Waste Biomass Utilization for the Production of Adsorbent and Value-Added Products for Investigation of the Resultant Adsorption and Methanol Electro-Oxidation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cuttlebone Characterization
2.1.1. Morphological Analysis
2.1.2. X-ray Diffraction (XRD)
2.1.3. Thermogravimetric Analysis
2.1.4. FTIR Analysis
2.1.5. Textural Properties
2.1.6. Zeta Potential
2.2. Adsorption Study
2.2.1. Effect of pH and Dose
2.2.2. Adsorption Equilibrium Study
2.2.3. Adsorption Kinetics Study
2.2.4. Adsorption Mechanism
2.2.5. Reuse Study
2.3. Methanol Electrochemical Oxidation
3. Materials and Methods
3.1. Cuttlebone Collection
3.2. Cuttlebone Thermal Treatment
3.3. Material Characterization
3.4. Adsorption Study
3.5. Electrochemical Methanol Oxidation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Gheethi, A.A.; Azhar, Q.M.; Kumar, P.S.; Yusuf, A.A.; Al-Buriahi, A.K.; Mohamed, R.M.S.R.; Al-Shaibani, M.M. Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review. Chemosphere 2022, 287, 132080. [Google Scholar] [CrossRef]
- Forgacs, E.; Cserháti, T.; Oros, G. Removal of synthetic dyes from wastewaters: A review. Environ. Int. 2004, 30, 953–971. [Google Scholar] [CrossRef] [PubMed]
- Fazal, T.; Mushtaq, A.; Rehman, F.; Khan, A.U.; Rashid, N.; Farooq, W.; Rehman, M.S.U.; Xu, J. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew. Sustain. Energy Rev. 2018, 82, 3107–3126. [Google Scholar] [CrossRef]
- Güzel, F.; Sayğılı, H.; Sayğılı, G.A.; Koyuncu, F. Decolorisation of aqueous crystal violet solution by a new nanoporous carbon: Equilibrium and kinetic approach. J. Ind. Eng. Chem. 2014, 20, 3375–3386. [Google Scholar] [CrossRef]
- Rashid, N.; Rather, M.A.; Bhat, S.A.; Ingole, P.P.; Bhat, M.A. Highly efficient catalytic reductive degradation of Rhodamine-B over Palladium-reduced graphene oxide nanocomposite. Chem. Phys. Lett. 2020, 754, 137724. [Google Scholar] [CrossRef]
- Zaher, A.; Kamal, W.; Essam, D.; Yousry, E.M.; Mahmoud, R. Repurposing Co-Fe LDH and Co-Fe LDH / Cellulose micro-adsorbents for sustainable energy generation in direct methanol fuel cells. J. Water Process Eng. 2024, 62, 105317. [Google Scholar] [CrossRef]
- Faro, M.L.; Antonucci, V.; Antonucci, P.; Aricò, A. Fuel flexibility: A key challenge for SOFC technology. Fuel 2012, 102, 554–559. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Dhiman, P.; Kumari, A.; Stadler, F.J. Recent advances in nano-Fenton catalytic degradation of emerging pharmaceutical contaminants. J. Mol. Liq. 2019, 290, 111177. [Google Scholar] [CrossRef]
- Bianchi, C.L.; Djellabi, R.; Della Pina, C.; Falletta, E. Doped-polyaniline based sorbents for the simultaneous removal of heavy metals and dyes from water: Unravelling the role of synthesis method and doping agent. Chemosphere 2021, 286, 131941. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S. Sustainable approach on the biodegradation of azo dyes: A short review. Curr. Opin. Green Sustain. Chem. 2021, 33, 100578. [Google Scholar] [CrossRef]
- Abdulkhair, B.; Salih, M.; Modwi, A.; Adam, F.; Elamin, N.; Seydou, M.; Rahali, S. Adsorption behavior of barium ions onto ZnO surfaces: Experiments associated with DFT calculations. J. Mol. Struct. 2020, 1223, 128991. [Google Scholar] [CrossRef]
- Pishnamazi, M.; Khan, A.; Kurniawan, T.A.; Sanaeepur, H.; Albadarin, A.B.; Soltani, R. Adsorption of dyes on multifunctionalized nano-silica KCC-1. J. Mol. Liq. 2021, 338, 116573. [Google Scholar] [CrossRef]
- Ghoniem, M.G.; Ali, F.A.M.; Abdulkhair, B.Y.; Elamin, M.R.A.; Alqahtani, A.M.; Rahali, S.; Ben Aissa, M.A. Highly Selective Removal of Cationic Dyes from Wastewater by MgO Nanorods. Nanomaterials 2022, 12, 1023. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Kumar, A.; Naushad, M.; Thakur, B.; Vo, D.-V.N.; Gao, B.; Al-Kahtani, A.A.; Stadler, F.J. Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel. J. Hazard. Mater. 2021, 416, 125714. [Google Scholar] [CrossRef]
