A Critical Review of Clay Mineral-Based Photocatalysts for Wastewater Treatment
Abstract
:1. Introduction
2. Clay Mineral Activation Methods
2.1. Acid Activation
2.2. Alkali Activation
2.3. Calcination Activation
2.4. Mechanical Activation
3. Photocatalyst Modification Strategies
3.1. Doping
3.1.1. Metal-Ion Doping
3.1.2. Nonmetallic-Ion Doping
3.2. Deposition
3.2.1. Metal Deposition
3.2.2. Noble Metal Deposition
3.3. Common Heterojunction Design
3.3.1. Conventional Heterojunctions
3.3.2. Type “Z” Heterojunction Design
4. Clay Mineral-Based Photocatalyst
4.1. Layered-Structure Clay Mineral-Based Photocatalyst
4.1.1. Kaolinite-Based Photocatalyst
4.1.2. Montmorillonite-Based Photocatalyst
4.1.3. Attapulgite-Based Photocatalyst
4.1.4. Sepiolite-Based Photocatalyst
4.2. Porous-Structure Clay Mineral-Based Photocatalyst
4.2.1. Diatomite-Based Photocatalyst
4.2.2. Zeolite-Based Photocatalyst
4.3. Differences among Clay-Based Materials
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, Y.; Zhang, N.; Chu, C.; Xiao, Y.; Niu, R.; Shao, C. Health impact assessment of the surface water pollution in China. Sci. Total Environ. 2024, 933, 173040. [Google Scholar] [CrossRef]
- Chen, P. Unlocking policy effects: Water resources management plans and urban water pollution. J. Environ. Manag. 2024, 365, 121642. [Google Scholar] [CrossRef]
- Tang, W.; Pei, Y.; Zheng, H.; Zhao, Y.; Shu, L.; Zhang, H. Twenty years of China’s water pollution control: Experiences and challenges. Chemosphere 2022, 295, 133875. [Google Scholar] [CrossRef]
- Qi, Y.; Shen, Y.; Zhao, S.; Jiang, X.; Ma, R.; Cui, B.; Zhao, Q.; Wei, D. Degradation of multiple xanthates using highly efficient visible light-responsive BiOBr-TiO2 composite photocatalysts. J. Ind. Eng. Chem. 2024, 132, 461–473. [Google Scholar] [CrossRef]
- Zhao, S.; Xiao, H.; Chen, Y.; Qi, Y.; Yan, C.; Ma, R.; Zhao, Q.; Liu, W.; Shen, Y. Photocatalytic degradation of xanthates under visible light using heterogeneous CuO/TiO2/montmorillonite composites. Green Smart Min. Eng. 2024, 1, 67–75. [Google Scholar] [CrossRef]
- He, J.; Kumar, A.; Khan, M.; Lo, I.M.C. Critical review of photocatalytic disinfection of bacteria: From noble metals- and carbon nanomaterials-TiO2 composites to challenges of water characteristics and strategic solutions. Sci. Total Environ. 2021, 758, 143953. [Google Scholar] [CrossRef]
- Saddique, Z.; Imran, M.; Javaid, A.; Latif, S.; Hussain, N.; Kowal, P.; Boczkaj, G. Band engineering of BiOBr based materials for photocatalytic wastewater treatment via advanced oxidation processes (AOPs)—A review. Water Resour. Ind. 2023, 29, 100211. [Google Scholar] [CrossRef]
- Li, C.; Zhu, N.; Yang, S.; He, X.; Zheng, S.; Sun, Z.; Dionysiou, D.D. A review of clay based photocatalysts: Role of phyllosilicate mineral in interfacial assembly, microstructure control and performance regulation. Chemosphere 2021, 273, 129723. [Google Scholar] [CrossRef]
- Cerrato, E.; Gaggero, E.; Calza, P.; Paganini, M.C. The role of Cerium, Europium and Erbium doped TiO2 photocatalysts in water treatment: A mini-review. Chem. Eng. J. Adv. 2022, 10, 100268. [Google Scholar] [CrossRef]
- Khan, H.; Shah, M.U.H. Modification strategies of TiO2 based photocatalysts for enhanced visible light activity and energy storage ability: A review. J. Environ. Chem. Eng. 2023, 11, 111532. [Google Scholar] [CrossRef]
- Sugita, T.; Mori, M.; Shimoyama, I. Conversion of clay minerals to photocatalysts for CrVI reduction and salicylic acid decomposition. Appl. Clay Sci. 2023, 243, 107074. [Google Scholar] [CrossRef]
- Abeyta, K.P.; da Silva, M.L.A.; Silva, C.L.S.; Pontes, L.A.M.; Teixeira, L.S.G. Clay-based catalysts applied to glycerol valorization: A review. Sustain. Chem. Pharm. 2024, 40, 101641. [Google Scholar] [CrossRef]
- Marsh, A.T.M.; Krishnan, S.; Bernal, S.A. Structural features of thermally or mechano-chemically treated montmorillonite clays as precursors for alkali-activated cements production. Cem. Concr. Res. 2024, 181, 107546. [Google Scholar] [CrossRef]
- Mansuri, A.; Trivedi, C.; Parikh, A.; Kumar, A. Mitigating phthalate toxicity: The protective role of humic acid and clay in zebrafish larvae. Chemosphere 2024, 354, 141756. [Google Scholar] [CrossRef]
