Moiré Superlattices of Two-Dimensional Materials toward Catalysis
Abstract
:1. Introduction
2. Unveiling the Catalytic Potential of Moiré Superlattices in 2D Layered Materials
3. Moiré Superlattices for Catalytic Activity
4. Future Challenges and Directions for Moiré Superlattices in Catalysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, F.; Zhou, Y.; Ye, Z.; Cho, S.-H.; Jeong, J.; Meng, X.; Wang, Y. Moiré Patterns in 2D Materials: A Review. ACS Nano 2021, 15, 5944–5958. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, A. Magic, symmetry, and twisted matter. Science 2021, 371, 1098–1099. [Google Scholar] [CrossRef] [PubMed]
- Dindorkar, S.S.; Kurade, A.S.; Shaikh, A.H. Magical moiré patterns in twisted bilayer graphene: A review on recent advances in graphene twistronics. Chem. Phys. Impact 2023, 7, 100325. [Google Scholar] [CrossRef]
- Li, H.; Papadakis, R.; Hussain, T.; Karton, A.; Liu, J. Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Res. 2020, 13, 1060–1064. [Google Scholar] [CrossRef]
- Brzhezinskaya, M.; Kononenko, O.; Matveev, V.; Zotov, A.; Khodos, I.I.; Levashov, V.; Volkov, V.; Bozhko, S.I.; Chekmazov, S.V.; Roshchupkin, D. Engineering of Numerous Moiré Superlattices in Twisted Multilayer Graphene for Twistronics and Straintronics Applications. ACS Nano 2021, 15, 12358–12366. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Duan, H.; Liu, Q.; Wang, C.; Tan, H.; Hu, W.; Hu, F.; Sun, Z.; Yan, W. Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Res. 2021, 14, 4182–4187. [Google Scholar] [CrossRef]
- Hamer, M.J.; Giampietri, A.; Kandyba, V.; Genuzio, F.; Mentes, T.O.; Locatelli, A.; Gorbachev, R.V.; Barinov, A.; Mucha-Kruczynski, M. Moiré Superlattice Effects and Band Structure Evolution in Near-30-Degree Twisted Bilayer Graphene. ACS Nano 2022, 16, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Henry, C.R. 2D-Arrays of Nanoparticles as Model Catalysts. Catal. Lett. 2014, 145, 731–749. [Google Scholar] [CrossRef]
- Iwasaki, T.; Zakharov, A.A.; Eelbo, T.; Waśniowska, M.; Wiesendanger, R.; Smet, J.H.; Starke, U. Formation and structural analysis of twisted bilayer graphene on Ni(111) thin films. Surf. Sci. 2014, 625, 44–49. [Google Scholar] [CrossRef]
- Li, Z.; Yan, X.; Tang, Z.; Huo, Z.; Li, G.; Jiao, L.; Liu, L.-M.; Zhang, M.; Luo, J.; Zhu, J. Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2. Sci. Rep. 2017, 7, 8323. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, J.; Fu, L. Moiré is More: Access to New Properties of Two-Dimensional Layered Materials. Matter 2020, 3, 1142–1161. [Google Scholar] [CrossRef]
- Chen, X.; Fan, X.; Li, L.; Zhang, N.; Niu, Z.; Guo, T.; Xu, S.; Xu, H.; Wang, D.; Zhang, H.; et al. Moiré engineering of electronic phenomena in correlated oxides. Nat. Phys. 2020, 16, 631–635. [Google Scholar] [CrossRef]
- Hu, G.; Ou, Q.; Si, G.; Wu, Y.; Wu, J.; Dai, Z.; Krasnok, A.; Mazor, Y.; Zhang, Q.; Bao, Q.; et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 2020, 582, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zheng, Y.; Chen, X.; Huang, C.; Kartashov, Y.V.; Torner, L.; Konotop, V.V.; Ye, F. Localization and delocalization of light in photonic moiré lattices. Nature 2020, 577, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Van Winkle, M.; Bediako, D.K. Tuning interfacial chemistry with twistronics. Trends Chem. 2022, 4, 857–859. [Google Scholar] [CrossRef]
- Ryu, Y.K.; Frisenda, R.; Castellanos-Gomez, A. Superlattices based on van der Waals 2D materials. Chem. Commun. 2019, 55, 11498–11510. [Google Scholar] [CrossRef]
- Sutter, P.; Ibragimova, R.; Komsa, H.P.; Parkinson, B.A.; Sutter, E. Self-organized twist-heterostructures via aligned van der Waals epitaxy and solid-state transformations. Nat. Commun. 2019, 10, 5528. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Semidey-Flecha, L.; Liu, L.; Zhou, Z.; Goodman, D.W. Exploring the structure and chemical activity of 2-D gold islands on graphene moire/Ru(0001). Faraday Discuss. 2011, 152, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Yankowitz, M.; Jung, J.; Laksono, E.; Leconte, N.; Chittari, B.L.; Watanabe, K.; Taniguchi, T.; Adam, S.; Graf, D.; Dean, C.R. Dynamic band-structure tuning of graphene moire superlattices with pressure. Nature 2018, 557, 404–408. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, T.; Yu, C.; Lu, R. Ultrafast Interlayer Charge Separation, Enhanced Visible-Light Absorption, and Tunable Overpotential in Twisted Graphitic Carbon Nitride Bilayers for Water Splitting. Adv. Mater. 2021, 33, 2104695. [Google Scholar] [CrossRef]
