Porous Nanostructured Catalysts Based on Silicates and Their Surface Functionality: Effects of Silica Source and Metal Added in Glycerol Valorization
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Features
2.2. Porous Structure of Silicates
2.3. Structural and Electronic Properties
2.4. Catalytic Evaluation in Esterification of Glycerol
3. Materials and Methods
3.1. Silica-Based Sphere Synthesis (S)
3.2. Silica-Seed Assisted Zeolite Synthesis (NZ-SMT)
3.3. Characterizations
3.4. Catalytic Evaluation in EG Reaction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, R.K.; Sharma, S.; Dutta, S.; Zboril, R.; Gawande, M.B. Silica-nanosphere-based organic–inorganic hybrid nanomaterials: Synthesis, functionalization and applications in catalysis. Green Chem. 2015, 17, 3207–3230. [Google Scholar] [CrossRef]
- Velty, A.; Corma, A. Advanced zeolite and ordered mesoporous silica-based catalysts for the conversion of CO2 to chemicals and fuels. Chem. Soc. Rev. 2023, 52, 1773–1946. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, J.; Zhang, X. Fabrication of Hollow Silica Nanospheres with Ultra-High Acid Density for Efficient Heterogeneous Catalysis. Catalysts 2019, 9, 481. [Google Scholar] [CrossRef]
- Gobar, H.M.; Hassan, S.A.; Betiha, M.A. The interaction characteristics controlling dispersion mode-catalytic functionality relationship of silica modified montmorillonite anchored Ni nanoparticles in petrochemical processes. Mater. Chem. Phys. 2016, 181, 476486. [Google Scholar] [CrossRef]
- Holm, M.S.; Taarning, E.; Egeblad, K.; Christensen, C.H. Catalysis with hierarchical zeolites. Catal. Today 2011, 168, 3–16. [Google Scholar] [CrossRef]
- Liu, K.; Zeng, Y.; Han, L.; Che, S. Synthesis of a zeolite@mesoporous silica composite to improve the low-frequency acoustic performance of a miniature loudspeaker system. Dalton Trans. 2024, 53, 4764–4771. [Google Scholar] [CrossRef]
- Wang, P.; Xiao, X.; Pan, Y.; Zhao, Z.; Jiang, G.; Zhang, Z.; Meng, F.; Li, Y.; Fan, X.; Kong, L.; et al. Facile Synthesis of Nanosheet-Stacked Hierarchical ZSM-5 Zeolite for Efficient Catalytic Cracking of n-Octane to Produce Light Olefins. Catalysts 2022, 12, 351. [Google Scholar] [CrossRef]
- Shestakova, D.O.; Babina, K.A.; Sladkovskiy, D.A.; Parkhomchuk, E.V. Seed-assisted synthesis of hierarchical zeolite ZSM-5 in the absence of organic templates. Mater. Chem. Phys. 2022, 288, 126432. [Google Scholar] [CrossRef]
- Zhu, Z.; Wu, P.; Xu, H. Synthesis, Characterization, and Catalytic Applications. In Micro-Mesoporous Metallosilicates; Wiley: Hoboken, NJ, USA, 2024; Chapter 3. [Google Scholar]
- Pashkova, V.; Tokarova, V.; Brabec, L.; Dedecek, J. Self-templating synthesis of hollow spheres of zeolite ZSM-5 from spray-dried aluminosilicate precursor. Micropor. Mesop. Mater. 2016, 228, 59–63. [Google Scholar] [CrossRef]