- Dhar, M.; Bishnoi, S. Influence of calcination temperature on the physical and chemical characteristics of kaolinitic clays for use as supplementary cementitious materials. Cem. Concr. Res. 2024, 178, 107464. [Google Scholar] [CrossRef]
- Tole, I.; Delogu, F.; Qoku, E.; Habermehl-Cwirzen, K.; Cwirzen, A. Enhancement of the pozzolanic activity of natural clays by mechanochemical activation. Constr. Build. Mater. 2022, 352, 128739. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, Y.; Zhang, Z.; Ma, Y.; Wang, H. Recent progress of utilization of activated kaolinitic clay in cementitious construction materials. Compos. Part B Eng. 2021, 211, 108636. [Google Scholar] [CrossRef]
- Fatimah, I.; Ardianti, S.; Sahroni, I.; Purwiandono, G.; Sagadevan, S.; Doong, R.-A. Visible light sensitized porous clay heterostructure photocatalyst of zinc-silica modified montmorillonite by using tris(2,2′-bipyridyl) dichlororuthenium. Appl. Clay Sci. 2021, 204, 106023. [Google Scholar] [CrossRef]
- Alanazi, A.M.; Jefri, O.A.; Alam, M.G.; Al-Faze, R.; Kooli, F. organo acid-activated clays for water treatment as removal agent of Eosin-Y: Properties, regeneration, and single batch design absorber. Heliyon 2024, 10, e30530. [Google Scholar] [CrossRef]
- Dodoo, D.; Appiah, G.; Acquaah, G.; Junior, T.D. Fixed-bed column study for the remediation of the bauxite-liquid residue using acid-activated clays and natural clays. Heliyon 2023, 9, e14310. [Google Scholar] [CrossRef]
- Trabelsi, W.; Tlili, A. Phosphoric acid purification through different raw and activated clay materials (Southern Tunisia). J. Afr. Earth Sci. 2017, 129, 647–658. [Google Scholar] [CrossRef]
- Fashtali, A.R.; Payan, M.; Ranjbar, P.Z.; Najafi, E.K.; Chenari, R.J. Attenuation of Zn(II) and Cu(II) by low-alkali activated clay-fly ash liners. Appl. Clay Sci. 2024, 250, 107298. [Google Scholar] [CrossRef]
- Khalifa, A.Z.; Cizer, Ö.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A.T.M. Advances in alkali-activation of clay minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Provis, J.L.; Cizer, Ö.; Ye, G. Autogenous shrinkage of alkali-activated slag: A critical review. Cem. Concr. Res. 2023, 172, 107244. [Google Scholar] [CrossRef]
- Georgopoulos, G.; Aspiotis, K.; Badogiannis, E.; Tsivilis, S.; Perraki, M. Influence of mineralogy and calcination temperature on the behavior of palygorskite clay as a pozzolanic supplementary cementitious material. Appl. Clay Sci. 2023, 232, 106797. [Google Scholar] [CrossRef]
- Marsh, A.T.M.; Brown, A.P.; Freeman, H.M.; Walkley, B.; Pendlowski, H.; Bernal, S.A. Determining aluminium co-ordination of kaolinitic clays before and after calcination with electron energy loss spectroscopy. Appl. Clay Sci. 2024, 255, 107402. [Google Scholar] [CrossRef]
- Kashif, M.; Kang, C.; Siddhartha, T.R.; Che, C.A.; Su, Y.; Heynderickx, P.M. Investigating the effects of calcination temperature on porous clay heterostructure characteristics. Vacuum 2024, 227, 113415. [Google Scholar] [CrossRef]
- Mañosa, J.; Alvarez-Coscojuela, A.; Marco-Gibert, J.; Maldonado-Alameda, A.; Chimenos, J.M. Enhancing reactivity in muscovitic clays: Mechanical activation as a sustainable alternative to thermal activation for cement production. Appl. Clay Sci. 2024, 250, 107266. [Google Scholar] [CrossRef]
- Yin, Y.; Kang, X.; Han, B. Two-dimensional materials: Synthesis and applications in the electro-reduction of carbon dioxide. Chem. Synth. 2022, 2, 19. [Google Scholar] [CrossRef]
- D’Elia, A.; Pinto, D.; Eramo, G.; Giannossa, L.C.; Ventruti, G.; Laviano, R. Effects of processing on the mineralogy and solubility of carbonate-rich clays for alkaline activation purpose: Mechanical, thermal activation in red/ox atmosphere and their combination. Appl. Clay Sci. 2018, 152, 9–21. [Google Scholar] [CrossRef]
- Luzu, B.; Duc, M.; Djerbi, A.; Gautron, L. High performance illitic clay-based geopolymer: Influence of thermal/mechanical activation on strength development. Appl. Clay Sci. 2024, 258, 107445. [Google Scholar] [CrossRef]
- Huang, A.; He, J.; Feng, J.; Huang, C.; Yang, J.; Mo, W.; Su, X.; Zou, B.; Ma, S.; Lin, H.; et al. A high-efficiency clay mineral based organic photocatalyst towards photodegradation of butyl xanthate in mineral processing wastewater. Sep. Purif. Technol. 2024, 349, 127880. [Google Scholar] [CrossRef]
