Efficient Removal of Methylene Blue Using an Organic–Inorganic Hybrid Polyoxometalate as a Dual-Action Catalyst for Oxidation and Reduction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of CoPMoV
2.2. Degradation of MB in the CoPMoV-H2O2 Fenton-like System
2.2.1. MB Degradation Intermediates Study
2.2.2. Reactive Species Analysis
2.2.3. Mechanism of MB Degradation
2.2.4. Reusability of CoPMoV in the Fenton-like Reaction
2.3. Catalytic Reduction of MB
2.3.1. Reduction Product Analysis
2.3.2. Reduction Mechanism
2.3.3. Reusability of CoPMoV in the Reduction
3. Experimental
3.1. Chemicals and Materials
3.2. Characterizations
3.3. MB Degradation
3.4. MB Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uddin, M.J.; Ampiaw, R.E.; Lee, W. Adsorptive removal of dyes from wastewater using a metal-organic framework: A review. Chemosphere 2021, 284, 131314. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review. Appl. Catal. B Environ. 2019, 255, 117739. [Google Scholar] [CrossRef]
- Ding, C.; Kang, S.; Li, W.; Gao, W.; Zhang, Z.; Zheng, L.; Cui, L. Mesoporous structure and amorphous Fe-N sites regulation in Fe-g-C3N4 for boosted visible-light-driven photo-Fenton reaction. J. Colloid Interface Sci. 2022, 608, 2515–2528. [Google Scholar] [CrossRef]
- Sharma, K.; Sudhaik, A.; Raizada, P.; Thakur, P.; Pham, X.M.; Le, Q.V.; Nguyen, V.H.; Ahamad, T.; Thakur, S.; Singh, P. Constructing α-Fe2O3/g-C3N4/SiO2 S-scheme-based heterostructure for photo-Fenton like degradation of rhodamine B dye in aqueous solution. Environ. Sci. Pollut. Res. 2023, 30, 124902–124920. [Google Scholar] [CrossRef]
- Naz, M.; Rafiq, A.; Ikram, M.; Haider, A.; Ahmad, S.O.A.; Haider, J.; Naz, S. Elimination of dyes by catalytic reduction in the absence of light: A review. J. Mater. Sci. 2021, 56, 15572–15608. [Google Scholar] [CrossRef]
- Zheng, K.T.; Ma, P.T. Recent advances in lanthanide-based POMs for photoluminescent applications. Dalton Trans. 2024, 53, 3949–3958. [Google Scholar] [CrossRef]
- Horn, M.R.; Singh, A.; Dubal, D. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energer Environ. Sci. 2021, 14, 1652–1700. [Google Scholar] [CrossRef]
- Xia, K.; Yamaguchi, K.; Suzuki, K. Recent advances in hybrid materials of metal nanoparticles and polyoxometalates. Angew. Chem. Int. Ed. 2022, 62, e202214506. [Google Scholar] [CrossRef]
- Wang, L.J.; Dai, P.Y.; Peng, J.S. Advancing biomedical applications of polyoxometalate-based metal-organic frameworks: From design to therapeutic potential. Inorg. Chem. Front. 2024, 11, 1339–1365. [Google Scholar] [CrossRef]
- Liu, B.; Teng, Y.; Zhang, X.; Pan, S.; Wu, H. Novel immobilized polyoxometalate heterogeneous catalyst for the efficient and durable removal of tetracycline in a Fenton-like system. Sep. Purif. Technol. 2022, 288, 120594. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Xu, Q. Metal-organic framework composites for catalysis. Matter 2019, 1, 57–89. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, M.; Chen, X.; Yue, B.; He, H. Heterogeneous catalysis of polyoxometalate based organic-inorganic hybrids. Materials 2015, 8, 1545–1567. [Google Scholar] [CrossRef] [PubMed]