- Yu, L.; Xu, C.; Zhou, Q.; Fu, X.; Liang, Y.; Wang, W. Facile synthesis of hierarchical porous ZSM-5 zeolite with tunable mesostructure and its application in catalytic cracking of LDPE. J. Alloys Compd. 2023, 965, 171454. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Dai, C.; Du, N.; Li, T.; Wang, R.; Peng, P.; Sun, H. Zn-P Co-Modified Hierarchical ZSM-5 Zeolites Directly Synthesized via Dry Gel Conversion for Enhanced Methanol to Aromatics Reaction. Catalysts 2021, 11, 1328. [Google Scholar] [CrossRef]
- Biriaei, R.; Nohair, B.; Kaliaguine, S. A facile route to synthesize mesoporous ZSM-5 with hexagonal arrays using P123 triblock copolymer. Microp. Mesop. Mater. 2020, 298, 110067. [Google Scholar] [CrossRef]
- Dai, D.; Zhang, Y.; Zhao, T.; Liu, D.; Feng, C.; Liu, Y. In-situ hydrothermal synthesis of Al-rich Cu@ZSM-5 catalyst for furfuryl alcohol upgrading to pentanediols. Mol. Catal. 2023, 547, 113381. [Google Scholar] [CrossRef]
- Dixit, C.K.; Bhakta, S.; Kumar, A.; Suiba, S.L.; Rusling, J.F. Fast nucleation for silica nanoparticle synthesis using a sol–gel method. Nanoscale 2016, 8, 19662. [Google Scholar] [CrossRef] [PubMed]
- Owens, G.J.; Singh, R.K.; Foroutan, F.; Alqaysi, M.; Han, C.-M.; Mahapatra, C.; Kim, H.-W.; Knowles, J.C. Sol–gel based materials for biomedical applications. Progress Mater. Sci. 2016, 77, 1–79. [Google Scholar] [CrossRef]
- Yashnik, S.A.; Taran, O.P.; Surovtsova, T.A.; Ayusheev, A.B.; Parmon, V.N. Cu- and Fe-substituted ZSM-5 zeolite as an effective catalyst for wet peroxide oxidation of Rhodamine 6 G dye. J. Environ. Chem. Eng. 2022, 10, 107950. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Y.; Wu, C.; Yuan, W.; Xia, Y.; Liu, X.; Wang, H. Iron-based metalloporphyrins as efficient catalysts for aerobic oxidation of biomass derived furfural into maleic acid. Mol. Catal. 2018, 452, 20–27. [Google Scholar] [CrossRef]
- Pirzadi, Z.; Meshkani, F. From glycerol production to its value-added uses: A critical review. Fuel 2022, 329, 125044. [Google Scholar] [CrossRef]
- Carmo, J.V.; Bezerra, R.C.F.; Tehuacanero-Cuapa, S.; Rodríguez-Aguado, E.; Lang, R.; Campos, A.F.; Duarte, G.; Saraiva, G.D.; Otubo, L.; Oliveira, A.C.; et al. Synthesis of tailored alumina supported Cu-based solids obtained from nanocomposites: Catalytic application for valuable aldehyde and ketones production. Mater. Chem. Phys. 2022, 292, 126800. [Google Scholar] [CrossRef]
- Sudarsanam, P.; Peeters, E.; Makshina, E.V.; Parvulescu, V.I.; Sels, B.F. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem. Soc. Rev. 2019, 48, 2366–2421. [Google Scholar] [CrossRef] [PubMed]
- Mota, G.; Carmo, J.V.; Paz, C.B.; Saraiva, G.D.; Campos, A.; Duarte, G.; Filho, E.C.S.; Oliveira, A.C.; Soares, J.M.; Rodríguez-Castellón, E.; et al. Influence of the Metal Incorporation into Hydroxyapatites on the Deactivation Behavior of the Solids in the Esterification of Glycerol. Catalysts 2022, 12, 10. [Google Scholar] [CrossRef]
- Bezerra, R.C.F.; Mota, G.; Vidal, R.M.B.; Saraiva, G.D.; Oliveira, A.C.; Castro, A.J.R.; Araújo, R.S.; Rodríguez-Aguado, E.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E. Multifunctional properties of alumina-based graphene nanocomposites as catalysts for esters of glycerol production. Mol. Catal. 2023, 548, 113427. [Google Scholar] [CrossRef]