- Karunadasa, K.S.P.; Wijekoon, A.S.K.; Manoratne, C.H. TiO2-kaolinite composite photocatalyst for industrial organic waste decontamination. Next Mater. 2024, 3, 100065. [Google Scholar] [CrossRef]
- Li, X.; Simon, U.; Bekheet, M.F.; Gurlo, A. Mineral-Supported Photocatalysts: A Review of Materials, Mechanisms and Environmental Applications. Energies 2022, 15, 5607. [Google Scholar] [CrossRef]
- Ruzimuradov, O.; Musaev, K.; Mamatkulov, S.; Butanov, K.; Gonzalo-Juan, I.; Khoroshko, L.; Turapov, N.; Nurmanov, S.; Razzokov, J.; Borisenko, V.; et al. Structural and optical properties of sol-gel synthesized TiO2 nanocrystals: Effect of Ni and Cr (co)doping. Opt. Mater. 2023, 143, 114203. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, R.; Hou, T.; Zhang, S.; Wan, X.; Li, Y.; Liu, S.; Liu, J.; Zhang, J. Doping transition metal in PdSeO3 atomic layers by aqueous cation exchange: A new doping protocol for a new 2D photocatalyst. Chin. Chem. Lett. 2022, 33, 3739–3744. [Google Scholar] [CrossRef]
- Bashir, N.; Sawaira, T.; Jamil, A.; Awais, M.; Habib, A.; Afzal, A. Challenges and prospects of main-group metal-doped TiO2 photocatalysts for sustainable water remediation. Mater. Today Sustain. 2024, 27, 100869. [Google Scholar] [CrossRef]
- Sahoo, S.; Mahamallik, P.; Das, R.; Panigrahi, S. A critical review on non-metal doped g-C3N4 based photocatalyst for organic pollutant remediation with sustainability assessment by life cycle analysis. Environ. Res. 2024, 258, 119390. [Google Scholar] [CrossRef]
- Sultana, M.; Mondal, A.; Islam, S.; Khatun, M.A.; Rahaman, M.H.; Chakraborty, A.K.; Rahman, M.S.; Rahman, M.M.; Nur, A.S.M. Strategic development of metal doped TiO2 photocatalysts for enhanced dye degradation activity under UV–Vis irradiation: A review. Curr. Res. Green Sustain. Chem. 2023, 7, 100383. [Google Scholar] [CrossRef]
- Mahadadalkar, M.A.; Park, N.; Yusuf, M.; Nagappan, S.; Nallal, M.; Park, K.H. Electrospun Fe doped TiO2 fiber photocatalyst for efficient wastewater treatment. Chemosphere 2023, 330, 138599. [Google Scholar] [CrossRef]
- Lim, C.; An, H.-R.; Ha, S.; Myeong, S.; Min, C.G.; Chung, H.-J.; Son, B.; Kim, C.-Y.; Park, J.-I.; Kim, H.; et al. Highly visible-light-responsive nanoporous nitrogen-doped TiO2 (N-TiO2) photocatalysts produced by underwater plasma technology for environmental and biomedical applications. Appl. Surf. Sci. 2023, 638, 158123. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, S.; Wang, B.; Yang, R.; Wang, R.; Zhu, X.; Song, Y.; Yuan, J.; Xu, H.; Li, H. A candy-like photocatalyst by wrapping Co, N-co-doped hollow carbon sphere with ultrathin mesoporous carbon nitride for boosted photocatalytic hydrogen evolution. Chin. Chem. Lett. 2023, 34, 107749. [Google Scholar] [CrossRef]
- Demarema, S.; Nasr, M.; Ookawara, S.; Abdelhaleem, A. New insights into green synthesis of metal oxide based photocatalysts for photodegradation of organic pollutants: A bibliometric analysis and techno-economic evaluation. J. Clean. Prod. 2024, 463, 142679. [Google Scholar] [CrossRef]
- Ahmad, I.; Li, G.; Al-Qattan, A.; Obaidullah, A.J.; Mahal, A.; Duan, M.; Ali, K.; Ghadi, Y.Y.; Ali, I. A review on versatile metal vanadates photocatalysts for energy conversion and environmental remediation. Mater. Today Sustain. 2024, 25, 100666. [Google Scholar] [CrossRef]
- Masih, D.; Ma, Y.; Rohani, S. Graphitic C3N4 based noble-metal-free photocatalyst systems: A review. Appl. Catal. B Environ. 2017, 206, 556–588. [Google Scholar] [CrossRef]
- Du, M.; Liu, W.; Liu, N.; Ling, Y.; Kang, S. Mechanisms of noble metal-enhanced ferroelectric spontaneous polarized photocatalysis. Nano Energy 2024, 124, 109495. [Google Scholar] [CrossRef]
- Li, F.; Zhu, G.; Jiang, J.; Yang, L.; Deng, F.; Li, X. A review of updated S-scheme heterojunction photocatalysts. J. Mater. Sci. Technol. 2024, 177, 142–180. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, J.; Dai, K. Metal-sulfide-based heterojunction photocatalysts: Principles, impact, applications, and in-situ characterization. Chin. J. Catal. 2023, 49, 42–67. [Google Scholar] [CrossRef]