- Castaldi, M.; van Deventer, J.; Lavoie, J.M.; Legrand, J.; Nzihou, A.; Pontikes, Y.; Py, X.; Vandecasteele, C.; Vasudevan, P.T.; Verstraete, W. Progress and Prospects in the Field of Biomass and Waste to Energy and Added-Value Materials. Waste Biomass-Valorization 2017, 8, 1875–1884. [Google Scholar] [CrossRef]
- Charii, H.; Boussetta, A.; Benali, K.; Essifi, K.; Mennani, M.; Benhamou, A.A.; El Zakhem, H.; Sehaqui, H.; El Achaby, M.; Grimi, N.; et al. Phosphorylated chitin from shrimp shell waste: A robust solution for cadmium remediation. Int. J. Biol. Macromol. 2024, 268, 131855. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv. Colloid Interface Sci. 2011, 166, 36–59. [Google Scholar] [CrossRef]
- Azarian, M.H.; Sutapun, W. Biogenic calcium carbonate derived from waste shells for advanced material applications: A review. Front. Mater. 2022, 9, 1024977. [Google Scholar] [CrossRef]
- Suwannasingha, N.; Kantavong, A.; Tunkijjanukij, S.; Aenglong, C.; Liu, H.-B.; Klaypradit, W. Effect of calcination temperature on structure and characteristics of calcium oxide powder derived from marine shell waste. J. Saudi Chem. Soc. 2022, 26, 101441. [Google Scholar] [CrossRef]
- Montes-Atenas, G.; Valenzuela, F.; Montes-Atenas, G.; Valenzuela, F. Wastewater Treatment through Low Cost Adsorption Technologies. In Physico-Chemical Wastewater Treatment and Resource Recovery; Intech Open: Rijeka, Croatia, 2017. [Google Scholar] [CrossRef]
- Li, A.; Ge, W.; Liu, L.; Qiu, G. Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. Environ. Res. 2022, 212, 113341. [Google Scholar] [CrossRef]
- Cadman, J.; Zhou, S.; Chen, Y.; Li, Q. Cuttlebone: Characterisation, application and development of biomimetic materials. J. Bionic Eng. 2012, 9, 367–376. [Google Scholar] [CrossRef]
- Darwish, A.S.; Osman, D.I.; Mohammed, H.A.; Attia, S.K. Cuttlefish bone biowaste for production of holey aragonitic sheets and mesoporous mayenite-embedded Ag2CO3 nanocomposite: Towards design high-performance adsorbents and visible-light photocatalyst for detoxification of dyes wastewater and waste oil recovery. J. Photochem. Photobiol. A: Chem. 2021, 421, 113523. [Google Scholar] [CrossRef]
- Reinares-Fisac, D.; Veintemillas-Verdaguer, S.; Fernández-Díaz, L. Conversion of biogenic aragonite into hydroxyapatite scaffolds in boiling solutions. CrystEngComm 2016, 19, 110–116. [Google Scholar] [CrossRef]
- Venkatesan, J.; Rekha, P.D.; Anil, S.; Bhatnagar, I.; Sudha, P.N.; Dechsakulwatana, C.; Kim, S.-K.; Shim, M.S. Hydroxyapatite from Cuttlefish Bone: Isolation, Characterizations, and Applications. Biotechnol. Bioprocess Eng. 2018, 23, 383–393. [Google Scholar] [CrossRef]
- Kim, B.-S.; Kang, H.J.; Yang, S.-S.; Lee, J. Comparison of in vitro and in vivo bioactivity: Cuttlefish-bone-derived hydroxyapatite and synthetic hydroxyapatite granules as a bone graft substitute. Biomed. Mater. 2014, 9, 025004. [Google Scholar] [CrossRef]
- Minakshi, M.; Visbal, H.; Mitchell, D.R.G.; Fichtner, M. Bio-waste chicken eggshells to store energy. Dalton Trans. 2018, 47, 16828–16834. [Google Scholar] [CrossRef] [PubMed]
- Tagar, U.; Volpe, M.; Messineo, A.; Volpe, R. Highly ordered CaO from cuttlefish bone calcination for the efficient adsorption of methylene blue from water. Front. Chem. 2023, 11, 1132464. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Chen, L.; Fang, Y. Highly Efficient Removal of Congo red from Wastewater by Nano-Cao. Sep. Sci. Technol. 2013, 48, 2681–2687. [Google Scholar] [CrossRef]
- Mahmoud, H.R.; El-Molla, S.A.; Saif, M. Improvement of physicochemical properties of Fe2O3/MgO nanomaterials by hydrothermal treatment for dye removal from industrial wastewater. Powder Technol. 2013, 249, 225–233. [Google Scholar] [CrossRef]
- Said, R.B.; Rahali, S.; Aissa, M.A.B.; Albadri, A.; Modwi, A. Uptake of BF Dye from the Aqueous Phase by CaO-g-C3N4 Nanosorbent: Construction, Descriptions, and Recyclability. Inorganics 2023, 11, 44. [Google Scholar] [CrossRef]