- Bertoldo, G.M.; Oliveira, A.C.; Saraiva, G.D.; Jucá, R.; da Silva Filho, J.G.; Rodríguez-Aguado, E.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E. Metal-doped niobate pyrochlores and double-perovskites for glycerol valorization: Structural and electronic properties and DFT calculations. Dalton Trans. 2024, 53, 9139–9150. [Google Scholar] [CrossRef]
- Tonutti, L.G.; Decolatti, H.P.; Querini, C.A.; Dalla Costa, B.O. Hierarchical H-ZSM-5 zeolite and sulfonic SBA-15: The properties of acidic H and behavior in acetylation and alkylation reactions. Microp. Mesop. Mater. 2020, 305, 110284. [Google Scholar] [CrossRef]
- So, J.-H.; Bae, S.H.; Yang, S.M.; Kim, D.H. Preparations of Silica Slurry for Wafer Polishing via Controlled Growth of Commercial Silica Seeds. Korean J. Chem. Eng. 2001, 18, 547–554. [Google Scholar] [CrossRef]
- Gosiamemang, T.; Heng, J.Y.Y. Sodium hydroxide catalysed silica sol-gel synthesis: Physicochemical properties of silica nanoparticles and their post-grafting using C8 and C18 alkyl-organosilanes. Powder Technol. 2023, 417, 118237. [Google Scholar] [CrossRef]
- Zulfiqar, U.; Subhani, T.; Husain, S.W. Synthesis of silica nanoparticles from sodium silicate under alkaline conditions. J. Sol-Gel Sci. Technol. 2016, 77, 753–758. [Google Scholar] [CrossRef]
- Saha, A.; Narula, K.; Mishra, P.; Biswas, G.; Bhakta, S. A facile cost-effective electrolyte-assisted approach and comparative study towards the Greener synthesis of silica nanoparticles. Nanoscale Adv. 2023, 5, 1386–1396. [Google Scholar] [CrossRef] [PubMed]
- Saenluang, K.; Imyen, T.; Wannapakdee, W.; Suttipat, D.; Dugkhuntod, P.; Ketkaew, M.; Thivasasith, A.; Wattanakit, C. Hierarchical Nanospherical ZSM-5 Nanosheets with Uniform Al Distribution for Alkylation of Benzene with Ethanol. ACS Appl. Nano Mater. 2020, 3–4, 3252–3263. [Google Scholar] [CrossRef]
- Chen, L.H.; Sun, M.-H.; Wang, Z.; Yang, W.; Xie, Z.; Su, B.-L. Hierarchically Structured Zeolites: From Design to Application. Chem. Rev. 2020, 120, 11194–11294. [Google Scholar] [CrossRef]
- Hamidzadeh, M.; Komeili, S.; Saeidi, M. Seed-induced synthesis of ZSM-5 aggregates using the Silicate-1 as a seed: Characterization and effect of the Silicate-1 composition. Micropor. Mesopor. Mater. 2018, 268, 153–161. [Google Scholar] [CrossRef]
- Alves, N.F.; Neto, A.B.S.; Bessa, B.S.; Oliveira, A.C.; Filho, J.M.; Campos, A.F.; Oliveira, A.C. Binary oxides with defined hierarchy of pores in the esterification of glycerol. Catalysts 2016, 6, 151. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Atwa, M.; Li, X.; O’Connell, D.; Sui, R.; Marriott, R.; Birss, V. Nanoengineering of Pore Neck Size within Ordered Nanoporous Carbon Powders: Improving Ion Transport Rates for Clean Energy Applications. Chem. Mater. 2023, 35, 395–404. [Google Scholar] [CrossRef]