- Zhou, P.; Shen, Y.; Zhao, S.; Chen, Y.; Gao, S.; Liu, W.; Wei, D. Hydrothermal synthesis of novel ternary hierarchical MoS2/TiO2/clinoptilolite nanocomposites with remarkably enhanced visible light response towards xanthates. Appl. Surf. Sci. 2021, 542, 148578. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, Y.; Lei, T.; Yang, Z.; Yan, J.; Jiang, D. Preparation of ternary BiVO4/g-C3N4/diatomite composites for enhanced photodegradation of rhodamine B and formaldehyde. J. Photochem. Photobiol. A Chem. 2024, 457, 115906. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Z.; Wang, S.; Duan, R.; Wang, S.; Li, S.; Lan, B.; Gao, L. Synthesis of a double type-II CdS/Zn2In2S5/g-C3N4 heterojunction photocatalyst for the photodegradation of tetracycline under visible light. J. Environ. Chem. Eng. 2023, 11, 111315. [Google Scholar] [CrossRef]
- Zhu, Y.; Qian, H.; Alnuqaydan, A.M.; Siddeeg, S.M.; Abdullaeva, B.S.; Shawabkeh, A. Optimization of tetracycline antibiotic photocatalytic degradation from wastewater using a novel type-II α-Fe2O3-CeO2-SiO2 heterojunction photocatalyst: Performance, pathways, mechanism insights, reaction kinetics and toxicity assessment. J. Water Process Eng. 2024, 57, 104703. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, T.; Yang, T.; Pu, K.; Shi, J.; Zhou, A.; Li, H.; Wang, S.; Xue, J. Z-scheme heterojunction photocatalyst formed by MOF-derived C-TiO2 and Bi2WO6 for enhancing degradation of oxytetracycline: Mechanistic insights and toxicity evaluation in the presence of a single active species. J. Colloid Interface Sci. 2024, 665, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Li, Y.; Duan, R.; Li, S.; Lan, B.; Ma, Z. Synthesis of Ag2ZnGeO4/g-C3N4 binary heterostructure: A Z-scheme heterojunction photocatalyst for enhanced tetracycline degradation under visible light. Chem. Eng. Sci. 2024, 296, 120253. [Google Scholar] [CrossRef]
- Hu, F.; Li, J.; Peng, X.; Xu, J.; Xu, J.; Zeng, Y.; Chen, H.; Hong, B.; Wang, X. Ag/α-Fe2O3/g-C3N4 nanocomposites as Z-scheme heterojunction photocatalysts for degradation of RhB. J. Alloys Compd. 2024, 983, 173893. [Google Scholar] [CrossRef]
- Shuaibu, A.S.; Hafeez, H.Y.; Mohammed, J.; Dankawu, U.M.; Ndikilar, C.E.; Suleiman, A.B. Progress on g-C3N4 based heterojunction photocatalyst for H2 production via Photocatalytic water splitting. J. Alloys Compd. 2024, 1002, 175062. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Issa, M.A.; Ammar, S.H.; Ebrahim, S.E.; Khadim, H.J.; Okab, A.A. Photocatalytic degradation of Congo red dye using magnetic silica-coated Ag2WO4/Ag2S as Type I heterojunction photocatalyst: Stability and mechanisms studies. Mater. Sci. Semicond. Process 2023, 153, 107151. [Google Scholar] [CrossRef]
- Qi, K.; Imparato, C.; Almjasheva, O.; Khataee, A.; Zheng, W. TiO2-based photocatalysts from type-II to S-scheme heterojunction and their applications. J. Colloid Interface Sci. 2024, 675, 150–191. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Linghu, X.; Shu, Y.; Zhang, J.; Chen, Z.; Wu, Y.; Shan, D.; Wang, B. Classification and catalytic mechanisms of heterojunction photocatalysts and the application of titanium dioxide (TiO2)-based heterojunctions in environmental remediation. J. Environ. Chem. Eng. 2022, 10, 108077. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Hussain, M.K.; Khalid, N.R.; Tanveer, M.; Abbas, A.; Ali, F.; Hassan, W.; Rianna, M.; Rahman, S.; Hamza, M.; Aslam, M. Facile fabrication of Z-scheme ZnO/MoO3 heterojunction as an excellent visible-light responsive photocatalyst for the degradation of rhodamine B and alizarin yellow dyes. Opt. Mater. 2024, 148, 114794. [Google Scholar] [CrossRef]
- Muhammad, W.; Ali, W.; Khan, M.A.; Ali, F.; Zada, A.; Ansar, M.Z.; Yap, P.-S. Construction of visible-light-driven 2D/2D NiFe2O4/g-C3N4 Z-scheme heterojunction photocatalyst for effective degradation of organic pollutants and CO2 reduction. J. Environ. Chem. Eng. 2024, 12, 113409. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Chinthala, M.; Polagani, R.K. 3D kaolinite/g-C3N4-alginate beads as an affordable and sustainable photocatalyst for wastewater remediation. Carbohydr. Polym. 2024, 323, 121420. [Google Scholar] [CrossRef]