- Liu, N.; Wu, Y.; Sha, H. Magnesium oxide modified diatomite waste as an efficient adsorbent for organic dye removal: Adsorption performance and mechanism studies. Sep. Sci. Technol. 2019, 55, 234–246. [Google Scholar] [CrossRef]
- Chamack, M.; Mahjoub, A.; Hosseinian, A. Facile synthesis of nanosized MgO as adsorbent for removal of congored dye from wastewate. Nanochemistry Res. 2018, 3, 85–91. [Google Scholar]
- Hu, J.; Song, Z.; Chen, L.; Yang, H.; Li, J.; Richards, R. Adsorption properties of MgO(111) nanoplates for the dye pollutants from wastewater. J. Chem. Eng. Data 2010, 55, 3742–3748. [Google Scholar] [CrossRef]
- Uko, C.A.; Tijani, J.O.; Abdulkareem, S.A.; Mustapha, S.; Egbosiuba, T.C.; Muzenda, E. Adsorptive properties of MgO/WO3 nanoadsorbent for selected heavy metals removal from indigenous dyeing wastewater. Process. Saf. Environ. Prot. 2022, 162, 775–794. [Google Scholar] [CrossRef]
- Toamah, W.O.; Fadhil, A.K. Preparation of nanoparticles from CaO and use it for removal of chromium (II), and mercury (II) from aqueous solutions. J. Phys. Conf. Ser. 2019, 1234, 012086. [Google Scholar] [CrossRef]
- Gu, H.; Lin, W.; Sun, S.; Wu, C.; Yang, F.; Ziwei, Y.; Chen, N.; Ren, J.; Zheng, S. Calcium oxide modification of activated sludge as a low-cost adsorbent: Preparation and application in Cd(II) removal. Ecotoxicol. Environ. Saf. 2020, 209, 111760. [Google Scholar] [CrossRef]
- Shakerian, K.; Esmaeili, H. Synthesis of CaO/Fe3O4 magnetic composite for the removal of Pb(II) and Co(II) from synthetic wastewater. J. Serbian Chem. Soc. 2018, 83, 237–249. [Google Scholar] [CrossRef]
- El-Dafrawy, S.M.; Youssef, H.; Toamah, W.; El-Defrawy, M. Synthesis of nano-CaO particles and its application for the removal of copper (II), Lead (II), cadmium (II) and iron (III) from aqueous solutions. Egypt. J. Chem. 2015, 58, 579–589. [Google Scholar]
- Kasirajan, R.; Bekele, A.; Girma, E. Adsorption of lead (Pb-II) using CaO-NPs synthesized by solgel process from hen eggshell: Response surface methodology for modeling, optimization and kinetic studies. South Afr. J. Chem. Eng. 2022, 40, 209–229. [Google Scholar] [CrossRef]
- Zhou, K.; Wu, B.; Su, L.; Gao, X.; Chai, X.; Dai, X. Development of nano-CaO2-coated clinoptilolite for enhanced phosphorus adsorption and simultaneous removal of COD and nitrogen from sewage. Chem. Eng. J. 2017, 328, 35–43. [Google Scholar]
- Habiby, S.R.; Esmaeili, H.; Foroutan, R. Magnetically modified MgO nanoparticles as an efficient adsorbent for phosphate ions removal from wastewater. Sep. Sci. Technol. 2019, 55, 1910–1921. [Google Scholar] [CrossRef]
- Cheng, Y.; Xie, Q.; Wu, Z.; Ji, L.; Li, Y.; Cai, Y.; Jiang, P.; Yu, B. Mechanistic insights into the selective adsorption of phosphorus from wastewater by MgO(100)-functionalized cellulose sponge. Sci. Total Environ. 2023, 868, 161646. [Google Scholar] [CrossRef] [PubMed]
- Shirazinezhad, M.; Faghihinezhad, M.; Baghdadi, M.; Ghanbari, M. Phosphate removal from municipal effluent by a porous MgO-expanded graphite composite as a novel adsorbent: Evaluation of seawater as a natural source of magnesium ions. J. Water Process Eng. 2021, 43, 102232. [Google Scholar] [CrossRef]
- Chen, W.; Wu, Y.; Xie, Z.; Li, Y.; Tang, W.; Yu, J. Calcium hydroxide recycled from waste eggshell resources for the effective recovery of fluoride from wastewater. RSC Adv. 2022, 12, 28264–28278. [Google Scholar] [CrossRef] [PubMed]
- Shamraiz, U.; Ahmad, Z.; Raza, B.; Badshah, A.; Ullah, S.; Nadeem, M.A. CaO-promoted graphene-supported palladium nanocrystals as a universal electrocatalyst for direct liquid fuel cells. ACS Appl. Mater. Interfaces 2020, 12, 4396–4404. [Google Scholar] [CrossRef] [PubMed]
- Kaedi, F.; Yavari, Z.; Noroozifar, M.; Saravani, H. Promoted electrocatalytic ability of the Pd on doped Pt in NiO-MgO solid solution toward methanol and ethanol oxidation. J. Electroanal. Chem. 2018, 827, 204–212. [Google Scholar] [CrossRef]
