The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterizations of Au0-NPs, SiO2-Au0-NPs, and TiO2-Au0-NPs
2.2. Isotopic Composition of the Hydrogen Product
2.3. Kinetics of the BHR Catalysis over Au0-, SiO2-Au0- and TiO2-Au0-NPs
- I.
- The H2 formation kinetics were studied to answer the questions:
- II.
- Do the supports affect the borohydride hydrolysis rate differently?
3. Experimental Section
3.1. Synthesis of Au0-NPs, SiO2-Au0-NPs, and TiO2-Au0-NPs
3.2. Reaction of SiO2-Au0-NPs and TiO2-Au0-NPs with NaBD4
3.3. Kinetic Measurements
3.4. Catalytic Reduction of 4-Nitrophenol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.; Cao, Y.; Yao, Q.; Chai, O.J.H.; Xie, J. Engineering Noble Metal Nanomaterials for Pollutant Decomposition. Ind. Eng. Chem. Res. 2020, 59, 20561–20581. [Google Scholar] [CrossRef]
- Costa, N.J.S.; Rossi, L.M. Synthesis of Supported Metal Nanoparticle Catalysts Using Ligand Assisted Methods. Nanoscale. 2012, 4, 5826–5834. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Xu, P.; Zhang, X.; Wu, D. Emerging Porous Organic Polymers for Biomedical Applications. Chem. Soc. Rev. 2022, 51, 1377–1414. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Xiao, M.; Bao, Z.; Wang, P.; Wang, J. A General Approach to Mesoporous Metal Oxide Microspheres Loaded with Noble Metal Nanoparticles. Angew. Chemie. 2012, 124, 6512–6516. [Google Scholar] [CrossRef]
- Ho, J.; Zhu, W.; Wang, H.; Forde, G.M. Mesoporous Silica Spheres from Colloids. J. Colloid Interface Sci. 2007, 308, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Feng, J.; Li, X.; Oh, R.; Shi, D.; Akdim, O.; Xia, M.; Zhao, L.; Huang, X.; Zhang, G. Au-Pd Nanoparticles Immobilized on TiO2 Nanosheet as an Active and Durable Catalyst for Solvent-Free Selective Oxidation of Benzyl Alcohol. J. Colloid Interface Sci. 2021, 588, 787–794. [Google Scholar] [CrossRef]
- Liang, L.; Gu, W.; Jiang, J.; Miao, C.; Krasilin, A.A.; Ouyang, J. Effective CO2 Methanation over Site-Specified Ruthenium Nanoparticles Loaded on TiO2/Palygorskite Nanocomposite. J. Colloid Interface Sci. 2022, 623, 703–709. [Google Scholar] [CrossRef]
- Khabra, A.; Cohen, H.; Pinhasi, G.A.; Querol, X.; Córdoba Sola, P.; Zidki, T. Synthesis of a SiO2/Co(OH)2 Nanocomposite Catalyst for SOX/NOX Oxidation in Flue Gas. Catalysts 2022, 13, 29. [Google Scholar] [CrossRef]
- Ndolomingo, M.J.; Bingwa, N.; Meijboom, R. Review of Supported Metal Nanoparticles: Synthesis Methodologies, Advantages and Application as Catalysts. J. Mater. Sci. 2020, 55, 6195–6241. [Google Scholar] [CrossRef]
- Tauster, S.J.; Fung, S.C.; Baker, R.T.K.; Horsley, J.A. Strong Interactions in Supported-Metal Catalysts. Science 1981, 211, 1121–1125. [Google Scholar] [CrossRef]
- Yuan, K.; Guo, Y.; Huang, L.; Zhou, L.; Yin, H.J.; Liu, H.; Yan, C.H.; Zhang, Y.-W. Tunable Electronic Metal–Support Interactions on Ceria-Supported Noble-Metal Nanocatalysts in Controlling the Low-Temperature CO Oxidation Activity. Inorg. Chem. 2021, 60, 4207–4217. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, J.; Zhang, J.; Xue, Y.; Wang, G.; Wang, R. Anchoring Highly Dispersed Pt Electrocatalysts on TiOx with Strong Metal–Support Interactions via an Oxygen Vacancy-Assisted Strategy as Durable Catalysts for the Oxygen Reduction Reaction. Inorg. Chem. 2022, 61, 5148–5156. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Han, K.; Wang, F. Ni–Cu Alloy Nanoparticles Confined by Physical Encapsulation with SiO2 and Chemical Metal–Support Interaction with CeO2 for Methane Dry Reforming. Inorg. Chem. 2022, 61, 15619–15628. [Google Scholar] [CrossRef] [PubMed]