- Yadav, V.B.; Gadi, R.; Kalra, S. Clay based nanocomposites for removal of heavy metals from water: A review. J. Environ. Manag. 2019, 232, 803–817. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Yang, T.; Han, J.; Zhang, Y.; Zhao, L.; Zhao, J.; Li, R.; Huang, Y.; Gu, Z.; Wu, J. The Application of Mineral Kaolinite for Environment Decontamination: A Review. Catalysts 2023, 13, 123. [Google Scholar] [CrossRef]
- Bhattacharyya, K.G.; Gupta, S.S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Adv. Colloid Interface Sci. 2008, 140, 114–131. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Q.; Yang, J.; Ma, S.; Frost, R.L. The thermal behavior of kaolinite intercalation complexes—A review. Thermochim. Acta 2012, 545, 1–13. [Google Scholar] [CrossRef]
- Zhao, B.; Liu, L.; Cheng, H. Rational design of kaolinite-based photocatalytic materials for environment decontamination. Appl. Clay Sci. 2021, 208, 106098. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Q.; Cheng, H. Recent advances in kaolinite-based material for photocatalysts. Chin. Chem. Lett. 2021, 32, 2617–2628. [Google Scholar] [CrossRef]
- Awad, M.E.; Farrag, A.M.; El-Bindary, A.A.; El-Bindary, M.A.; Kiwaan, H.A. Photocatalytic degradation of Rhodamine B dye using low-cost pyrofabricated titanium dioxide quantum dots-kaolinite nanocomposite. Appl. Organomet. Chem. 2023, 37, e7113. [Google Scholar] [CrossRef]
- Ighnih, H.; Haounati, R.; Malekshah, R.E.; Ouachtak, H.; Jada, A.; Addi, A.A. Photocatalytic degradation of RhB dye using hybrid nanocomposite BiOCl@Kaol under sunlight irradiation. J. Water Process Eng. 2023, 54, 103925. [Google Scholar] [CrossRef]
- Li, C.; Sun, Z.; Zhang, W.; Yu, C.; Zheng, S. Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Appl. Catal. B Environ. 2018, 220, 272–282. [Google Scholar] [CrossRef]
- Li, Y.; Yu, B.; Hu, Z.; Wang, H. Construction of direct Z-scheme SnS2@ZnIn2S4@kaolinite heterostructure photocatalyst for efficient photocatalytic degradation of tetracycline hydrochloride. Chem. Eng. J. 2022, 429, 132105. [Google Scholar] [CrossRef]
- Jayrajsinh, S.; Shankar, G.; Agrawal, Y.K.; Bakre, L. Montmorillonite nanoclay as a multifaceted drug-delivery carrier: A review. J. Drug Deliv. Sci. Technol. 2017, 39, 200–209. [Google Scholar] [CrossRef]
- Bee, S.-L.; Abdullah, M.A.A.; Bee, S.-T.; Sin, L.T.; Rahmat, A.R. Polymer nanocomposites based on silylated-montmorillonite: A review. Prog. Polym. Sci. 2018, 85, 57–82. [Google Scholar] [CrossRef]
- Sarkar, A.; Mushahary, N.; Basumatary, F.; Das, B.; Basumatary, S.F.; Venkatesan, K.; Selvaraj, M.; Rokhum, S.L.; Basumatary, S. Efficiency of montmorillonite-based materials as adsorbents in dye removal for wastewater treatment. J. Environ. Chem. Eng. 2024, 12, 112519. [Google Scholar] [CrossRef]
- Li, Y.; Tian, G.; Dong, G.; Bai, S.; Han, X.; Liang, J.; Meng, J.; Zhang, H. Research progress on the raw and modified montmorillonites as adsorbents for mycotoxins: A review. Appl. Clay Sci. 2018, 163, 299–311. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, Y.; Wei, H.; Li, K. In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) degradation. Appl. Surf. Sci. 2018, 456, 577–585. [Google Scholar] [CrossRef]
- Yu, J.; Zhang, P.; Zhang, Y.; Sun, K.; Shi, X.; Li, L. The preparation of conjugated microporous polymer composite materials with montmorillonite template and its improvement in photocatalytic degradation for multiple antibiotics. Appl. Clay Sci. 2023, 231, 106752. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Mengelizadeh, N.; Sathishkumar, K.; Mohebi, S.; Balarak, D. Preparation of CuFe2O4/montmorillonite nanocomposite and explaining its performance in the sonophotocatalytic degradation process for ciprofloxacin. Colloid Interface Sci. Commun. 2021, 45, 100532. [Google Scholar] [CrossRef]
- Chen, H.; Jia, Y.; Li, J.; Ai, Y.; Zhang, W.; Han, L.; Chen, M. Enhanced efficiencies on purifying acid mine drainage in constructed wetlands based on synergistic adsorption of attapulgite-soda residue composites and microbial sulfate reduction. J. Hazard. Mater. 2024, 470, 134221. [Google Scholar] [CrossRef]