- Dai, N.; Yang, L.; Liu, X.; Gao, L.; Zheng, J.; Zhang, K.; Song, D.; Sun, T.; Luo, S.; Liu, X.; et al. Enhanced photo-Fenton-like performance of biotemplated manganese-doped cobalt silicate catalysts. J. Colloid Interface Sci. 2023, 652, 1812–1824. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Shi, X.; Hua, R.; Zhang, R.; Yao, Y.; Zhao, B.; Liu, T.; Zheng, J.; Lu, G. Remarkably catalytic activity in reduction of 4-nitrophenol and methylene blue by Fe3O4@COF supported noble metal nanoparticles. Appl. Catal. B Environ. 2020, 260, 118142. [Google Scholar] [CrossRef]
- Shi, S.Y.; Zou, Y.C.; Cui, X.B.; Xu, J.N.; Wang, Y.; Wang, G.W.; Yang, G.D.; Xu, J.Q.; Wang, T.G.; Gao, Z.M. 0D and 1D dimensional structures based on the combination of polyoxometalates, transition metal coordination complexes and organic amines. CrystEngComm 2010, 12, 2122–2128. [Google Scholar] [CrossRef]
- Jiang, F.; Kong, L.Y.; Long, J.Y.; Fei, B.L.; Mei, X. An organic-inorganic hybrid based on bicapped Keggin polyoxometalate as a heterogeneous catalyst for MB removal via Fenton-like/photo-Fenton-like degradation or reduction. Solid State Sci. 2024, 149, 107453. [Google Scholar] [CrossRef]
- Gao, Y.; Lv, Z.Y.; Gao, R.M.; Zhang, G.; Zheng, Y.; Zhao, J.S. Oxidative desulfurization process of model fuel under molecular oxygen by polyoxometalate loaded in hybrid material CNTs@MOF-199 as catalyst. J. Hazard. Mater. 2018, 359, 258–265. [Google Scholar] [CrossRef]
- Wang, Q.; Hou, W.; Meng, T.; Meng, T.; Hou, Q.; Zhou, Y.; Wang, J. Direct synthesis of 2,5-diformylfuran from carbohydrates via carbonizing polyoxometalate based mesoporous poly (ionic liquid). Catal. Today 2019, 319, 57–65. [Google Scholar] [CrossRef]
- Huang, S.; Hu, B.; Zhao, S.; Zhang, S.; Wang, M.; Jia, Q.; He, L.; Zhang, Z.; Du, M. Multiple catalytic sites of Fe-Nx and Fe-N-C single atoms embedded N-doped carbon heterostructures for high-efficiency removal of malachite green. Chem. Eng. J. 2022, 430, 132933. [Google Scholar] [CrossRef]
- Feng, C.; Lu, Z.; Zhang, Y.; Zhang, Y.; Liang, Q.; Zhou, M.; Li, X.; Yao, C.; Li, Z.; Xu, S. A magnetically recyclable dual Z-scheme GCNQDs-CoTiO3/CoFe2O4 composite photocatalyst for efficient photocatalytic degradation of oxytetracycline. Chem. Eng. J. 2022, 435, 134833. [Google Scholar] [CrossRef]
- Yin, Z.X.; Sun, Y.; Zhu, C.L.; Li, C.Y.; Li, X.T.; Zhang, X.T.; Chen, Y.J. Bimetallic Ni-Mo nitride nanotubes as highly active and stable bifunctional electrocatalysts for full water splitting. J. Mater. Chem. A 2017, 5, 13648–13658. [Google Scholar] [CrossRef]
- Tan, Y.T.; Zhu, Y.L.; Li, H.B. Construction of Mo2N nanoparticles embedded in N, O-doped carbon sheets and its supercapacitive behaviors. J. Alloys Compd. 2023, 946, 169458. [Google Scholar] [CrossRef]
- Moon, J.H.; Kim, T.; Lee, Y.; Kim, S.; Kim, Y.; Ahn, J.P.; Choi, J.; Lee, H.M.; Kim, Y.K. Electrical resistivity modification of electrodeposited Mo and Mo-Co nanowires for interconnect applications. Engineering 2024, 32, 127–137. [Google Scholar] [CrossRef]
- Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Li, T.Q.; Han, Y.; Wang, Y.S.; Tian, J.; Lin, N.; et al. In situ revealing the electroactivity of P-O and P-C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Energy Mater. 2019, 9, 1901676. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, F.; Lin, X.; Zhang, D.; Duan, X.X.; Shi, J.Y.; Sun, Z. Highly efficient catalysts of polyoxometalates supported on biochar for antibiotic wastewater treatment: Performance and mechanism. Process. Saf. Environ. 2023, 172, 425–436. [Google Scholar] [CrossRef]
- Gan, Q.M.; He, H.N.; Zhu, Y.H.; Wang, Z.Y.; Qin, N.; Gu, S.; Li, Z.Q.; Luo, W.; Lu, Z.G. Defect-assisted selective surface phosphorus doping to enhance rate capability of titanium dioxide for sodium ion batteries. ACS Nano 2019, 13, 9247–9258. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.F.; Fang, L.P.; Yang, Y.F.; Zhang, L.; Wang, Y.J. H5PMo10V2O40 immobilized on functionalized chloromethylated polystyrene by electrostatic interactions: A highly efficient and recyclable heterogeneous catalyst for hydroxylation of benzene. Catal. Sci. Technol. 2016, 6, 8005–8015. [Google Scholar] [CrossRef]
- Jiang, F.; Liu, Q.Q.; Cui, Z.W.; Cui, Z.W.; Shi, S.; Long, J.Y.; Wang, X.L.; Fei, B.L. A novel octamolybdate-based organic-inorganic hybrid as photoFenton-like catalyst for degradation of methylene blue. Appl. Organomet. Chem. 2023, 37, e6966. [Google Scholar] [CrossRef]
- Kumar, M.; Ansari, M.N.M.; Boukhris, I.; Buriahi, M.S.A.; Alrowaili, Z.A.; Alfryyan, N.; Thomas, P.; Vaish, R. Sonophotocatalytic dye degradation using rGO-BiVO4 composites. Glob. Chall. 2022, 6, 2100132. [Google Scholar] [CrossRef] [PubMed]
- Tuan, D.D.; Chang, F.C.; Chen, P.Y.; Kwon, E.H.; You, S.M.; Tong, S.P.; Lin, K.Y.A. Covalent organic polymer derived carbon nanocapsule–supported cobalt as a catalyst for activating monopersulfate to degrade salicylic acid. J. Environ. Chem. Eng. 2021, 9, 105377. [Google Scholar] [CrossRef]
- Ma, Z.; Hu, L.; Li, X.; Deng, L.; Fan, G.; He, Y. A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceram. Int. 2019, 45, 15824–15833. [Google Scholar] [CrossRef]
- Singh, R.K.; Babu, V.; Philip, L.; Ramanujam, S. Applicability of pulsed power technique for the degradation of methylene blue. J. Water Process. Eng. 2016, 11, 118–129. [Google Scholar] [CrossRef]
- Kozmér, Z.; Arany, E.; Alapi, T.; Rózsa, G.; Hernádi, K.; Dombi, A. New insights regarding the impact of radical transfer and scavenger materials on the OH-initiated phototransformation of phenol. J. Photochem. Photobiol. A 2016, 314, 125–132. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, N.; Wang, T.; Huang, H.T.; Chen, Y.; Li, Z.H.; Zou, Z.G. Heterogeneous degradation of organic contaminants in the photo-Fenton reaction employing pure cubic β-Fe2O3. Appl. Catal. B Environ. 2019, 245, 410–419. [Google Scholar] [CrossRef]
- Wu, T.; Li, X.; Weng, C.-H.; Ding, F.; Tan, F.; Duan, R. Highly efficient LaMO3 (M = Co, Fe) perovskites catalyzed Fenton’s reaction for degradation of direct blue 86. Environ. Res. 2023, 227, 115756. [Google Scholar] [CrossRef]