- Lykhach, Y.; Kozlov, S.M.; Skála, T.; Tovt, A.; Stetsovych, V.; Tsud, N.; Dvořák, F.; Johánek, V.; Neitzel, A.; Mysliveček, J.; et al. Counting Electrons on Supported Nanoparticles. Nat. Mater. 2016, 15, 284–288. [Google Scholar] [CrossRef]
- Divins, N.J.; Angurell, I.; Escudero, C.; Perez-Dieste, V.; Llorca, J. Influence of the Support on Surface Rearrangements of Bimetallic Nanoparticles in Real Catalysts. Science 2014, 346, 620–623. [Google Scholar] [CrossRef]
- Zidki, T.; Cohen, H.; Meyerstein, D. Photochemical Induced Growth and Aggregation of Metal Nanoparticles in Diode-Array Spectrophotometer via Excited Dimethyl-Sulfoxide. Phys. Chem. Chem. Phys. 2010, 12, 12862–12867. [Google Scholar] [CrossRef]
- Hernández Mejía, C.; van Deelen, T.W.; de Jong, K.P. Activity Enhancement of Cobalt Catalysts by Tuning Metal-Support Interactions. Nat. Commun. 2018, 9, 4459. [Google Scholar] [CrossRef]
- Saib, A.M.; Gauché, J.L.; Weststrate, C.J.; Gibson, P.; Boshoff, J.H.; Moodley, D.J. Fundamental Science of Cobalt Catalyst Oxidation and Reduction Applied to the Development of a Commercial Fischer–Tropsch Regeneration Process. Ind. Eng. Chem. Res. 2014, 53, 1816–1824. [Google Scholar] [CrossRef]
- Xiang, H.; Feng, W.; Chen, Y. Single-Atom Catalysts in Catalytic Biomedicine. Adv. Mater. 2020, 32, 1–23. [Google Scholar] [CrossRef]
- Zaera, F. Probing Liquid/Solid Interfaces at the Molecular Level. Chem. Rev. 2012, 112, 2920–2986. [Google Scholar] [CrossRef]
- Karim, W.; Spreafico, C.; Kleibert, A.; Gobrecht, J.; Vandevondele, J.; Ekinci, Y.; Van Bokhoven, J.A. Catalyst Support Effects on Hydrogen Spillover. Nature. 2017, 541, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Baron, M.; Bondarehuk, O.; Stacchiola, D.; Shaikhutdinov, S.; Freund, H.J. Interaction of Gold with Cerium Oxide Supports: CeO2(111) Thin Films vs CeOx Nanoparticles. J. Phys. Chem. C. 2009, 113, 6042–6049. [Google Scholar] [CrossRef]
- Zidki, T.; Cohen, H.; Meyerstein, D.; Meisel, D. Effect of Silica-Supported Silver Nanoparticles on the Dihydrogen Yields from Irradiated Aqueous Solutions. J. Phys. Chem. C. 2007, 111, 10461–10466. [Google Scholar] [CrossRef]
- Zidki, T.; Bar Ziv, R.; Green, U.; Cohen, H.; Meisel, D.; Meyerstein, D. The Effect of the Nano-Silica Support on the Catalytic Reduction of Water by Gold, Silver and Platinum Nanoparticles—Nanocomposite Reactivity. Phys. Chem. Chem. Phys. 2014, 16, 15422–15429. [Google Scholar] [CrossRef]
- Rolly, G.S.; Meyerstein, D.; Yardeni, G.; Bar-Ziv, R.; Zidki, T. New Insights into HER Catalysis: The Effect of Nano-Silica Support on Catalysis by Silver Nanoparticles. Phys. Chem. Chem. Phys. 2020, 22, 6401–6405. [Google Scholar] [CrossRef]
- Zidki, T.; Hänel, A.; Bar-Ziv, R. Reactions of Methyl Radicals with Silica Supported Silver Nanoparticles in Aqueous Solutions. Radiat. Phys. Chem. 2016, 124, 41–45. [Google Scholar] [CrossRef]
