Evaluation of Cobalt, Nickel, and Palladium Complexes as Catalysts for the Hydrogenation and Improvement of Oxidative Stability of Biodiesel
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of the Ligand L2 and Their Cobalt, Nickel, and Palladium Complexes (C4, C5, and C6)
2.2. Hydrogenation of Methyl Linoleate and Jatropha Biodiesel
2.2.1. Preparation of Fatty Acid Methyl Esters from Fatty Acids
2.2.2. Hydrogenation of Methyl Linoleate
NMR Kinetic Studies
2.2.3. Transfer Hydrogenation of Jatropha Biodiesel
2.2.4. Oxidative Stability by the Rancimat Method and Infrared Spectroscopy
3. Materials and Methods
3.1. Catalytic Hydrogenation Studies
3.2. Synthesis of the Ligand and Metal Complexes
3.2.1. Synthesis of Ligand L2
3.2.2. Synthesis of N-(3-(triethoxysilyl)propyl)picolinamido Cobalt(II) Chloride, C4-Co
3.2.3. Synthesis of N-(3-(triethoxysilyl)propyl)picolinamido Nickel(II) Bromide, C5-Ni
3.2.4. Synthesis of N-(3-(triethoxysilyl)propyl)picolinamido Palladium(II) Chloride, C6-Pd
3.2.5. Determination of Composition of Mixture, Conversion, and Selectivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paparao, J.; Murugan, S. Dual-Fuel Diesel Engine Run with Injected Pilot Biodiesel-Diesel Fuel Blend with Inducted Oxy-Hydrogen (HHO) Gas. Int. J. Hydrogen Energy 2022, 47, 17788–17807. [Google Scholar] [CrossRef]
- Hossain, M.; Israt, S.S.; Muntaha, N.; Jamal, M.S. Effect of Antioxidants and Blending with Diesel on Partially Hydrogenated Fish Oil Biodiesel to Upgrade the Oxidative Stability. Bioresour. Technol. Rep. 2022, 17, 100938. [Google Scholar] [CrossRef]
- Moser, B.R. Biodiesel Production, Properties, and Feedstocks. In Biofuels: Global Impact on Renewable Energy, Production Agriculture, and Technological Advancements; Springer: Heidelberg, Germany, 2011; ISBN 9781441971449. [Google Scholar]
- Muralidhara, D.M.; Banapurmath, N.R.; Udayaravi, M.; Prabhakar Reddy, C.; Harari, P.A.; Karthik, T. Effect of Hydrogen Flow Rates on the Performance of Two Biodiesels Fuelled Dual Fuel Engine. Mater. Today Proc. 2022, 49, 2189–2196. [Google Scholar] [CrossRef]
- Brandt, P.; Hedberg, C.; Andersson, P.G. New Mechanistic Insights into the Iridium ± Phosphanooxazoline-Catalyzed. Chem.-A Eur. J. 2003, 9, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Hanis, S.; Sayid, Y.; Hanis, N.; Hanapi, M.; Azid, A. A Review of Biomass-Derived Heterogeneous Catalyst for a Sustainable Biodiesel Production. Renew. Sustain. Energy Rev. 2017, 70, 1040–1051. [Google Scholar] [CrossRef]
- Adu-Mensah, D.; Mei, D.; Zuo, L.; Zhang, Q.; Wang, J. A Review on Partial Hydrogenation of Biodiesel and Its Influence on Fuel Properties. Fuel 2019, 251, 660–668. [Google Scholar] [CrossRef]
- Atabani, A.E.; Silitonga, A.S.; Badruddin, I.A.; Mahlia, T.M.I.; Masjuki, H.H.; Mekhilef, S. A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics. Renew. Sustain. Energy Rev. 2012, 16, 2070–2093. [Google Scholar] [CrossRef]
- Chen, S.-Y.; Attanatho, L.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y.; Kumpidet, C.; Somwonhsa, P.; Lao-ubol, S. Upgrading of Palm Biodiesel Fuel over Supported Palladium Catalysts. Comptes Rendus Chim. 2016, 19, 1166–1173. [Google Scholar] [CrossRef]
- Olaoye, O.E.; Oyetunji, O.; Makhubela, B.C.E.; Kumar, G.; Darkwa, J. Hydrogenation of Biodiesel Catalysed by Pyrazolyl Nickel(Ii) and Palladium(Ii) Complexes. RSC Sustain. 2023, 1, 1814–1825. [Google Scholar] [CrossRef]
- Flitsch, S.; Neu, P.M.; Schober, S.; Kienzl, N.; Ullmann, J.; Mittelbach, M. Quantitation of Aging Products Formed in Biodiesel during the Rancimat Accelerated Oxidation Test. Energy Fuels 2014, 28, 5849–5856. [Google Scholar] [CrossRef]
