One-Pot Phyto-Mediated Synthesis of Fe2O3/Fe3O4 Binary Mixed Nanocomposite Efficiently Applied in Wastewater Remediation by Photo-Fenton Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction (XRD)
2.2. Fourier Transform Infrared (FTIR) Characterization
2.3. Thermal Gravimetric Analysis (TGA)
2.4. Scanning Electron Microscopy (SEM) Characterization
2.5. Textural Features
2.6. UV-Vis Spectroscopy and Calculations of Band Gab
2.7. Photo-Fenton Activity of the Constructed Binary Fe2O3/Fe3O4 Nanocomposite
2.8. Application in Photodegrading Dye-Enriched Lake Water
2.9. Plausible Mechanism for the Photocatalytic Degradation Process
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Preparation of Guajava Leaves Aqueous Extract
3.2.2. Preparation of Iron Oxide Nanoparticles Using Guajava Leaves Aqueous Extract
3.2.3. Photocatalytic Experiments
3.3. Instrumental
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lellis, B.; Fávaro-Polonio, C.Z.; Pamphile, J.A.; Polonio, J.C. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innov. 2019, 3, 275–290. [Google Scholar] [CrossRef]
- Caviglia-Harris, J.L.; Kahn, J.R.; Green, T. Demand-side policies for environmental protection and sustainable usage of renewable resources. Ecol. Econ. 2003, 45, 119–132. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Karimi, B.; Rajaei, M.S. The effect of aeration on advanced coagulation, flotation and advanced oxidation processes for color removal from wastewater. J. Mol. Liq. 2016, 223, 75–80. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.J. Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Show, B.; Mukherjee, N.; Mondal, A. α-Fe2O3 nanospheres: Facile synthesis and highly efficient photo-degradation of organic dyes and surface activation by nano-Pt for enhanced methanol sensing. RSC Adv. 2016, 6, 75347–75358. [Google Scholar] [CrossRef]
- Sanad, M.M.S.; Farahat, M.M.; El-Hout, S.I.; El-Sheikh, S.M. Preparation and characterization of magnetic photocatalyst from the banded iron formation for effective photodegradation of methylene blue under UV and visible illumination. J. Environ. Chem. Eng. 2021, 9, 105127. [Google Scholar] [CrossRef]
- Rehman, A.; Daud, A.; Warsi, M.F.; Shakir, I.; Agboola, P.O.; Sarwar, M.I.; Zulfiqar, S. Nanostructured maghemite and magnetite and their nanocomposites with graphene oxide for photocatalytic degradation of methylene blue. Mater. Chem. Phys. 2020, 256, 123752. [Google Scholar] [CrossRef]
- Pirhashemi, M.; Habibi-Yangjeh, A.; Pouran, S.R. Review on the criteria anticipated for the fabrication of highly efficient ZnO-based visible-lightdriven photocatalysts. J. Ind. Eng. Chem. 2018, 62, 1–25. [Google Scholar] [CrossRef]
- Farhadian, N.; Liu, S.; Asadi, A.; Shahlaei, M.; Moradi, S. Enhanced heterogeneous Fenton oxidation of organic pollutant via Fe-containing mesoporous silica composites: A review. J. Mol. Liq. 2020, 321, 114896. [Google Scholar] [CrossRef]
- Luo, X.; Cai, W.; Vimalanathan, K.; Igder, A.; Gardner, Z.; Petticrew, S.; He, S.; Chuah, C.; Tang, Y.; Su, P.; et al. Magnetite Nanoparticle/Copper Phosphate Nanoflower Composites for Fentonlike Organic Dye Degradation. ACS Appl. Nano Mater. 2022, 5, 2875–2884. [Google Scholar] [CrossRef]
- Chen, Y.; Miller, C.J.; Waite, T.D. Heterogeneous Fenton chemistry revisited: Mechanistic insights from ferrihydrite-mediated oxidation of formate and oxalate. Environ. Sci. Technol. 2021, 55, 14414–14425. [Google Scholar] [CrossRef] [PubMed]
- Hashemzadeh, B.; Alamgholiloo, H.; Pesyan, N.N.; Asgari, E.; Sheikhmohammadi, A.; Yeganeh, J.; Hashemzadeh, H. Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous fenton-like catalyst: A comparison of composite and core−shell structures. Chemosphere 2021, 281, 130970. [Google Scholar] [CrossRef] [PubMed]