- Rolly, G.S.; Sermiagin, A.; Meyerstein, D.; Zidki, T. Silica Support Affects the Catalytic Hydrogen Evolution by Silver. Eur. J. Inorg. Chem. 2021, 2021, 3054–3058. [Google Scholar] [CrossRef]
- Meistelman, M.; Meyerstein, D.; Bardea, A.; Burg, A.; Shamir, D.; Albo, Y. Reductive Dechlorination of Chloroacetamides with NaBH4 Catalyzed by Zero Valent Iron, ZVI, Nanoparticles in ORMOSIL Matrices Prepared via the Sol-Gel Route. Catalysts. 2020, 10, 1–17. [Google Scholar] [CrossRef]
- Wu, Z.; Mao, X.; Zi, Q.; Zhang, R.; Dou, T.; Yip, A.C.K. Mechanism and Kinetics of Sodium Borohydride Hydrolysis over Crystalline Nickel and Nickel Boride and Amorphous Nickel-Boron Nanoparticles. J. Power Sources. 2014, 268, 596–603. [Google Scholar] [CrossRef]
- Sun, B.; Carnevale, D.; Süss-Fink, G. Selective N-Cycle Hydrogenation of Quinolines with Sodium Borohydride in Aqueous Media Catalyzed by Hectorite-Supported Ruthenium Nanoparticles. J. Organomet. Chem. 2016, 821, 197–205. [Google Scholar] [CrossRef]
- Wang, C.; Astruc, D. Recent Developments of Nanocatalyzed Liquid-Phase Hydrogen Generation. Chem. Soc. Rev. 2021, 50, 3437–3484. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kadam, S.R.; Houben, L.; Bar Ziv, R.; Bar-Sadan, M. Nickel Phosphide Catalysts for Hydrogen Generation through Water Reduction, Ammonia-Borane and Borohydride Hydrolysis. Appl. Mater. Today. 2020, 20, 100693. [Google Scholar] [CrossRef]
- Jaleh, B.; Nasrollahzadeh, M.; Nasri, A.; Eslamipanah, M.; Moradi, A.; Nezafat, Z. Biopolymer-Derived (Nano)Catalysts for Hydrogen Evolution via Hydrolysis of Hydrides and Electrochemical and Photocatalytic Techniques: A Review. Int. J. Biol. Macromol. 2021, 182, 1056–1090. [Google Scholar] [CrossRef] [PubMed]
- Sermiagin, A.; Meyerstein, D.; Bar Ziv, R.; Zidki, T. The Chemical Properties of Hydrogen Atoms Adsorbed on M0-Nanoparticles Suspended in Aqueous Solutions: The Case of Ag0-NPs and Au0-NPs Reduced by BD₄¯. Angew. Chemie Int. Ed. 2018, 57, 16525–16528. [Google Scholar] [CrossRef]
- Kang, N.; Djeda, R.; Wang, Q.; Fu, F.; Ruiz, J.; Pozzo, J.; Astruc, D. Efficient “Click”-Dendrimer-Supported Synergistic Bimetallic Nanocatalysis for Hydrogen Evolution by Sodium Borohydride Hydrolysis. ChemCatChem. 2019, 11, 2341–2349. [Google Scholar] [CrossRef]
- Adhikary, J.; Meistelman, M.; Burg, A.; Shamir, D.; Meyerstein, D.; Albo, Y. Reductive Dehalogenation of Monobromo- and Tribromoacetic Acid by Sodium Borohydride Catalyzed by Gold Nanoparticles Entrapped in Sol–Gel Matrices Follows Different Pathways. Eur. J. Inorg. Chem. 2017, 11, 1510–1515. [Google Scholar] [CrossRef]
- Adhikary, J.; Meyerstein, D.; Marks, V.; Meistelman, M.; Gershinsky, G.; Burg, A.; Shamir, D.; Kornweitz, H.; Albo, Y. Sol-Gel Entrapped Au0- and Ag0-Nanoparticles Catalyze Reductive de-Halogenation of Halo-Organic Compounds by BH4−. Appl. Catal. B Environ. 2018, 239, 450–462. [Google Scholar] [CrossRef]
- Neelam; Meyerstein, D. Zero-Valent Iron Nanoparticles Entrapped in SiO2 Sol-Gel Matrices: A Catalyst for the Reduction of Several Pollutants. Catal. Commun. 2020, 133, 105819. [Google Scholar] [CrossRef]
- Raju Karimadom, B.; Meyerstein, D.; Kornweitz, H. Calculating the Adsorption Energy of a Charged Adsorbent in a Periodic Metallic System—the Case of BH4− Hydrolysis on the Ag(111) Surface. Phys. Chem. Chem. Phys. 2021, 23, 25667–25678. [Google Scholar] [CrossRef]