- Mahendiran, C.; Rajesh, D.; Maiyalagan, T.; Prasanna, K. Pd Nanoparticles-Supported Carbon Nanotube-Encapsulated NiO/MgO Composite as an Enhanced Electrocatalyst for Ethanol Electrooxidation in Alkaline Medium. ChemistrySelect 2017, 2, 11438–11444. [Google Scholar] [CrossRef]
- Li, N.; Zeng, Y.-X.; Chen, S.; Xu, C.-W.; Shen, P.-K. Ethanol oxidation on Pd/C enhanced by MgO in alkaline medium. Int. J. Hydrogen Energy 2014, 39, 16015–16019. [Google Scholar] [CrossRef]
- Mahendiran, C.; Maiyalagan, T.; Scott, K.; Gedanken, A. Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation. Mater. Chem. Phys. 2011, 128, 341–347. [Google Scholar] [CrossRef]
- Xu, C.; Shen, P.K.; Ji, X.; Zeng, R.; Liu, Y. Enhanced activity for ethanol electrooxidation on Pt–MgO/C catalysts. Electrochem. Commun. 2005, 7, 1305–1308. [Google Scholar] [CrossRef]
- Eisa, T.; Mohamed, H.O.; Choi, Y.-J.; Park, S.-G.; Ali, R.; Abdelkareem, M.A.; Oh, S.-E.; Chae, K.-J. Nickel nanorods over nickel foam as standalone anode for direct alkaline methanol and ethanol fuel cell. Int. J. Hydrogen Energy 2019, 45, 5948–5959. [Google Scholar] [CrossRef]
- Khouchaf, A.; Takky, D.; Chbihi, M.E.; Benmokhtar, S. Electrocatalytic Oxidation of Methanol on Glassy Carbon Electrode Modified by Metal Ions (Copper and Nickel) Dispersed into Polyaniline Film. J. Mater. Sci. Chem. Eng. 2016, 4, 97–105. [Google Scholar] [CrossRef]
- Mohamed, H.F.M.; E Abdel-Hady, E.; Hmamm, M.F.M.; Ibrahim, M.; Ahmed, H.; Mondy, M.; Yehia, H. A promising fuel cell catalyst using non-precious metal oxide. IOP Conf. Ser. Mater. Sci. Eng. 2018, 464, 012002. [Google Scholar] [CrossRef]
- Gil, A. Challenges on waste-to-energy for the valorization of industrial wastes: Electricity, heat and cold, bioliquids and biofuels. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100615. [Google Scholar] [CrossRef]
- Maina, S.; Kachrimanidou, V.; Koutinas, A. A roadmap towards a circular and sustainable bioeconomy through waste valorization. Curr. Opin. Green Sustain. Chem. 2017, 8, 18–23. [Google Scholar] [CrossRef]
- Seriño, M.N.V. Diversification of nonhydro renewable energy sources in developing countries. Energy Ecol. Environ. 2018, 3, 317–329. [Google Scholar] [CrossRef]
- Huang, H.; Sun, D.; Wang, X. Low-Defect MWNT–Pt Nanocomposite as a High Performance Electrocatalyst for Direct Methanol Fuel Cells. J. Phys. Chem. C 2011, 115, 19405–19412. [Google Scholar] [CrossRef]
- Zhao, J.; Zhang, L.; Chen, T.; Yu, H.; Zhang, L.; Xue, H.; Hu, H. Supercritical Carbon-Dioxide-Assisted Deposition of Pt Nanoparticles on Graphene Sheets and Their Application as an Electrocatalyst for Direct Methanol Fuel Cells. J. Phys. Chem. C 2012, 116, 21374–21381. [Google Scholar] [CrossRef]
- Qiu, J.-D.; Wang, G.-C.; Liang, R.-P.; Xia, X.-H.; Yu, H.-W. Controllable Deposition of Platinum Nanoparticles on Graphene as an Electrocatalyst for Direct Methanol Fuel Cells. J. Phys. Chem. C 2011, 115, 15639–15645. [Google Scholar] [CrossRef]
- Mehek, R.; Iqbal, N.; Noor, T.; Nasir, H.; Mehmood, Y.; Ahmed, S. Novel Co-MOF/Graphene Oxide Electrocatalyst for Methanol Oxidation. Electrochim. Acta 2017, 255, 195–204. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, A.; Ma, X.; Du, H.; Yan, L.; Hou, F.; Liu, J. Cuttlefish-Bone-Structure-like Lamellar Porous Fiber-Based Ceramics with Enhanced Mechanical Performances. ACS Appl. Mater. Interfaces 2023, 15, 13121–13130. [Google Scholar] [CrossRef]
- Ferro, A.C.; Guedes, M. Mechanochemical synthesis of hydroxyapatite using cuttlefish bone and chicken eggshell as calcium precursors. Mater. Sci. Eng. C 2019, 97, 124–140. [Google Scholar] [CrossRef]
- Henggu, K.U.; Ibrahim, B.; Suptijah, P. Hidroksiapatit dari cangkang sotong sebagai sediaan biomaterial perancah tulang. J. Pengolah. Has. Perikan. Indones. 2019, 22, 1–13. [Google Scholar]
- Lee, S.J.; Lee, Y.C.; Yoon, Y.S. Characteristics of calcium phosphate powders synthesized from cuttlefish bone and phosphoric acid. J. Ceram. Process. Res. 2007, 8, 427–430. [Google Scholar]