- Sujay Shekar, G.C.; Alkanad, K.; Hezam, A.; Alsalme, A.; Al-Zaqri, N.; Lokanath, N.K. Enhanced photo-Fenton activity over a sunlight-driven ignition synthesized α-Fe2O3-Fe3O4/CeO2 heterojunction catalyst enriched with oxygen vacancies. J. Mol. Liq. 2021, 335, 116186. [Google Scholar] [CrossRef]
- Kaushik, J.; Twinkle; Tisha; Nisha; Baig, A.; Sonal; Dubey, P.; Sonkar, S.K. Photoactive Fe3O4@Fe2O3 Synthesized from Industrial Iron Oxide Dust for Fenton-Free Degradation of Multiple Organic Dyes. Ind. Eng. Chem. Res. 2023, 62, 10487–10497. [Google Scholar] [CrossRef]
- Kaushik, J.; Twinkle; Anand, S.R.; Choudhary, S.K.; Sonkar, S.K. H2O2-Free Sunlight-Promoted Photo-Fenton-Type Removal of Hexavalent Chromium Using Reduced Iron Oxide Dust. ACS EST Water 2023, 3, 227–235. [Google Scholar] [CrossRef]
- Alrowaili, Z.A.; Alsohaimi, I.H.; Betiha, M.A.; Essawy, A.A.; Mousa, A.A.; Alruwaili, S.F.; Hassan, H.M.A. Green fabrication of silver imprinted titania/silica nanospheres as robust visible light-induced photocatalytic wastewater purification. Mater. Chem. Phys. 2020, 241, 122403. [Google Scholar] [CrossRef]
- Essawy, A.A. Silver imprinted zinc oxide nanoparticles: Green synthetic approach, characterization and efficient sunlight-induced photocatalytic water detoxification. J. Clean. Prod. 2018, 183, 1011–1020. [Google Scholar] [CrossRef]
- Herney-Ramirez, J.; Vicente, M.A.; Madeira, L.M. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Appl. Catal. B 2010, 98, 10–26. [Google Scholar] [CrossRef]
- Cassano, D.; Zapata, A.; Brunetti, G.; Del Moro, G.; Di Iaconi, C.; Oller, I.; Mascolo, G. Comparison of several combined/integrated biological-AOPs setups for the treatment of municipal landfill leachate: Minimization of operating costs and effluent toxicity. Chem. Eng. J. 2011, 172, 250–257. [Google Scholar] [CrossRef]
- Muñoz, I.; Malato, S.; Rodríguez, A.; Domènech, X. Integration of environmental and economic performance of processes. Case study on advanced oxidation processes for wastewater treatment. J. Adv. Oxid. Technol. 2008, 11, 270–275. [Google Scholar] [CrossRef]
- Clarizia, L.; Russo, D.; Di Somma, I.; Marotta, R.; Andreozzi, R. Homogeneous photo-Fenton processes at near neutral pH: A review. Appl. Catal. B 2017, 209, 358–371. [Google Scholar] [CrossRef]
- Gallard, H.; De Laat, J. Kinetic modelling of Fe (III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound. Water Res. 2000, 34, 3107–3116. [Google Scholar] [CrossRef]
- Essawy, A.A.; Aleem, S.A.E. Physico-mechanical properties, potent adsorptive and photocatalytic efficacies of sulfate resisting cement blends containing micro silica and nano-TiO2. Constr. Build. Mater. 2014, 52, 1–8. [Google Scholar] [CrossRef]
- Sahoo, D.; Shakya, J.; Ali, N.; Yoo, W.J.; Kaviraj, B. Edge Rich Ultrathin Layered MoS2 Nanostructures for Superior Visible Light Photocatalytic Activity. Langmuir 2022, 38, 1578–1588. [Google Scholar] [CrossRef] [PubMed]
- Twinkle; Kaushik, J.; Singla, T.; Lamba, N.K.; Jain, M.; Sharma, N.; Choudhary, S.K.; Sonkar, S.K. Fe3O4 Nanoparticles Synthesized from Waste Iron Dust for Sunlight-Boosted Photodegradation of Nitrophenols and Their Mixtures. Ind. Eng. Chem. Res. 2023, 62, 9091–9103. [Google Scholar] [CrossRef]
- Si, J.-C.; Xing, Y.; Peng, M.-L.; Zhang, C.; Busk, N.; Chen, C.; Cui, Y.-L. Solvothermal synthesis of tunable iron oxide nanorods and their transfer from organic phase to water phase. CrystEngComm 2014, 16, 512–516. [Google Scholar] [CrossRef]