- Nguyen, H.V.; Ibanez, A.; Salaün, M.; Kodjikian, S.; Trens, P.; Cattoën, X. Synthesis and properties of porous ester-silica nanoparticles. Micropor. Mesopor. Mater. 2021, 317, 110991. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, J.; Zhou, L.; Zhang, D.; Qi, L. Facile Synthesis of Monodisperse Microspheres and Gigantic Hollow Shells of Mesoporous Silica in Mixed Water−Ethanol Solvents. Langmuir 2007, 23, 1107–1113. [Google Scholar] [CrossRef]
- Razavian, M.; Fatemi, S. Synthesis and evaluation of seed-directed hierarchical ZSM-5 catalytic supports: Inductive influence of various seeds and aluminosilicate gels on the physicochemical properties and catalytic dehydrogenative behavior. Mater. Chem. Phys. 2015, 165, 55–65. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, X.; Graham, T.R.; Pearce, C.I.; Mehdi, B.L.; N’Diaye, A.T.; Kerisit, S.; Browning, N.D.; Clark, S.B.; Rosso, K.M. Fast Synthesis of Gibbsite Nanoplates and Process Optimization using Box-Behnken Experimental Design. Cryst. Growth Des. 2017, 17, 6801–6808. [Google Scholar] [CrossRef]
- Kim, H.-I.; Lee, S.K. Probing the transformation paths from aluminum (oxy)hydroxides (boehmite, bayerite, and gibbsite) to metastable alumina: A view from high-resolution 27Al MAS NMR. Am. Min. 2021, 106, 389–403. [Google Scholar] [CrossRef]
- Carmo, J.V.C.; Oliveira, A.C.; Araujo, J.C.S.; Campos, A.; Duarte, G.C.S. Synthesis of highly porous alumina-based oxides with tailored catalytic properties in the esterification of glycerol. J. Mater. Res. 2018, 1, 3625–3633. [Google Scholar] [CrossRef]
- Verma, S.; Rani, S.; Kumar, S. Tetragonal zirconia quantum dots in silica matrix prepared by a modified sol–gel protocol. Appl. Phys. A Mater. Sci. Process. 2018, 124, 1–14. [Google Scholar]
- Kumari, N.; Sareen, S.; Verma, M.; Sharma, S.; Sharma, A.; Sohal, H.S.; Mehta, S.K.; Park, J.; Mutreja, V. Zirconia-based nanomaterials: Recent developments in synthesis and applications. Nanoscale Adv. 2022, 4, 4210–4236. [Google Scholar] [CrossRef]
- Zachariou, A.; Hawkins, A.P.; Howe, R.F.; Skakle, J.M.S.; Barrow, N.; Collier, P.; Nye, D.W.; Smith, R.I.; Stenning, G.B.; Parker, S.F.; et al. Counting the Acid Sites in a Commercial ZSM-5 Zeolite Catalyst. ACS Phys. Chem Au 2023, 3, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Song, M.; Zhang, H.; Xuan, Y.; Wu, C. Accelerated synthesis of zeolites via radicalized seeds. J. Mater. Sci. 2019, 54, 4573–4578. [Google Scholar] [CrossRef]
- Fabbiani, M.; Al-Nahari, S.; Piveteau, L.; Dib, E.; Veremeienko, V.; Gaje, A.; Dumitrescu, D.G.; Gaveau, P.; Mineva, T.; Massiot, D.; et al. Host-Guest Silicalite-1 Zeolites: Correlated Disorder and Phase Transition Inhibition by a Small Guest Modification. Chem. Mater. 2022, 34, 366–387. [Google Scholar] [CrossRef]
- Treacy, M.M.J.; Higgins, J.B.; von Ballmoos, R. Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: Amsterdam, The Netherlands, 2007; p. 524. [Google Scholar] [CrossRef]
- Ravishankar, R.; Kirschhock, C.; Schoeman, B.J.; Vanoppen, P.; Grobet, P.J.; Storck, S.; Maier, W.F.; Martens, J.A.; De Schryver, F.C.; Jacobs, P.A. Physicochemical Characterization of Silicalite-1 Nanophase Material. J. Phys. Chem. B 1998, 102, 2633–2639. [Google Scholar] [CrossRef]