- Wang, T.; Hu, Y.-H.; Chen, L.; Wang, X.-J. Luminescence properties and energy transfer of a red-emitting Ca3 (PO4)2:Sm3+, Eu3+ phosphor. J. Mater. Sci. Mater. Electron. 2015, 26, 5360–5367. [Google Scholar] [CrossRef]
- Cestari, F.; Agostinacchio, F.; Galotta, A.; Chemello, G.; Motta, A.; Sglavo, V.M. Nano-hydroxyapatite derived from biogenic and bioinspired calcium carbonates: Synthesis and in vitro bioactivity. Nanomaterials 2021, 11, 264. [Google Scholar] [CrossRef]
- Sharmila, P.P.; Tharayil, N.J. Chemically synthesized nano composite (Zinc/Magnesium) Oxide for tunable band gap devices. IOP Conf. Ser. Mater. Sci. Eng. 2015, 73, 01201. [Google Scholar] [CrossRef]
- Jannah, Z.; Mubarok, H.; Syamsiyah, F.; Putri, A.A.H.; Rohmawati, L. Preparation of Calcium Carbonate (from Shellfish)/Magnesium Oxide Composites as an Antibacterial Agent. IOP Conf. Ser. Mater. Sci. Eng. 2018, 367, 012005. [Google Scholar] [CrossRef]
- Nagalakshmi, G.; Nandeesh, I.; Yallur, B.C.; Adimule, V.; Batakurki, S. Synthesis and Optical Properties of Copper Terephthalate Metal Organic Frame Works. Eng. Chem. 2023, 2, 3–11. [Google Scholar] [CrossRef]
- Jeyakumar, S.J.; Sindhya, A.; Jothibas, M. A comparative study of surface modified nanohydroxyapatite using PVA polymer extracted from Seashells, Coral Skeletons and Eggshells for biomedical applications. Surf. Interfaces 2023, 42, 103401. [Google Scholar] [CrossRef]
- Dhanaraj, K.; Suresh, G. Conversion of waste sea shell (Anadara granosa) into valuable nanohydroxyapatite (nHAp) for biomedical applications. Vacuum 2018, 152, 222–230. [Google Scholar] [CrossRef]
- Poinern, G.E.; Brundavanam, R.; Le, T.; Djordjevic, S.; Prokic, M.; Fawcett, D. Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic. Int. J. Nanomed. 2011, 6, 2083–2095. [Google Scholar] [CrossRef] [PubMed]
- Balu, S.; Sundaradoss, M.V.; Andra, S.; Jeevanandam, J. Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study. Beilstein J. Nanotechnol. 2020, 11, 285–295. [Google Scholar] [CrossRef]
- Sun, L.; Chow, L.C.; Frukhtbeyn, S.A.; Bonevich, J.E. Preparation and Properties of Nanoparticles of Calcium Phosphates With Various Ca/P Ratios. J. Res. Natl. Inst. Stand. Technol. 2010, 115, 243–255. [Google Scholar] [CrossRef]
- Kuriakose, T.; Kalkura, S.; Palanichamy, M.; Arivuoli, D.; Dierks, K.; Bocelli, G.; Betzel, C. Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J. Cryst. Growth 2004, 263, 517–523. [Google Scholar] [CrossRef]
- Leontie, L.; Doroftei, C.; Carlescu, A. Nanocrystalline iron manganite prepared by sol–gel self-combustion method for sensor applications. Appl. Phys. A 2018, 124, 750. [Google Scholar] [CrossRef]
- Emami, N.; Farhadian, M.; Solaimany Nazar, A.R.; Tangestaninejad, S. Adsorption of cefixime and lamotrigine on HKUST-1/ZIF-8 nanocomposite: Isotherms, kinetics models and mechanism. Int. J. Environ. Sci. Technol. 2023, 20, 1645–1672. [Google Scholar] [CrossRef]
- Moridi, A.; Sabbaghi, S.; Rasouli, J.; Rasouli, K.; Hashemi, S.A.; Chiang, W.; Mousavi, S.M. Removal of Cefixime from Wastewater Using a Superb nZVI/Copper Slag Nanocomposite: Optimization and Characterization. Water 2023, 15, 1819. [Google Scholar] [CrossRef]
- Wang, S.; Ariyanto, E. Competitive adsorption of malachite green and Pb ions on natural zeolite. J. Colloid Interface Sci. 2007, 314, 25–31. [Google Scholar] [CrossRef]
- Fabryanty, R.; Valencia, C.; Soetaredjo, F.E.; Putro, J.N.; Santoso, S.P.; Kurniawan, A.; Ju, Y.-H.; Ismadji, S. Removal of crystal violet dye by adsorption using bentonite–alginate composite. J. Environ. Chem. Eng. 2017, 5, 5677–5687. [Google Scholar] [CrossRef]
- Abdel-Hady, E.; Mahmoud, R.; Hafez, S.H.; Mohamed, H.F. Hierarchical ternary ZnCoFe layered double hydroxide as efficient adsorbent and catalyst for methanol electrooxidation. J. Mater. Res. Technol. 2022, 17, 1922–1941. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Nagy, B.; Mânzatu, C.; Măicăneanu, A.; Indolean, C.; Barbu-Tudoran, L.; Majdik, C. Linear and nonlinear regression analysis for heavy metals removal using Agaricus bisporus macrofungus. Arab. J. Chem. 2017, 10, S3569–S3579. [Google Scholar] [CrossRef]