- Kong, M.; Ouyang, X.; Han, T.; Wang, W.; Yin, H.; Wang, Y. Combination of lanthanum-modified attapulgite and Vallisneria natans for immobilization of phosphorus in various types of sediments. Chem. Eng. J. 2024, 492, 152264. [Google Scholar] [CrossRef]
- Wu, T.; Tang, X.; Lin, Y.; Wang, Y.; Ma, S.; Xue, Y.; Ren, H.; Xu, K. Heterogeneous catalytic ozonation of atrazine with oxygen vacancy-rich cu-loaded and ce-loaded attapulgite: Efficiency, mechanism and environmental application. Chem. Eng. J. 2024, 486, 150079. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Jiang, J.; Yao, J. Designing of Recyclable Attapulgite for Wastewater Treatments: A Review. ACS Sustain. Chem. Eng. 2018, 7, 1855–1869. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, X.; Qiao, J.; Liu, Y.; Zhang, J.; Wang, Y. Recent developments in synthesis of attapulgite composite materials for refractory organic wastewater treatment: A review. RSC Adv. 2024, 14, 16300–16317. [Google Scholar] [CrossRef]
- Zhao, S.; Qi, Y.; Lv, H.; Jiang, X.; Wang, W.; Cui, B.; Liu, W.; Shen, Y. Effect of clay mineral support on photocatalytic performance of BiOBr-TiO2 for efficient photodegradation of xanthate. Adv. Powder Technol. 2024, 35, 104431. [Google Scholar] [CrossRef]
- Hakki, H.K.; Sillanpää, M. Comprehensive analysis of photocatalytic and photoreactor challenges in photocatalytic wastewater treatment: A case study with ZnO photocatalyst. Mater. Sci. Semicond. Process 2024, 181, 108592. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, Y.; Ma, Z.; Hu, Y.; Guan, H.; Zhang, W.; Jia, S. A readily synthesized ZnIn2S4/attapulgite as a high-performance photocatalyst for Cr(VI) reduction. Mater. Sci. Semicond. Process 2024, 178, 108446. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.; Li, S.; Xuan, K.; Guo, Y.; Li, J.; Wang, X.; Li, X.; Zhou, Z. Mesoporous sulfur-doped g-C3N4@attapulgite composite as an advanced photocatalyst for efficiently uranium(VI) recovery from aqueous solutions. J. Environ. Chem. Eng. 2024, 12, 112886. [Google Scholar] [CrossRef]
- Ma, J.; Zou, J.; Li, L.; Yao, C.; Kong, Y.; Cui, B.; Zhu, R.; Li, D. Nanocomposite of attapulgite–Ag3PO4 for Orange II photodegradation. Appl. Catal. B Environ. 2014, 144, 36–40. [Google Scholar] [CrossRef]
- Shang, J.; Deng, C.; Xue, Z.; Dong, Z.; Fu, L.; Fan, H. Kinetics of catalytic ozonation of methylene blue in wastewater with Fe/Ce co-doped in attapulgite. Desalination Water Treat. 2024, 317, 100023. [Google Scholar] [CrossRef]
- Tan, Y.; Yin, C.; Zheng, S.; Di, Y.; Sun, Z.; Li, C. Design and controllable preparation of Bi2MoO6/attapulgite photocatalyst for the removal of tetracycline and formaldehyde. Appl. Clay Sci. 2021, 215, 106319. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, L.; Hursthouse, A.; Song, N.; Ren, B. Sepiolite-Based Adsorbents for the Removal of Potentially Toxic Elements from Water: A Strategic Review for the Case of Environmental Contamination in Hunan, China. Int. J. Environ. Res. Public Health 2018, 15, 1653. [Google Scholar] [CrossRef] [PubMed]
- Eren, E.; Cubuk, O.; Ciftci, H.; Eren, B.; Caglar, B. Adsorption of basic dye from aqueous solutions by modified sepiolite: Equilibrium, kinetics and thermodynamics study. Desalination 2010, 252, 88–96. [Google Scholar] [CrossRef]
- Akkari, M.; Aranda, P.; Mayoral, A.; Garcia-Hernandez, M.; Ben, H.A.A.; Ruiz-Hitzky, E. Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants. J. Hazard. Mater. 2017, 340, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Ren, X.; Meng, D.; Gao, D.; Guo, Q.; Hu, X.; Wang, L.; Song, J. Facile fabrication of S-scheme Bi2MoO6/g-C3N4/sepiolite ternary photocatalyst for efficient tetracycline degradation under visible light. Mater. Sci. Semicond. Process 2023, 166, 107712. [Google Scholar] [CrossRef]
- Wang, P.; Qi, C.; Hao, L.; Wen, P.; Xu, X. Sepiolite/Cu2O/Cu photocatalyst: Preparation and high performance for degradation of organic dye. J. Mater. Sci. Technol. 2019, 35, 285–291. [Google Scholar] [CrossRef]
- Ren, X.; Hu, G.; Guo, Q.; Gao, D.; Wang, L.; Hu, X. Ag/Ag3PO4 nanoparticles assembled on sepiolite nanofibers: Enhanced visible-light-driven photocatalysis and the important role of Ag decoration. Mater. Sci. Semicond. Process 2023, 156, 107272. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, X.; Li, T.; Gao, S.; Gao, D.; Guo, Q.; Wang, L.; Hu, X. Facile synthesis of nano CeO2/sepiolite composite as visible-light-driven photocatalyst for rapid tetracycline removal. J. Environ. Chem. Eng. 2024, 12, 112829. [Google Scholar] [CrossRef]