- Rajakaruna, T.P.B.; Udawatte, C.P.; Chandrajith, R.; Rajapakse, R.M.G. Formulation of Iron Oxide and Oxy-hydroxide Nanoparticles from Ilmenite Sand through a Low Temperature Process. ACS Omega 2021, 6, 17824–17830. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Roychowdhury, A.; Das, D.; Mukherjee, S. Synthesis of α-Fe2O3-functionalised graphene oxide nanocomposite by a facile low temperature method and study of its magnetic and hyperfine properties. Mater. Res. Bull. 2016, 74, 109–116. [Google Scholar] [CrossRef]
- Chernyshova, I.V.; Hochella, M.F., Jr.; Madden, A.S. Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys. Chem. Chem. Phys. 2007, 9, 1736–1750. [Google Scholar] [CrossRef]
- Zheng, L.; Su, W.; Qi, Z.; Xu, Y.; Zhou, M. First-order metal–insulator transition and infrared identification of shape-controlled magnetite nanocrystals. Nanotechnology 2011, 22, 485706. [Google Scholar] [CrossRef]
- Yao, L.; Chen, Z.; Li, J.; Shi, C. Creation of oxygen vacancies to activate lanthanum doped bismuth titanate nanosheets for efficient synchronous photocatalytic removal of Cr(VI) and methyl orange. J. Mol. Liq. 2020, 314, 113613. [Google Scholar] [CrossRef]
- Murillo-Sierra, J.C.; Maya-Treviño, M.D.L.; Nuñez-Salas, R.E.; Pino-Sandoval, D.A.; Hernández-Ramírez, A. Facile synthesis of ZnS/WO3 coupled photocatalyst and its application on sulfamethoxazole degradation. Ceram. Int. 2022, 48, 13761–13769. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, R.; Lu, Z.; Wang, W.; Yan, Y. Dual sensitization effect and conductive structure of Fe3O4@mTiO2/C photocatalyst towards superior photodegradation activity for bisphenol A under visible light. J. Photochem. Photobiol. A Chem. 2019, 382, 111902. [Google Scholar] [CrossRef]
- Essawy, A.A.; Alsohaimi, I.H.; Alhumaimess, M.S.; Hassan, H.M.A.; Kamel, M.M. Green synthesis of spongy Nano-ZnO productive of hydroxyl radicals for unconventional solar-driven photocatalytic remediation of antibiotic enriched wastewater. J. Environ. Manag. 2020, 271, 110961. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dief, A.M.; Essawy, A.A.; Diab, A.K.; Mohamed, W.S. Facile synthesis and characterization of novel Gd2O3–CdO binary mixed oxide nanocomposites of highly photocatalytic activity for wastewater remediation under solar illumination. J. Phys. Chem. Solids 2021, 148, 109666. [Google Scholar] [CrossRef]
- Essawy, A.A.; Abdel-Farid, I.B. Hybrid solvothermal/sonochemical-mediated synthesis of ZnO NPs generative of •OH radicals: Photoluminescent approach to evaluate •OH scavenging activity of Egyptian and Yemeni Punica granatum arils extract. Ultrason. Sonochem. 2022, 89, 106152. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; e-Alam, M.F.; Atif, M.; Mustafa, G.; Ali, Z. Investigation of optical, electrical and magnetic properties of hematite α-Fe2O3 nanoparticles via sol-gel and co-precipitation method. J. King Saud Univ. Sci. 2023, 35, 102695. [Google Scholar] [CrossRef]
- Ozer, Z.N.; Ozkan, M.; Pat, S. Optical and electric properties of Fe3O4 nanoparticle doped ZnO thin films. Ceram. Int. 2024, 50, 22696–22703. [Google Scholar] [CrossRef]
- Essawy, A.A.; Nassar, A.M.; Arafa, W.A.A. A novel photocatalytic system consists of Co(II) complex@ ZnO exhibits potent antimicrobial activity and efficient solar-induced wastewater remediation. Sol. Energy 2018, 170, 388–397. [Google Scholar] [CrossRef]
- Essawy, A.A.; Sayyah, S.M.; El-Nggar, A.M. Ultrasonic-mediated synthesis and characterization of TiO2-loaded chitosan-grafted-polymethylaniline nanoparticles of potent efficiency in dye uptake and sunlight driven self-cleaning applications. RSC Adv. 2016, 6, 2279–2294. [Google Scholar] [CrossRef]