- Dubinin, M.M. The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. Chem. Rev. 1960, 60, 235–241. [Google Scholar] [CrossRef]
- Sips, R. Combined form of Langmuir and Freundlich equations. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Toth, J. State equation of the solid-gas interface layers. Acta Chim. Hung. 1971, 69, 311–328. [Google Scholar]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Vilela, P.B.; Dalalibera, A.; Duminelli, E.C.; Becegato, V.A.; Paulino, A.T. Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ. Sci. Pollut. Res. 2018, 26, 28481–28489. [Google Scholar] [CrossRef]
- Baudu, M. Etude des interactions solutes-fibres de charbon actif: Applications et regeneration. Ph.D. Thesis, Université de Rennes 1, Rennes, France, 1990. [Google Scholar]
- Majd, M.M.; Kordzadeh-Kermani, V.; Ghalandari, V.; Askari, A.; Sillanpää, M. Adsorption isotherm models: A comprehensive and systematic review (2010–2020). Sci. Total Environ. 2021, 812, 151334. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef]
- Adebayo, M.A.; Areo, F.I. Removal of phenol and 4-nitrophenol from wastewater using a composite prepared from clay and Cocos nucifera shell: Kinetic, equilibrium and thermodynamic studies. Resour. Environ. Sustain. 2021, 3, 100020. [Google Scholar] [CrossRef]
- Hu, Q.; Pang, S.; Wang, D. In-depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review. Sep. Purif. Rev. 2021, 51, 281–299. [Google Scholar] [CrossRef]
- Chahinez, H.-O.; Abdelkader, O.; Leila, Y.; Tran, H.N. One-stage preparation of palm petiole-derived biochar: Characterization and application for adsorption of crystal violet dye in water. Environ. Technol. Innov. 2020, 19, 100872. [Google Scholar] [CrossRef]
- GadelHak, Y.; El-Azazy, M.; Shibl, M.F.; Mahmoud, R.K. Cost estimation of synthesis and utilization of nano-adsorbents on the laboratory and industrial scales: A detailed review. Sci. Total Environ. 2023, 875, 162629. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Oyewo, O.A.; Onwudiwe, D.C. Adsorption and photocatalytic removal of Rhodamine B from wastewater using carbon-based materials. FlatChem 2021, 29, 100277. [Google Scholar] [CrossRef]
- Han, Y.; Li, W.; Zhang, J.; Meng, H.; Xu, Y.; Zhang, X. Adsorption behavior of Rhodamine B on nanoporous polymers. RSC Adv. 2015, 5, 104915–104922. [Google Scholar] [CrossRef]
- Hayeeye, F.; Sattar, M.; Chinpa, W.; Sirichote, O. Kinetics and thermodynamics of Rhodamine B adsorption by gelatin/activated carbon composite beads. Colloids Surf. A Physicochem. Eng. Asp. 2017, 513, 259–266. [Google Scholar] [CrossRef]
- Sen, N.; Shefa, N.R.; Reza, K.; Shawon, S.M.A.Z.; Rahman, W. Adsorption of crystal violet dye from synthetic wastewater by ball-milled royal palm leaf sheath. Sci. Rep. 2024, 14, 5349. [Google Scholar] [CrossRef]
- Postai, D.L.; Demarchi, C.A.; Zanatta, F.; Melo, D.C.C.; Rodrigues, C.A. Adsorption of rhodamine B and methylene blue dyes using waste of seeds of Aleurites Moluccana, a low cost adsorbent. Alex. Eng. J. 2016, 55, 1713–1723. [Google Scholar] [CrossRef]
- Sultana, S.; Islam, K.; Hasan, A.; Khan, H.J.; Khan, M.A.R.; Deb, A.; Raihan, A.; Rahman, W. Adsorption of crystal violet dye by coconut husk powder: Isotherm, kinetics and thermodynamics perspectives. Environ. Nanotechnol. Monit. Manag. 2022, 17. [Google Scholar] [CrossRef]
- Motahari, F.; Mozdianfard, M.R.; Salavati-Niasari, M. Synthesis and adsorption studies of NiO nanoparticles in the presence of H2acacen ligand, for removing Rhodamine B in wastewater treatment. Process. Saf. Environ. Prot. 2015, 93, 282–292. [Google Scholar] [CrossRef]
