) | 0.2 | 83.8 | 16.1 | 0.919 | 78.3 | 14.4 | 0.899 |
0.3 | 93.1 | 17.4 | 0.976 | 87.7 | 15.8 | 0.971 | |
0.4 | 104.7 | 19.1 | 0.998 | 99.5 | 17.6 | 0.997 | |
0.5 | 115.0 | 20.5 | 0.988 | 110.2 | 19.3 | 0.985 | |
0.6 | 126.0 | 22.2 | 0.979 | 121.6 | 21.1 | 0.975 | |
0.7 | 137.0 | 23.9 | 0.970 | 133.0 | 22.9 | 0.965 | |
0.8 | 148.8 | 25.7 | 0.967 | 145.3 | 24.9 | 0.961 | |
0.9 | 172.2 | 29.6 | 0.988 | 157.5 | 23.8 | 0.810 | |
Av. | 122.6 | 21.8 | 0.973 | 116.6 | 20.0 | 0.946 | |
HDPE+ H-ZSM-5 (11.5) | 0.2 | 60.6 | 10.9 | 0.889 | 53.3 | 7.8 | 0.849 |
0.3 | 63.5 | 11.1 | 0.900 | 56.1 | 8.6 | 0.865 | |
0.4 | 69.5 | 11.9 | 0.904 | 62.2 | 9.6 | 0.873 | |
0.5 | 76.6 | 13.0 | 0.909 | 69.6 | 10.8 | 0.882 | |
0.6 | 84.3 | 14.2 | 0.915 | 77.5 | 12.2 | 0.892 | |
0.7 | 91.2 | 15.3 | 0.918 | 84.7 | 13.4 | 0.897 | |
0.8 | 98.5 | 16.4 | 0.926 | 92.2 | 14.7 | 0.908 | |
0.9 | 106.9 | 17.7 | 0.929 | 122.2 | 17.1 | 0.994 | |
Av. | 81.4 | 13.8 | 0.911 | 77.2 | 11.8 | 0.895 |
x | Ni/H-USY (15) | Pt/H-USY (15) | Pd/H-USY (15) | |||
Ea (kJ/mol) | ln(A/G(x)) | Ea (kJ/mol) | ln(A/G(x)) | Ea (kJ/mol) | ln(A/G(x)) | |
0.2 | 153.4 | 30.4 | 219.3 | 45.1 | 202.2 | 43.8 |
0.3 | 149.7 | 28.8 | 182.5 | 36.1 | 180.4 | 35.4 |
0.4 | 141.3 | 26.6 | 165.3 | 31.8 | 161.2 | 32.3 |
0.5 | 134.3 | 24.8 | 153.4 | 28.9 | 149.7 | 29.2 |
0.6 | 131.4 | 23.9 | 144.0 | 26.6 | 144.5 | 28.5 |
0.7 | 132.9 | 23.9 | 136.6 | 24.7 | 132.2 | 26.7 |
0.8 | 137.7 | 24.5 | 131.5 | 23.4 | 123.5 | 25.3 |
0.9 | 159.6 | 28.2 | 130.0 | 22.7 | 127.6 | 24.5 |
Av.* | 142.5 | 26.4 | 157.8 | 29.9 | 152.6 | 30.7 |
x | Ni/H-ZSM-5 (11.5) | Pt/H-ZSM-5 (11.5) | Pd/H-ZSM-5 (11.5) | |||
Ea (kJ/mol) | ln(A/G(x)) | Ea (kJ/mol) | ln(A/G(x)) | Ea (kJ/mol) | ln(A/G(x)) | |
0.2 | 92.2 | 17.8 | 70.4 | 12.0 | 68.3 | 15.3 |
0.3 | 95.3 | 18.1 | 72.2 | 12.0 | 70.1 | 16.1 |
0.4 | 101.9 | 19.0 | 77.8 | 12.8 | 73.4 | 16.1 |
0.5 | 109.2 | 20.2 | 85.4 | 14.0 | 77.2 | 15.1 |
0.6 | 117.8 | 21.6 | 93.1 | 15.2 | 83.2 | 15.4 |
0.7 | 126.6 | 23.0 | 99.9 | 16.3 | 87.2 | 16.1 |
0.8 | 133.4 | 24.1 | 107.5 | 17.5 | 90.5 | 17.1 |
0.9 | 147.3 | 26.4 | 115.3 | 18.8 | 98.2 | 18.7 |
Av.* | 115.5 | 21.3 | 90.2 | 14.8 | 87.0 | 16.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, C.S.; Fernandes, A.; Munoz, M.; Ribeiro, M.R.; Silva, J.M. Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy. Catalysts 2024, 14, 514. https://doi.org/10.3390/catal14080514
Costa CS, Fernandes A, Munoz M, Ribeiro MR, Silva JM. Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy. Catalysts. 2024; 14(8):514. https://doi.org/10.3390/catal14080514
Chicago/Turabian StyleCosta, Cátia S., A. Fernandes, Marta Munoz, M. Rosário Ribeiro, and João M. Silva. 2024. "Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy" Catalysts 14, no. 8: 514. https://doi.org/10.3390/catal14080514
APA StyleCosta, C. S., Fernandes, A., Munoz, M., Ribeiro, M. R., & Silva, J. M. (2024). Analyzing HDPE Thermal and Catalytic Degradation in Hydrogen Atmosphere: A Model-Free Approach to the Activation Energy. Catalysts, 14(8), 514. https://doi.org/10.3390/catal14080514