- Yi, B.; Zeng, J.; Zhang, W.; Cui, H.; Liu, H.; Au, C.-T.; Wan, Q.; Yang, H. Enhanced hydrophilicity and promoted charge transfer in covalent triazine frameworks/sepiolite complexed via hydrogen bonding for visible-light driven degradation of antibiotics. Appl. Clay Sci. 2023, 238, 106921. [Google Scholar]
- Lopes, R.P.; da Souza, M.S.; Pereira, J.C.; Raupp, S.V.; Tatumi, S.H.; Yee, M.; Dillenburg, S.R. Late Pleistocene-Holocene diatomites from the coastal plain of southern Brazil: Paleoenvironmental implications. Quat. Int. 2021, 598, 38–55. [Google Scholar] [CrossRef]
- Borrelli, M.; Perri, E.; Avagliano, D.; Coraggio, F.; Critelli, S. Paleogeographic and sedimentary evolution of North Calabrian basins during the Messinian Salinity Crisis (South Italy). Mar. Pet. Geol. 2022, 141, 105726. [Google Scholar] [CrossRef]
- Zahajská, P.; Opfergelt, S.; Fritz, S.C.; Stadmark, J.; Conley, D.J. What is diatomite? Quat. Res. 2020, 96, 48–52. [Google Scholar] [CrossRef]
- Sannikova, N.; Shulepova, O.; Bocharova, A.; Kostomakhin, N.; Ilyasov, O.; Kovaleva, O. Natural reserves of diatomite are as a component of organomineral fertilizers based on chicken manure. IOP Conf. Ser. Earth Environ. Sci. 2021, 937, 032093. [Google Scholar] [CrossRef]
- Li, B.; Huang, H.; Guo, Y.; Zhang, Y. Diatomite-immobilized BiOI hybrid photocatalyst: Facile deposition synthesis and enhanced photocatalytic activity. Appl. Surf. Sci. 2015, 353, 1179–1185. [Google Scholar] [CrossRef]
- Liu, M.Y.; Zheng, L.; Lin, G.L.; Ni, L.F.; Song, X.C. Synthesis and photocatalytic activity of BiOCl/diatomite composite photocatalysts: Natural porous diatomite as photocatalyst support and dominant facets regulator. Adv. Powder Technol. 2020, 31, 339–350. [Google Scholar] [CrossRef]
- Tanniratt, P.; Wasanapiarnpong, T.; Mongkolkachit, C.; Sujaridworakun, P. Utilization of industrial wastes for preparation of high performance ZnO/diatomite hybrid photocatalyst. Ceram. Int. 2016, 42, 17605–17609. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.; Liu, Z.; Zhao, L.; Xiao, S.; Bi, F.; Wang, H.; Li, Y. One-pot synthesis of g-C3N4/diatomite composite with nitrogen vacancies for enhanced photocatalytic activity. Mater. Sci. Semicond. Process 2024, 177, 108341. [Google Scholar] [CrossRef]
- Zhu, H.; Ren, Q.; Ding, Y.; Zhu, C.; Zong, Y.; Hu, X.; Jin, Z. One-step synthesis of Ag3VO4/diatomite composite material for efficient degradation of organic dyes under visible light. Inorg. Chem. Commun. 2021, 131, 108759. [Google Scholar] [CrossRef]
- Van Viet, P.; Van Chuyen, D.; Hien, N.Q.; Duy, N.N.; Thi, C.M. Visible-light-induced photo-Fenton degradation of rhodamine B over Fe2O3-diatomite materials. J. Sci. Adv. Mater. Devices 2020, 5, 308–315. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Liu, D.; Liu, X.; Li, X.; Leng, C. Highly efficient removal of tetracycline hydrochloride under neutral conditions by visible photo-Fenton process using novel MnFe2O4/diatomite composite. J. Water Process Eng. 2021, 43, 102307. [Google Scholar] [CrossRef]
- SMITH, J.V. Topochemistry of zeolites and related materials. 1. Topology and geometry. Chem. Rev. 1988, 88, 149–182. [Google Scholar] [CrossRef]
- Zhou, P.; Shen, Y.; Zhao, S.; Li, G.; Cui, B.; Wei, D.; Shen, Y. Synthesis of clinoptilolite-supported BiOCl/TiO2 heterojunction nanocomposites with highly-enhanced photocatalytic activity for the complete degradation of xanthates under visible light. Chem. Eng. J. 2021, 407, 126697. [Google Scholar] [CrossRef]
- Rafiani, A.; Aulia, D.; Kadja, G.T.M. Zeolite-encapsulated catalyst for the biomass conversion: Recent and upcoming advancements. Case Stud. Chem. Environ. Eng. 2024, 9, 100717. [Google Scholar] [CrossRef]
- Al-Jubouri, S.M. Synthesis of hierarchically porous ZSM-5 zeolite by self-assembly induced by aging in the absence of seeding-assistance. Microporous Mesoporous Mater. 2020, 303, 110296. [Google Scholar] [CrossRef]