- Zhao, X.; Qiao, J.; Chan, S.M.; Li, J.; Dan, J.; Ning, S.; Zhou, W.; Quek, S.Y.; Pennycook, S.J.; Loh, K.P. Unveiling Atomic-Scale Moire Features and Atomic Reconstructions in High-Angle Commensurately Twisted Transition Metal Dichalcogenide Homobilayers. Nano Lett. 2021, 21, 3262–3270. [Google Scholar] [CrossRef] [PubMed]
- Gao, D.; Xia, B.; Wang, Y.; Xiao, W.; Xi, P.; Xue, D.; Ding, J. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction. Small 2018, 14, 1704150. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xia, J.; Zhou, J.; Zeng, Q.; Li, K.; Fujisawa, K.; Fu, W.; Zhang, T.; Zhang, J.; Wang, Z.; et al. Ordered and Atomically Perfect Fragmentation of Layered Transition Metal Dichalcogenides via Mechanical Instabilities. ACS Nano 2017, 11, 9191–9199. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Sun, Y.; Zheng, X.; Aoki, T.; Pattengale, B.; Huang, J.; He, X.; Bian, W.; Younan, S.; Williams, N.; et al. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat. Commun. 2019, 10, 982. [Google Scholar] [CrossRef]
- Liu, L.; Wu, J.; Wu, L.; Ye, M.; Liu, X.; Wang, Q.; Hou, S.; Lu, P.; Sun, L.; Zheng, J.; et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.S.; Sai, N.; Lu, P.; Coker, E.N.; Liu, S.; Artyushkova, K.; Luk, T.S.; Kaehr, B.; Brinker, C.J. Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide. Nat. Commun. 2015, 6, 8311. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhou, W.; Hong, A.; Guo, M.; Luo, X.; Yuan, C. MoS2 Moiré Superlattice for Hydrogen Evolution Reaction. ACS Energy Lett. 2019, 4, 2830–2835. [Google Scholar] [CrossRef]
- Liu, L.; Sun, Y.; Cui, X.; Qi, K.; He, X.; Bao, Q.; Ma, W.; Lu, J.; Fang, H.; Zhang, P.; et al. Bottom-up growth of homogeneous Moiré superlattices in bismuth oxychloride spiral nanosheets. Nat. Commun. 2019, 10, 4472. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Wang, L.; Zhao, W.; Liu, S.; Huang, W.; Zhao, Q. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction. Nat. Commun. 2021, 12, 5070. [Google Scholar] [CrossRef]
- Zhang, J.; Mao, X.; Wang, S.; Liang, L.; Cao, M.; Wang, L.; Li, G.; Xu, Y.; Huang, X. Superlattice in a Ru Superstructure for Enhancing Hydrogen Evolution. Angew. Chem. Int. Ed. 2022, 61, e202116867. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, K.; Parks, H.; Babar, M.; Carr, S.; Craig, I.M.; Van Winkle, M.; Lyssenko, A.; Taniguchi, T.; Watanabe, K.; et al. Tunable angle-dependent electrochemistry at twisted bilayer graphene with moiré flat bands. Nat. Chem. 2022, 14, 267–273. [Google Scholar] [CrossRef]
- Xu, Y.; Horn, C.; Zhu, J.; Tang, Y.; Ma, L.; Li, L.; Liu, S.; Watanabe, K.; Taniguchi, T.; Hone, J.C.; et al. Creation of moire bands in a monolayer semiconductor by spatially periodic dielectric screening. Nat. Mater. 2021, 20, 645–649. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Xue, Y.; Chao, S.; Wu, F.; Li, L.; Javed, M.S.; Zhang, W. Moiré Superlattice MXene Nanosheets Constructed from Twisted Hexagon-Ti3AlC2 by Microwave-Assisted Lewis Molten Salt Etching: Implications for Structural Stability in Electrochemical Energy Storage. ACS Appl. Nano Mater. 2022, 6, 677–684. [Google Scholar] [CrossRef]
- Luo, Y.; Engelke, R.; Mattheakis, M.; Tamagnone, M.; Carr, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Kim, P.; Wilson, W.L. In situ nanoscale imaging of moiré superlattices in twisted van der Waals hetero-structures. Nat. Commun. 2020, 11, 4209. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yin, S.; Yang, J.; Dou, S.X. Moire Superlattice Structure in Two-Dimensional Catalysts: Synthesis, Property and Activity. Small 2023, 19, e2300165. [Google Scholar] [CrossRef]
Catalyst | Strategy | Outcomes in Catalysis |
---|---|---|
g-C3N4 [20] | First-principles calculations | Improved charge transfer, charge separation, and visible-light absorption |
MoS2 [27] | Twisted bilayer MoS2 | Reduced interlayer potential barriers |
WS2 [29] | One-step hydrothermal method | Enhanced electrocatalytic activity |
Graphene [31] | Twist angle control | Improved electron transfer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, K.; Zheng, W. Moiré Superlattices of Two-Dimensional Materials toward Catalysis. Catalysts 2024, 14, 519. https://doi.org/10.3390/catal14080519
Wang L, Wang K, Zheng W. Moiré Superlattices of Two-Dimensional Materials toward Catalysis. Catalysts. 2024; 14(8):519. https://doi.org/10.3390/catal14080519
Chicago/Turabian StyleWang, Longlu, Kun Wang, and Weihao Zheng. 2024. "Moiré Superlattices of Two-Dimensional Materials toward Catalysis" Catalysts 14, no. 8: 519. https://doi.org/10.3390/catal14080519
APA StyleWang, L., Wang, K., & Zheng, W. (2024). Moiré Superlattices of Two-Dimensional Materials toward Catalysis. Catalysts, 14(8), 519. https://doi.org/10.3390/catal14080519