- Jiang, X.; Li, L.; Cui, Y.; Cui, F. New branch on old tree: Green-synthesized RGO/Fe3O4 composite as a photo-Fenton catalyst for rapid decomposition of methylene blue. Ceram. Int. 2017, 43, 14361–14368. [Google Scholar] [CrossRef]
- Liu, Y.; Jin, W.; Zhao, Y.; Zhang, G.; Zhang, W. 2017. Enhanced catalytic degradation of methylene blue by α-Fe2O3/graphene oxide via heterogeneous photo-Fenton reactions. Appl. Catal. B 2017, 206, 642–652. [Google Scholar] [CrossRef]
- Quynh, H.G.; Kiet, N.A.; Thanh, H.V.; Tue, T.M.; Phuong, N.T.T.; Long, N.Q. Removal of aqueous organic pollutant by photo-Fenton process using low-cost Fe3O4/zeolite A. IOP Conf. Ser. Earth Environ. Sci. 2021, 947, 012013. [Google Scholar] [CrossRef]
- Huang, C.-W.; Hsu, S.-Y.; Lin, J.-H.; Jhou, Y.; Chen, W.-Y.; Lin, K.-Y.A.; Lin, Y.-T.; Nguyen, V.-H. Solar-light-driven LaFexNi1−xO3 perovskite oxides for photocatalytic Fenton-like reaction to degrade organic pollutants. Beilstein J. Nanotechnol. 2022, 13, 882–895. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zheng, T.; Zhang, G.; Wang, P. A review on Fenton like processes for organic wastewater treatment. J. Environ. Chem. Eng. 2016, 4, 762–787. [Google Scholar] [CrossRef]
- Zazo, J.A.; Pliego, G.; Blasco, S.; Casas, J.A.; Rodriguez, J.J. Intensification of the Fenton process by increasing the temperature. Ind. Eng. Chem. Res. 2011, 50, 866–870. [Google Scholar] [CrossRef]
- Wang, Z.; Fan, Y.; Wu, R.; Huo, Y.; Wu, H.; Wang, F.; Xu, X. Novel magnetic g-C3N4/α-Fe2O3/Fe3O4 composite for the very effective visible-light-Fenton degradation of Orange II. RSC Adv. 2018, 8, 5180. [Google Scholar] [CrossRef]
Sample | Synthetic Route | mcat (g L−1) | pH | [MB] (mg L−1) | Removal% or Degradation Rate (min−1) | Irradiation | Ref |
---|---|---|---|---|---|---|---|
Fe3O4-RGO | Green method (Sargassum thunbergii alga) | 0.25 | 6.0 | 34 | 17% | 300 W (Xenon lamp) | [41] |
α-Fe2O3-GO | Chemical hydrolysis (Urea-reducing agent) | 0.25 | 3.0 | 37 | 65% | 100 W (Mercury lamp) | [42] |
Fe3O4-ZeoliteA | Chemical method (Post-precipitation) | 0.4 | 3.0 | 17 | 32% | 6 W (UV-C lamp) | [43] |
LaFeO3 LaFe0.9Ni0.1O3 LaFe0.7Ni0.3O3 LaFe0.5Ni0.5O3 | Sol–gel | 0.33 | 7 | 133 | 0.0086 min−1 0.003 min−1 0.0039 min−1 0.002 min−1 | simulated AM 1.5G solar light | [44] |
Fe2O3/Fe3O4 | Biogenic method (guajava leaves extract) | 0.20 | 7.1 | 20 | 71.9% 0.0143 | Sun light (760 W/m2) | This work |
Fe2O3/Fe3O4 | Biogenic method (guajava leaves extract) | 0.20 | 7.1 | 20 | 54.7% 0.0102 | Bulb light (100 W) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Essawy, A.A.; Hasanin, T.H.A.; Hussein, M.F.; El Agammy, E.F.; Essawy, A.E.-N.I. One-Pot Phyto-Mediated Synthesis of Fe2O3/Fe3O4 Binary Mixed Nanocomposite Efficiently Applied in Wastewater Remediation by Photo-Fenton Reaction. Catalysts 2024, 14, 466. https://doi.org/10.3390/catal14070466
Essawy AA, Hasanin THA, Hussein MF, El Agammy EF, Essawy AE-NI. One-Pot Phyto-Mediated Synthesis of Fe2O3/Fe3O4 Binary Mixed Nanocomposite Efficiently Applied in Wastewater Remediation by Photo-Fenton Reaction. Catalysts. 2024; 14(7):466. https://doi.org/10.3390/catal14070466
Chicago/Turabian StyleEssawy, Amr A., Tamer H. A. Hasanin, Modather. F. Hussein, Emam F. El Agammy, and Abd El-Naby I. Essawy. 2024. "One-Pot Phyto-Mediated Synthesis of Fe2O3/Fe3O4 Binary Mixed Nanocomposite Efficiently Applied in Wastewater Remediation by Photo-Fenton Reaction" Catalysts 14, no. 7: 466. https://doi.org/10.3390/catal14070466
APA StyleEssawy, A. A., Hasanin, T. H. A., Hussein, M. F., El Agammy, E. F., & Essawy, A. E. -N. I. (2024). One-Pot Phyto-Mediated Synthesis of Fe2O3/Fe3O4 Binary Mixed Nanocomposite Efficiently Applied in Wastewater Remediation by Photo-Fenton Reaction. Catalysts, 14(7), 466. https://doi.org/10.3390/catal14070466