- Ravi, M.; Sushkevich, V.L.; van Bokhoven, J.A. Towards a better understanding of Lewis acidic aluminium in zeolites. Nat. Mater. 2020, 19, 1047–1056. [Google Scholar] [CrossRef]
- Pfriem, N.; Hintermeier, P.H.; Eckstein, S.; Kim, S.; Liu, Q.; Shi, H.; Milakovic, L.; Liu, Y.; Halle, G.L.; Baráth, E.; et al. Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores. Science 2021, 372, 952–957. [Google Scholar] [CrossRef]
- Znad, H.; Abbas, K.; Hena, S.; Awual, M.R. Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. J. Environ. Chem. Eng. 2018, 6, 218–227. [Google Scholar] [CrossRef]
- Badvi, K.; Javanbakht, V. Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. J. Clean. Prod. 2021, 280, 124518. [Google Scholar] [CrossRef]
- Latha, P.; Karuthapandian, S. Novel, Facile and Swift Technique for Synthesis of CeO2 Nanocubes Immobilized on Zeolite for Removal of CR and MO Dye. J. Clust. Sci. 2017, 28, 3265–3280. [Google Scholar] [CrossRef]
- Liu, J.; Lin, H.; Dong, Y.; He, Y.; Liu, C. MoS2 nanosheets loaded on collapsed structure zeolite as a hydrophilic and efficient photocatalyst for tetracycline degradation and synergistic mechanism. Chemosphere 2022, 287 Pt 2, 132211. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, N.; Tabatabaie, T.; Ramavandi, B.; Amiri, F. Ibuprofen elimination from water and wastewater using sonication/ultraviolet/hydrogen peroxide/zeolite-titanate photocatalyst system. Environ. Res. 2021, 198, 111260. [Google Scholar] [CrossRef] [PubMed]
Photocatalyst | Heterojunction Design | Pollutants | Pollutant Dosage (mg/L) | Degradation Rate | Irradiation Time (min) | Ref. |
---|---|---|---|---|---|---|
MoS2/TiO2/clinoptilolite | Type I | Xanthate | 20 | over 90% | 180 | [49] |
BiVO4/g-C3N4/Diatomite | Type II | Rhodamine B | 20 | 99% | 60 | [50] |
CdS/Zn2In2S5/g-C3N4 | Type II | Tetracycline | 20 | 94.7% | 60 | [51] |
α-Fe2O3-CeO2-SiO2 | Type II | Tetracycline | 25.1 | 95.9% | 94.2 | [52] |
Bi2WO6/C-TiO2 | Z-scheme | Oxytetracycline | 15 | 93.6% | 100 | [53] |
Ag2ZnGeO4/g-C3N4 | Z-scheme | Tetracycline | 10 | 94.3% | 140 | [54] |
Ag/α-Fe2O3/g-C3N4 | Z-scheme | Rhodamine B | 20 | 97.6% | 55 | [55] |
Photocatalyst | Heterojunction Design | Radiative Type | Pollutants | Pollutant Dosage (mg/L) | Degradation Rate | Irradiation Time (min) | Ref. |
---|---|---|---|---|---|---|---|
TiO2/kaolinite | / | solar light | Rhodamine B | 5 | 91% | 120 | [70] |
SnS2/ZnIn2S4/kaolinite | Z-scheme | solar light | Tetracycline | 40 | 97.8% | 60 | [73] |
AgCl/montmorillonite | / | UV light | Acid red 18 | 50 | 90% | 4.5 | [78] |
CuFe2O4/montmorillonite | / | sonophotocatalytic | Ciprofloxacin | 50 | Nearly 100% | 60 | [80] |
Ag3PO4/attapulgite | / | visible light | Orange II | 70 | 99% | 90 | [90] |
Bi2MoO₆/attapulgite | / | visible light | Tetracycline | 30 | 90% | 120 | [92] |
Sepiolite/Cu2O/Cu | / | visible light | Congo red | 10 | 95.1% | 50 | [97] |
CeO2/sepiolite | / | visible light | Tetracycline | 40 | 92.7% | 120 | [99] |
Ag3VO4/diatomite | / | visible light | Rhodamine B | 10 | 96% | 40 | [109] |
MnFe2O4/diatomite | / | photo-Fenton process | Tetracycline Hydrochloride | 80 | 91.8% | 60 | [111] |
Ni/TiO2/zeolite | / | UV light and H2O2 | Methylene blue | 10 | 99% | 120 | [119] |
MoS2/zeolites | / | visible light | Tetracycline | 200 | 87.2% | 180 | [121] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Zhao, S.; Shen, Y.; Jiang, X.; Lv, H.; Han, C.; Liu, W.; Zhao, Q. A Critical Review of Clay Mineral-Based Photocatalysts for Wastewater Treatment. Catalysts 2024, 14, 575. https://doi.org/10.3390/catal14090575
Qi Y, Zhao S, Shen Y, Jiang X, Lv H, Han C, Liu W, Zhao Q. A Critical Review of Clay Mineral-Based Photocatalysts for Wastewater Treatment. Catalysts. 2024; 14(9):575. https://doi.org/10.3390/catal14090575
Chicago/Turabian StyleQi, Yaozhong, Sikai Zhao, Yanbai Shen, Xiaoyu Jiang, Haiyi Lv, Cong Han, Wenbao Liu, and Qiang Zhao. 2024. "A Critical Review of Clay Mineral-Based Photocatalysts for Wastewater Treatment" Catalysts 14, no. 9: 575. https://doi.org/10.3390/catal14090575
APA StyleQi, Y., Zhao, S., Shen, Y., Jiang, X., Lv, H., Han, C., Liu, W., & Zhao, Q. (2024). A Critical Review of Clay Mineral-Based Photocatalysts for Wastewater Treatment. Catalysts, 14(9), 575. https://doi.org/10.3390/catal14090575