- Yue, T.C.; Yin, L.; Huang, J.B.; Wang, L.L.; Wang, D.Z. Assembly of a three-dimensional Cu-MOF for efficient Fenton-like degradation of dyes and iodine capture. Appl. Organomet. Chem. 2024, 38, e7629. [Google Scholar] [CrossRef]
- Yi, Q.; Ji, J.; Shen, B.; Dong, C.; Liu, J.; Zhang, J.; Xing, M. Singlet oxygen triggered by superoxide radicals in a molybdenum cocatalytic Fenton reaction with enhanced REDOX activity in the environment. Environ. Sci. Technol. 2019, 53, 9725–9733. [Google Scholar] [CrossRef]
- Qasim, M.; Ghanem, M.A.; Cao, X.; Li, X. Modification of α-Fe2O3 nanoparticles with carbon layer for robust photo-Fenton catalytic degradation of methyl orange. Catalysts 2024, 14, 393. [Google Scholar] [CrossRef]
- Basu, M.; Sinha, A.K.; Pradhan, M.; Sarkar, S.; Pal, A.; Mondal, C.; Pal, T. Methylene blue-Cu2O reaction made easy in acidic medium. J. Phys. Chem. C 2012, 116, 25741–25747. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, H.; Kang, L.; Gao, Z.; Ren, F. Fe-based metal-organic frameworks as Fenton-like catalysts for highly efficient degradation of tetracycline hydrochloride over a wide pH range: Acceleration of Fe(II)/Fe(III) cycle under visible light irradiation. Appl. Catal. B Environ. 2020, 263, 118282. [Google Scholar] [CrossRef]
- Khodadadi, B.; Bordbar, M.; Nasrollahzadeh, M. Green synthesis of Pd nanoparticles at Apricot kernel shell substrate using Salvia hydrangea extract: Catalytic activity for reduction of organic dyes. J. Colloid Interface Sci. 2017, 490, 1–10. [Google Scholar] [CrossRef]
- Jana, N.R.; Wang, Z.; Pal, T. Redox catalytic properties of palladium nanoparticles: Surfactant and electron donor-acceptor effects. Langmuir 2000, 16, 2457–2463. [Google Scholar] [CrossRef]
- Abdeta, A.B.; Sun, H.; Guo, Y.; Wu, Q.; Zhang, J.; Yuan, Z.; Lin, J.; Chen, X. A novel AgMoOS bimetallic oxysulfide catalyst for highly efficiency catalytic reduction of organic dyes and chromium(VI). Adv. Powder Technol. 2021, 32, 2856–2872. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Cui, H.; Jiang, F.; Kong, L.; Fei, B.; Mei, X. Efficient Removal of Methylene Blue Using an Organic–Inorganic Hybrid Polyoxometalate as a Dual-Action Catalyst for Oxidation and Reduction. Catalysts 2024, 14, 576. https://doi.org/10.3390/catal14090576
Chen L, Cui H, Jiang F, Kong L, Fei B, Mei X. Efficient Removal of Methylene Blue Using an Organic–Inorganic Hybrid Polyoxometalate as a Dual-Action Catalyst for Oxidation and Reduction. Catalysts. 2024; 14(9):576. https://doi.org/10.3390/catal14090576
Chicago/Turabian StyleChen, Lu, Haowen Cui, Feng Jiang, Lingyan Kong, Baoli Fei, and Xiang Mei. 2024. "Efficient Removal of Methylene Blue Using an Organic–Inorganic Hybrid Polyoxometalate as a Dual-Action Catalyst for Oxidation and Reduction" Catalysts 14, no. 9: 576. https://doi.org/10.3390/catal14090576
APA StyleChen, L., Cui, H., Jiang, F., Kong, L., Fei, B., & Mei, X. (2024). Efficient Removal of Methylene Blue Using an Organic–Inorganic Hybrid Polyoxometalate as a Dual-Action Catalyst for Oxidation and Reduction. Catalysts, 14(9), 576. https://doi.org/10.3390/catal14090576