- Marra, G.L.; Artioli, G.; Fitch, A.N.; Milanesio, M.; Lamberti, C. Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: An attempt to locate Ti in the MFI framework by low temperature XRD. Micropor. Mesopor. Mater. 2000, 40, 85–94. [Google Scholar] [CrossRef]
- Bezerra, R.C.F.; Mota, G.; Vidal, R.M.B.; Carmo, J.V.; Saraiva, G.D.; Campos, A.; Oliveira, A.C.; Lang, R.; Otubo, L.; Jiménez-Jiménez, J.; et al. Effect of Basic Promoters on Porous Supported Alumina Catalysts for Acetins Production. Catalyst 2012, 12, 1616. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Y.; Akins, D.L. Synthesis and new structure shaping mechanism of silica particles formed at high pH. J. Solid State Chem. 2012, 19, 277–281. [Google Scholar] [CrossRef]
- Kaur, H.; Chaudhary, S.; Kaur, H.; Chaudhary, M.; Jena, K.C. Hydrolysis and Condensation of Tetraethyl Orthosilicate at the Air–Aqueous Interface: Implications for Silica Nanoparticle Formation. ACS Appl. Nano Mater. 2022, 4, 411–422. [Google Scholar] [CrossRef]
- Neto, A.B.S.; Oliveira, A.C.; Rodriguez-Castellón, E.; Campos, A.F.; Freire, P.T.C.; Sousa, F.F.F.; Filho, J.M.; Araujo, J.C.S.; Lang, R. A comparative study on porous solid acid oxides as catalysts in the esterification of glycerol with acetic acid. Catal. Today 2020, 349, 57–67. [Google Scholar] [CrossRef]
- Khatamian, M.; Oskoui, M.S.; Darbandi, M. Synthesis and characterization of aluminium-free ZSM-5 type chromosilicates in different alkaline systems and investigation of their pore structures. Micropor. Mesopor. Mater. 2013, 182, 50–61. [Google Scholar] [CrossRef]
- Yan, E.; Fu, Y.; Wang, X.; Ding, Y.; Qian, H.; Wang, C.-H.; Hu, Y.; Jiang, X. Hollow chitosan–silica nanospheres for doxorubicin delivery to cancer cells with enhanced antitumor effect in vivo. J. Mater. Chem. 2011, 21, 3147. [Google Scholar] [CrossRef]
- Guo, N.; Liang, Y.; Lan, S.; Liu, L.; Ji, G.; Gan, S.; Zou, H.; Xu, X. Uniform TiO2–SiO2hollow nanospheres: Synthesis, characterization and enhanced adsorption–photodegradation of azo dyes and phenol. Appl. Surf. Sci. 2014, 305, 562–574. [Google Scholar] [CrossRef]
- Abidli, A. One-pot direct synthesis route to self-assembled highly ordered Zn-decorated mesoporous aluminium oxide toward efficient and sustainable metathesis heterogeneous catalyst design. RSC Adv. 2015, 5, 92743–92756. [Google Scholar] [CrossRef]
- Murrieta-Rico, F.N.; Antúnez-García, J.; Yocupicio-Gaxiola, R.I.; Zamora, J.; Reyes Serrato, A.; Petranovskii, V. One-Pot Synthesis of Iron-Modified Zeolite X and Characterization of the Obtained Materials. Catalysts 2023, 13, 1159. [Google Scholar] [CrossRef]
- Bedoya, J.C.; Valdez, R.; Cota, L.; Alvarez-Amparan, M.A.; Olivas, A. Performance of Al-MCM-41 nanospheres as catalysts for dimethyl ether production. Catal. Today 2022, 388–389, 55–62. [Google Scholar] [CrossRef]
- Milošev, I.; Stefan, J.; Djurdjevic, Z.; Bajat, J. Surface Analysis and Electrochemical Behavior of Aluminum Pretreated by Vinyltriethoxysilane Films in Mild NaCl Solution. J. Electrochem. Soc. 2012, 159, B1–B29. [Google Scholar] [CrossRef]