- Al-Shahrani, S. Phenomena of Removal of Crystal Violet from Wastewater Using Khulays Natural Bentonite. J. Chem. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Geng, J.; Gu, F.; Chang, J. Fabrication of magnetic lignosulfonate using ultrasonic-assisted in situ synthesis for efficient removal of Cr(Ⅵ) and Rhodamine B from wastewater. J. Hazard. Mater. 2019, 375, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Muthukumaran, C.; Sivakumar, V.M.; Thirumarimurugan, M. Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent. J. Taiwan Inst. Chem. Eng. 2016, 63, 354–362. [Google Scholar] [CrossRef]
- Li, Q.; Tang, X.; Sun, Y.; Wang, Y.; Long, Y.; Jiang, J.; Xu, H. Removal of Rhodamine B from wastewater by modified Volvariella volvacea: Batch and column study. RSC Adv. 2015, 5, 25337–25347. [Google Scholar] [CrossRef]
- Rani, S.; Chaudhary, S. Adsorption of methylene blue and crystal violet dye from waste water using Citrus limetta peel as an adsorbent. Mater. Today Proc. 2022, 60, 336–344. [Google Scholar] [CrossRef]
- Mahmoud, R.; Mohamed, H.F.M.; Hafez, S.H.M.; Gadelhak, Y.M.; Abdel-Hady, E.E. Valorization of spent double substituted Co–Ni–Zn–Fe LDH wastewater nanoadsorbent as methanol electro-oxidation catalyst. Sci. Rep. 2022, 12, 19354. [Google Scholar] [CrossRef]
- Mohamed, H.; Mahmoud, R.; Abdelwahab, A.; Farghali, A.A.; El-Ela, F.I.A.; Allah, A.E. Multifunctional ternary ZnMgFe LDH as an efficient adsorbent for ceftriaxone sodium and antimicrobial agent: Sustainability of adsorption waste as a catalyst for methanol electro-oxidation. RSC Adv. 2023, 13, 26069–26088. [Google Scholar] [CrossRef]
- Kamal, W.; Mahmoud, R.; Allah, A.E.; Abdelwahab, A.; Taha, M.; Farghali, A.A. Insights into synergistic utilization of residual of ternary layered double hydroxide after oxytetracycline as a potential catalyst for methanol electrooxidation. Chem. Eng. Res. Des. 2022, 188, 249–264. [Google Scholar] [CrossRef]
- Sharma, A.; Aggarwal, N.; Rastogi, S.; Choudhury, R.; Tripathi, S. Effectiveness of platelet-rich fibrin in the management of pain and delayed wound healing associated with established alveolar osteitis (dry socket). Eur. J. Dent. 2017, 11, 508–513. [Google Scholar] [CrossRef]
- Gürses, A.; Doğar, Ç.; Yalçın, M.; Açıkyıldız, M.; Bayrak, R.; Karaca, S. The adsorption kinetics of the cationic dye, methylene blue, onto clay. J. Hazard. Mater. 2006, 131, 217–228. [Google Scholar] [CrossRef]
- Senthilkumaar, S.; Varadarajan, P.; Porkodi, K.; Subbhuraam, C. Adsorption of methylene blue onto jute fiber carbon: Kinetics and equilibrium studies. J. Colloid Interface Sci. 2004, 284, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Rudzinski, W.; Plazinski, W. Kinetics of dyes adsorption at the solid−solution interfaces: A theoretical description based on the two-step kinetic model. Environ. Sci. Technol. 2008, 42, 2470–2475. [Google Scholar] [CrossRef] [PubMed]
- Avrami, M. Kinetics of phase change. III: Granulation, phase change and microstructure. J. Chem. Phys. 1941, 9, 177–184. [Google Scholar] [CrossRef]
Isotherm Models | Equation | Model Parameters | Values (RH) | R2 | Values (CV) | R2 | |
---|---|---|---|---|---|---|---|
Two-parameter isotherms | |||||||
Langmuir | qmax (mg/g) | Parameter that reflects monolayer formation | 519.029 | 0.990 | 921.12 | 0.997 | |
KL (L/mg) | Adsorption equilibrium constant | 0.31 | 0.12 | ||||
Freundlich | qe = Kf Ce1/nf | Kf (L/g) | A constant of relative adsorption capacity | 121.169 | 0.986 | 111.05 | 0.990 |
1/nf (−) | Constant for surface heterogeneity | 0.68 | 0.65 | ||||
Dubinin–Radushkevich | qe = (qm) exp (−Kad ε2) ε = RT (1 + (1/Ce)) | qm (mg/g) | Theoretical adsorption capacity | 420.53 | 0.954 | 662.42 | 0.958 |
Kad (mol2/KJ2) | Constant related to adsorption energy | 0.00036 | 0.00064 | ||||
Three-parameter isotherms | |||||||
Langmuir–Freundlich | qmax (mg/g) | Max. adsorption capacity | 262.99 | 0.977 | 864.99 | 0.976 | |
KLF (L/mg) | Equilibrium constant | 0.918 | 0.13 | ||||
βLF (-) | Heterogeneity parameter | 2.32 | 1.05 | ||||
Sips | qmax (mg/g) | Maximum adsorption capacity | 262.99 | 0.977 | 844.08 | 0.975 | |
Ks | Equilibrium constant (L/mg) | 0.819 | 0.123 | ||||
ns (-) | Sips’ model exponent | 2.32 | 1.06 | ||||