- Raju Karimadom, B.; Varshney, S.; Zidki, T.; Meyerstein, D.; Kornweitz, H. DFT Study of the BH4− Hydrolysis on Au(111) Surface. ChemPhysChem. 2022, 23, 1–8. [Google Scholar] [CrossRef]
- Shin, S.J.; Chung, T.D. Electrochemistry of the Silicon Oxide Dielectric Layer: Principles, Electrochemical Reactions, and Perspectives. Chem. An Asian J. 2021, 16, 3014–3025. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, N.; Pal, A.; Pal, T. Catalytic Reduction of Aromatic Nitro Compounds by Coinage Metal Nanoparticles. Langmuir. 2001, 17, 1800–1802. [Google Scholar] [CrossRef]
- Aditya, T.; Pal, A.; Pal, T. Nitroarene Reduction: A Trusted Model Reaction to Test Nanoparticle Catalysts. Chem. Commun. 2015, 51, 9410–9431. [Google Scholar] [CrossRef] [PubMed]
- Bindhu, M.R.; Umadevi, M. Silver and Gold Nanoparticles for Sensor and Antibacterial Applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Bakar, R.A.; Yahya, R.; Gan, S.N. Production of High Purity Amorphous Silica from Rice Husk. Procedia Chem. 2016, 19, 189–195. [Google Scholar] [CrossRef]
- Chenari, H.M.; Seibel, C.; Hauschild, D.; Reinert, F.; Abdollahian, H. Titanium Dioxide Nanoparticles: Synthesis, X-ray Line Analysis and Chemical Composition Study. Mater. Res. 2016, 19, 1319–1323. [Google Scholar] [CrossRef]
- Sathiyan, K.; Bar-Ziv, R.; Mendelson, O.; Zidki, T. Controllable Synthesis of TiO2 Nanoparticles and Their Photocatalytic Activity in Dye Degradation. Mater. Res. Bull. 2020, 126, 110842. [Google Scholar] [CrossRef]
- Di Paola, A.; Bellardita, M.; Palmisano, L. Brookite, the Least Known TiO2 Photocatalyst. Catalysts. 2013, 3, 36–73. [Google Scholar] [CrossRef]
- Pol, V.G.; Wildermuth, G.; Felsche, J.; Gedanken, A.; Calderon-Moreno, J. Sonochemical Deposition of Au Nanoparticles on Titania and the Significant Decrease in the Melting Point of Gold. J. Nanosci. Nanotechnol. 2005, 5, 975–979. [Google Scholar] [CrossRef]
- Rojas, J.V.; Castano, C.H. Radiation-Assisted Synthesis of Iridium and Rhodium Nanoparticles Supported on Polyvinylpyrrolidone. J. Radioanal. Nucl. Chem. 2014, 302, 555–561. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Chen, J.; Zhu, W.; Liao, A.; Li, Y.; Wang, J.; Ma, L. Enhancement of the Field Emission from the TiO2 Nanotube Arrays by Reducing in a NaBH4 Solution. ACS Appl. Mater. Interfaces. 2014, 6, 20625–20633. [Google Scholar] [CrossRef] [PubMed]
- Ke, W.; Qin, X.; Vazquez, Y.; Lee, I.; Zaera, F. Direct Characterization of Interface Sites in Au/TiO2 Catalysts Prepared Using Atomic Layer Deposition. Chem Catal. 2024, 4, 100977. [Google Scholar] [CrossRef]
- Creighton, J.A.; Blatchford, C.G.; Albrecht, M.G. Plasma Resonance Enhancement of Raman Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1979, 75, 790–798. [Google Scholar] [CrossRef]
- Stober, W.; Fink, A. Controlled Growth of Monodispersed Silica Spheres in the Micron Size Range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Kasarevic-Popovic, Z.; Behar, D.; Rabani, J. Role of Excess Electrons in TiO2 Nanoparticles Coated with Pt in Reduction Reactions Studied in Radiolysis of Aqueous Solutions. J. Phys. Chem. B. 2004, 108, 20291–20295. [Google Scholar] [CrossRef]