- Alexander, M.R.; Short, R.D.; Jones, F.R.; Michaeli, W.; Blomfield, C.J. A study of HMDSO/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: Curve fitting of the Si 2p core level. Appl. Surf. Sci. 1999, 137, 179–183. [Google Scholar] [CrossRef]
- Thunyaratchatanon, C.; Luengnaruemitchai, A.; Chaisuwan, T.; Chollacoop, N.; Chen, S.-Y.; Yoshimura, Y. Synthesis and characterization of Zr incorporation into highly ordered mesostructured SBA-15 material and its performance for CO2 adsorption. Micropor. Mesopor. Mater. 2017, 253, 18–28. [Google Scholar] [CrossRef]
- Dakroub, G.; Duguet, T.; Esvan, J.; Lacaze-Dufaure, C.; Roualdes, S.; Rouessac, V. Comparative study of bulk and surface compositions of plasma polymerized organosilicon thin films. Surf. Interfaces 2021, 25, 101256. [Google Scholar] [CrossRef]
- Siddiquey, I.A.; Furusawa, T.; Sato, M.; Bahadur, N.M.; Suzuki, N. Fabrication of silica coated Al2O3 nanoparticles via a fast and facile route utilizing microwave irradiation. Mater. Chem. Phys. 2011, 130, 583–586. [Google Scholar] [CrossRef]
- Nyalosaso, J.L.; Derrien, G.; Charnay, C.; de Menorval, L.-C.; Zajac, J. Aluminium-derivatized silica monodisperse nanospheres by a one-step synthesis-functionalization method and application as acid catalysts in liquid phase. J. Mater. Chem. 2012, 22, 1459. [Google Scholar] [CrossRef]
- Carvalho, D.C.; Oliveira, A.C.; Ferreira, O.P.; Filho, J.M.; Tehuacanero-Cuapa, S.; Oliveira, A.C. Titanate nanotubes as acid catalysts for acetalization of glycerol with acetone: Influence of the synthesis time and the role of structure on the catalytic performance. Chem. Eng. J. 2017, 313, 1454–1467. [Google Scholar] [CrossRef]
- Wang, X.; Meng, B.; Zhang, X.; Tan, X.; Liu, S. Synthesis of stable Ti-containing mesoporous tubular membrane using silicalite-1 nanoparticles as seeds. Chem. Eng. J. 2014, 255, 344–355. [Google Scholar] [CrossRef]
- Rane, S.A.; Pudi, S.M.; Biswas, P. Esterification of Glycerol with Acetic Acid over Highly Active and Stable Alumina-based Catalysts: A Reaction Kinetics Study. Chem. Biochem. Eng. Q. 2016, 30, 33–45. [Google Scholar] [CrossRef]
- Karnjanakomm, S.; Maneechakr, P.; Kurnia, I.; Bayu, A.; Farobie, O.; Samart, C.; Kongparakul, S.; Guan, G. Sustainable upgrading of crude glycerol via ultrasound-reinforced bio-refinery process with oxygen–nitrogen subsistence: Co-application of reusable heterogeneous catalyst. Energy Convers. Manag. 2024, 310, 118477. [Google Scholar] [CrossRef]
Sample | Surface Area (m2 g−1) | Vtotal (cm3 g−1) | Vmicro (cm3 g−1) | Vmeso (cm3 g−1) | Pore Size (nm) | |
---|---|---|---|---|---|---|
BET | t-Plot | |||||
SAS | 193 | 173 | 0.39 | 0.007 | 0.38 | 8 |
SAT | 286 | 269 | 0.92 | 0.004 | 0.91 | 7 |
STS | 271 | 260 | 0.54 | 0.0001 | 0.54 | 9 |
STT | 71 | 56 | 0.24 | 0.006 | 0.23 | - |
SZS | 273 | 242 | 0.26 | 0.015 | 0.24 | 6 |
SZT | 282 | 334 | 0.35 | - | 0.35 | 4 |