Redlich–Peterson | qmax (L/mg) | Redlich isotherm constant | 123.47 | 0.955 | 87.18 | 0.976 | |
Ks (mg/g) | Isotherm constant | 0.0279 | 0.022 | ||||
βs (-) | Isotherm constant | 2.68 | 1.54 | ||||
Khan | Isotherm constant | 95.81 | 0.997 | 1356.97 | 0.977 | ||
Isotherm constant | 0.01 | 0.08 | |||||
Isotherm constant | 1.27 | 1.35 | |||||
Toth | Ke (mol·L/mg2) | Max. adsorption capacity | 331.04 | 0.994 | 134.28 | 0.976 | |
KL (L/mg) | Equilibrium constant | 0.028 | 0.022 | ||||
n (-) | Model exponent | 2.68 | 1.54 | ||||
Higher-parameter isotherms | |||||||
Baudu | qmax (mg/g) | Baudu max. adsorption capacity | 132.31 | 0.992 | 11.047 | 0.963 | |
bo (-) | Equilibrium constant | 147,707.54 | 179,116.46 | ||||
X (-) | Baudu parameter | 0.58 | 0.649 | ||||
Y (-) | Baudu parameter | 14.67 | 1.53 | ||||
Fritz–Schlunder | Fritz–Schlunder maximum adsorption capacity (mg/g) | 5.23 | 0.998 | 249.02 | 0.979 | ||
Model parameter | 0.092 | 0.379 | |||||
Model parameter | 0.011 | 0.000163 | |||||
Model parameter | 1.299 | 0.8 | |||||
Model parameter | 1.26 | 3.09 |
Kinetics Model | Kinetics Model Equation | Parameter | Values for (RH) | Values for (CV) |
---|---|---|---|---|
Pseudo-first-order | ) qe is the adsorption capacity at equilibrium, k1 is the pseudo-first-order rate constant (mg/g) | K1 (min−1) qe R2 | 1.86 20.44 0.95 | 1.86 39.74 0.96 |
Pseudo-second-order | k2: pseudo-second-order rate constant (g/(mg·min)) | K2 qe (mg/g) R2 | 1.03 20.47 0.94 | 1.03 40.27 0.95 |
Mixed first- and second-order | f2: mixed 1st- and 2nd-order coefficient (g/(mg·min)) k: adsorption rate constant (min−1) | K qe (mg/g) f2 R2 | 0.097 20.06 0.105 0.92 | 0.159 40.74 0 0.99 |
Avrami model | kav: Avrami model rate constant nav: model’s component half-life = | Kav (min−1) nav (-) qe (mg/g) R2 | 5.78 5.47 20.03 0.99 | 0.41 0.387 40.74 0.99 |
Material | Qmax. for RH (mg/g) | Reference | Material | Qmax. for CV (mg/g) | Reference |
---|---|---|---|---|---|
Activated carbon | 2.5–1200 | [97] | |||
CCB | 519.029 | This work | CCB | 921.12 | This work |
Nanoporous polymers | 260.42 | [98] | Bentonite—alginate | 601.9 | [81] |
Gelatin/activated carbon | 256.41 | [99] | Royal palm leaf sheath | 454.54 | [100] |
Seeds of Aleurites Moluccana | 178 | [101] | Coconut husk powder | 454.54 | [102] |
NiO nanoparticles | 111 | [103] | Khulays bentonite | 263 | [104] |
Magnetic lignosulfonate | 57.14 | [105] | Magnetic nanoadsorbent | 166.6 | [106] |
Modified Volvariella volvacea | 33.51 | [107] | Citrus limetta peel | 81.48 | [108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, H.; Enaiet Allah, A.; Essam, D.; Farghali, A.A.; Allam, A.A.; Othman, S.I.; Abdelwahab, A.; Mahmoud, R. Waste Biomass Utilization for the Production of Adsorbent and Value-Added Products for Investigation of the Resultant Adsorption and Methanol Electro-Oxidation. Catalysts 2024, 14, 574. https://doi.org/10.3390/catal14090574
Mohamed H, Enaiet Allah A, Essam D, Farghali AA, Allam AA, Othman SI, Abdelwahab A, Mahmoud R. Waste Biomass Utilization for the Production of Adsorbent and Value-Added Products for Investigation of the Resultant Adsorption and Methanol Electro-Oxidation. Catalysts. 2024; 14(9):574. https://doi.org/10.3390/catal14090574
Chicago/Turabian StyleMohamed, Hala, Abeer Enaiet Allah, Doaa Essam, Ahmed A. Farghali, Ahmed A. Allam, Sarah I. Othman, Abdalla Abdelwahab, and Rehab Mahmoud. 2024. "Waste Biomass Utilization for the Production of Adsorbent and Value-Added Products for Investigation of the Resultant Adsorption and Methanol Electro-Oxidation" Catalysts 14, no. 9: 574. https://doi.org/10.3390/catal14090574
APA StyleMohamed, H., Enaiet Allah, A., Essam, D., Farghali, A. A., Allam, A. A., Othman, S. I., Abdelwahab, A., & Mahmoud, R. (2024). Waste Biomass Utilization for the Production of Adsorbent and Value-Added Products for Investigation of the Resultant Adsorption and Methanol Electro-Oxidation. Catalysts, 14(9), 574. https://doi.org/10.3390/catal14090574