- Gao, R.; Safrany, A.; Rabani, J. Fundamental Reactions in TiO2 Nanocrystallite Aqueous Solutions Studied by Pulse Radiolysis. Radiat. Phys. Chem. 2002, 65, 599–609. [Google Scholar] [CrossRef]
- Sathiyan, K.; Bar-Ziv, R.; Marks, V.; Meyerstein, D.; Zidki, T. The Role of Common Alcoholic Sacrificial Agents in Photocatalysis: Is It Always Trivial? Chem. A Eur. J. 2021, 27, 15936–15943. [Google Scholar] [CrossRef]
[BD4−] [mM] | %D | H2 | HD | D2 | |
---|---|---|---|---|---|
TiO2-NPs | 1.0 | 47.74 | 1.00 | 17.64 | 0.15 |
2.0 | 48.08 | 1.00 | 20.35 | 0.17 | |
4.0 | 48.00 | 1.00 | 19.47 | 0.17 | |
8.0 | 48.23 | 1.00 | 21.36 | 0.20 | |
10.0 | 48.20 | 1.00 | 20.80 | 0.21 | |
SiO2-NPs [27] | 1.0 | 47.9 | 1.00 | 18.7 | 0.17 |
10.0 | 48.1 | 1.00 | 19.9 | 0.18 | |
25.0 | 48.0 | 1.00 | 19.5 | 0.17 | |
50.0 | 47.9 | 1.00 | 18.7 | 0.16 | |
100 | 46.9 | 1.00 | 13.2 | 0.13 |
[BD4−] [mM] | %D | H2 | HD | D2 | % HD | % D2 | |
---|---|---|---|---|---|---|---|
Au0-NPs [34] | 1.0 | 41.1 | 1.0 | 2.65 | 0.62 | 62.06 | 14.51 |
25 | 45.2 | 1.0 | 2.72 | 0.59 | 63.10 | 13.68 | |
50 | 46.0 | 1.0 | 3.34 | 0.61 | 67.47 | 12.32 | |
75 | 46.2 | 1.0 | 3.56 | 0.61 | 68.85 | 11.79 | |
100 | 45.9 | 1.0 | 3.49 | 0.60 | 68.56 | 11.78 | |
SiO2-Au0-NPs | 1.0 | 43.3 | 1.0 | 3.70 | 0.34 | 73.41 | 6.74 |
10 | 46.2 | 1.0 | 5.40 | 0.48 | 78.48 | 6.97 | |
50 | 46.2 | 1.0 | 5.90 | 0.45 | 80.27 | 6.12 | |
100 | 45.6 | 1.0 | 5.70 | 0.39 | 80.39 | 5.50 | |
TiO2-Au0-NPs | 1.0 | 26.33 | 1.0 | 0.93 | 0.06 | 46.73 | 3.01 |
10 | 29.42 | 1.0 | 1.08 | 0.10 | 49.54 | 4.58 | |
50 | 41.18 | 1.0 | 2.64 | 0.30 | 67.00 | 7.61 | |
75 | 41.29 | 1.0 | 2.5 | 0.33 | 65.27 | 8.62 | |
100 | 41.08 | 1.0 | 2.33 | 0.35 | 63.31 | 9.51 |
Sample | Concentration (M) | Observed Rate Constant k min−1 | Rate Constant k·107 M−1 min−1 |
---|---|---|---|
Au0-NPs | [Au0] = 3.94 × 10−9 | 1.63 | |
[Au0] = 1.75 × 10−9 | 1.43 | 12 | |
[Au0] = 4.37 × 10−10 | 1.20 | ||
SiO2-Au0-NPs | [Au0] = 1.36 × 10−8 [SiO2] = 4.5 × 10−4 | 1.31 | |
[Au0] = 6.05 × 10−9 [SiO2] = 2.0 × 10−4 | 1.18 | 1.4 | |
[Au0] = 1.51 × 10−9 [SiO2] = 5.0 × 10−5 | 1.15 | ||
TiO2-Au0-NPs | [Au0] = 1.83 × 10−9 [TiO2] = 1.00 × 10−5 | 1.22 | |
[Au0] = 5.91 × 10−10 [TiO2] = 5.0 × 10−6 | 1.03 | 25 | |
[Au0] = 2.96 × 10−10 [TiO2] = 2.50 × 10−6 | 0.78 | ||
TiO2 | 1.00 × 10−5 | 0.02 | |
2.50 × 10−6 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolly, G.S.; Sermiagin, A.; Sathiyan, K.; Meyerstein, D.; Zidki, T. The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride. Catalysts 2024, 14, 606. https://doi.org/10.3390/catal14090606
Rolly GS, Sermiagin A, Sathiyan K, Meyerstein D, Zidki T. The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride. Catalysts. 2024; 14(9):606. https://doi.org/10.3390/catal14090606
Chicago/Turabian StyleRolly, Gifty Sara, Alina Sermiagin, Krishnamoorthy Sathiyan, Dan Meyerstein, and Tomer Zidki. 2024. "The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride" Catalysts 14, no. 9: 606. https://doi.org/10.3390/catal14090606
APA StyleRolly, G. S., Sermiagin, A., Sathiyan, K., Meyerstein, D., & Zidki, T. (2024). The Contradicting Influences of Silica and Titania Supports on the Properties of Au0 Nanoparticles as Catalysts for Reductions by Borohydride. Catalysts, 14(9), 606. https://doi.org/10.3390/catal14090606