Sample | Surface Area (m2 g−1) | Vtotal (cm3 g−1) | Vmicro (cm3 g−1) | Vmeso (cm3 g−1) | Pore Size (nm) | |
---|---|---|---|---|---|---|
BET | t-Plot | |||||
SAS-C | 213 | 199 | 0.46 | 0.003 | 0.45 | 9 |
SAT-C | 227 | 202 | 0.81 | 0.009 | 0.80 | 7 |
STS-C | 243 | 220 | 0.40 | 0.007 | 0.39 | 9 |
STT-C | 54 | 47 | 0.30 | 0.002 | 0.30 | - |
SZS-C | 74 | 65 | 0.10 | 0.003 | 0.07 | 8 |
SZT-C | 214 | 215 | 0.27 | - | 0.25 | 4 |
Sample | Surface Area (m2 g−1) | aHF | Vtotal (cm3 g−1) | Vmicro (cm3 g−1) | Vmeso (cm3 g−1) | Pore Size (nm) | ||
---|---|---|---|---|---|---|---|---|
SBET | St-Plot | SExt | ||||||
NZ-SAT | 212 | 194 | 140 | 0.11 | 0.46 | 0.17 | 0.29 | 4 |
NZ-STT | 77 | 29 | 33 | 0.12 | 0.16 | 0.12 | 0.04 | 2 |
NZ-SZT | 279 | 10 | 138 | 0.18 | 0.60 | 0.10 | 0.50 | 7 |
Sample | Si 2p | Al 2p | O 1s | C 1s | Na 1s | Ti 2p | Zr 3d | Me/Si Atomic Ratio |
---|---|---|---|---|---|---|---|---|
SAS-C | 102.0 103.2 | 74.0 | 530.8 532.4 | 284.5 285.4 288.2 | 1072.1 | 0.28 | ||
SAT-C | 102.2 103.0 | 74.1 | 531.1 532.3 | 284.4 285.6 288.3 | 1072.2 | 0.37 | ||
STS-C | 102.3 103.6 | 531.0 532.4 | 284.3 285.5 288.1 | - | 457.9 463.4 464.5 | 0.35 | ||
STT-C | 102.0 103.2 | 531.0 532.5 | 284.2 285.5 288.3 | - | 458.0 463.6 464.5 | 0.17 | ||
SZT-C | 102.3 103.1 | 530.6 532.4 | 284.4 285.4 288.2 | - | 183.1 185.2 | 0.07 | ||
NZ-SAT | 102.1 103.3 | 74.0 75.1 | 530.9 532.4 | 284.5 285.3 288.1 | 1072.1 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carmo, J.V.C.; Nogueira, J.; Bertoldo, G.M.; Clemente, F.E.; Oliveira, A.C.; Campos, A.F.; Duarte, G.C.S.; Tehuacanero-Cuapa, S.; Jiménez-Jiménez, J.; Rodríguez-Castellón, E. Porous Nanostructured Catalysts Based on Silicates and Their Surface Functionality: Effects of Silica Source and Metal Added in Glycerol Valorization. Catalysts 2024, 14, 526. https://doi.org/10.3390/catal14080526
Carmo JVC, Nogueira J, Bertoldo GM, Clemente FE, Oliveira AC, Campos AF, Duarte GCS, Tehuacanero-Cuapa S, Jiménez-Jiménez J, Rodríguez-Castellón E. Porous Nanostructured Catalysts Based on Silicates and Their Surface Functionality: Effects of Silica Source and Metal Added in Glycerol Valorization. Catalysts. 2024; 14(8):526. https://doi.org/10.3390/catal14080526
Chicago/Turabian StyleCarmo, José Vitor C., Joabson Nogueira, Gabriela M. Bertoldo, Francisco E. Clemente, Alcineia C. Oliveira, Adriana F. Campos, Gian C. S. Duarte, Samuel Tehuacanero-Cuapa, José Jiménez-Jiménez, and Enrique Rodríguez-Castellón. 2024. "Porous Nanostructured Catalysts Based on Silicates and Their Surface Functionality: Effects of Silica Source and Metal Added in Glycerol Valorization" Catalysts 14, no. 8: 526. https://doi.org/10.3390/catal14080526
APA StyleCarmo, J. V. C., Nogueira, J., Bertoldo, G. M., Clemente, F. E., Oliveira, A. C., Campos, A. F., Duarte, G. C. S., Tehuacanero-Cuapa, S., Jiménez-Jiménez, J., & Rodríguez-Castellón, E. (2024). Porous Nanostructured Catalysts Based on Silicates and Their Surface Functionality: Effects of Silica Source and Metal Added in Glycerol Valorization. Catalysts, 14(8), 526. https://doi.org/10.3390/catal14080526