- Zhou, J.; Xiong, Y.; Shi, Y. Antioxidant Consumption Kinetics and Shelf-Life Prediction for Biodiesel Stabilized with Antioxidants Using the Rancimat Method. Energy Fuels 2016, 30, 10534–10542. [Google Scholar] [CrossRef]
- Aparicio, R.; Roda, L.; Albi, M.A.; Gutiérrez, F. Effect of Various Compounds on Virgin Olive Oil Stability Measured by Rancimat. J. Agric. Food Chem. 1999, 47, 4150–4155. [Google Scholar] [CrossRef] [PubMed]
- Wongjaikham, W.; Kongprawes, G.; Wongsawaeng, D.; Ngaosuwan, K.; Kiatkittipong, W.; Hosemann, P.; Assabumrungrat, S. Highly Effective Microwave Plasma Application for Catalyst-Free and Low Temperature Hydrogenation of Biodiesel. Fuel 2021, 305, 121524. [Google Scholar] [CrossRef]
- Thunyaratchatanon, C.; Jitjamnong, J.; Luengnaruemitchai, A.; Numwong, N.; Chollacoop, N.; Yoshimura, Y. Influence of Mg Modifier on Cis-Trans Selectivity in partial hydrogenation of biodiesel using different metal types. Appl. Catal. A Gen. 2016, 520, 170–177. [Google Scholar] [CrossRef]
- Kongprawes, G.; Wongsawaeng, D.; Hosemann, P.; Ngaosuwan, K.; Kiatkittipong, W.; Assabumrungrat, S. Dielectric Barrier Discharge Plasma for Catalytic-Free Palm Oil Hydrogenation Using Glycerol as Hydrogen Donor for Further Production of Hydrogenated Fatty Acid Methyl Ester (H-FAME). J. Clean. Prod. 2023, 401, 136724. [Google Scholar] [CrossRef]
- Peer, M.S.; Kasimani, R.; Rajamohan, S.; Ramakrishnan, P. Experimental Evaluation on Oxidation Stability of Biodiesel/Diesel Blends with Alcohol Addition by Rancimat Instrument and FTIR Spectroscopy. J. Mech. Sci. Technol. 2017, 31, 455–463. [Google Scholar] [CrossRef]
- Figueredo, I.D.M.; Rios, M.A.D.S.; Cavalcante, C.L., Jr.; Luna, F.M.T. Effects of Amine and Phenolic Based Antioxidants on the Stability of Babassu Biodiesel Using Rancimat and Differential Scanning Calorimetry Techniques. Ind. Eng. Chem. Res. 2020, 59, 18–24. [Google Scholar] [CrossRef]
- de la Presa-Owens, S.; Lopez-Sabater, M.C.; Rivero-Urgell, M. Shelf-Life Prediction of an Infant Formula Using an Accelerated Stability Test (Rancimat). J. Agric. Food Chem. 1995, 43, 2879–2882. [Google Scholar] [CrossRef]
- De Menezes, L.C.; De Sousa, E.R.; Da Silva, G.S.; Marques, A.L.B.; Viegas, H.D.C.; Dos Santos, M.J.C. Investigations on Storage and Oxidative Stability of Biodiesel from Different Feedstocks Using the Rancimat Method, Infrared Spectroscopy, and Chemometry. ACS Omega 2022, 7, 30746–30755. [Google Scholar] [CrossRef]
- Kirubakaran, M.; Selvan, V.A.M. A Comprehensive Review of Low Cost Biodiesel Production from Waste Chicken Fat. Renew. Sustain. Energy Rev. 2018, 82, 390–401. [Google Scholar] [CrossRef]
- Sejie, F.P.; Oyetunji, O.A.; Darkwa, J.; Beas, I.N.; Makhubela, B.C.E.; Dzade, N.Y.; de Leeuw, N.H. The Transfer Hydrogenation of Cinnamaldehyde Using Homogeneous Cobalt(II) and Nickel(II) (E)-1-(Pyridin-2-Yl)-N-(3-(Triethoxysilyl)Propyl)Methanimine and the Complexes Anchored on Fe3O4 Support as Pre-Catalysts: An Experimental and In Silico Approach. Molecules 2023, 28, 659. [Google Scholar] [CrossRef] [PubMed]
- Sejie, F.P. The Synthesis and Characterization of the Homogeneous and Their Fe3O4 Picolinyl Metal Complexes for Application as Hydrogenation Catalysts. Ph.D. Thesis, University of Botswana, Gaborone, Botswana, May 2023. [Google Scholar]
- Behr, A.; Vorholt, A.J. Homogeneous Catalysis with Renewables; Springer: New York, NY, USA, 2017; Volume 39, ISBN 978-3-319-54159-4. [Google Scholar]
- Liu, W.; Xu, L.; Lu, G.; Zhang, H. Selective Partial Hydrogenation of Methyl Linoleate Using Highly Active Palladium Nanoparticles in Polyethylene Glycol. ACS Sustain. Chem. Eng. 2017, 5, 1368–1375. [Google Scholar] [CrossRef]
- Frankel, E.N.; Emken, E.A.; Peters, H.M.; Davison, V.L.; Butterfield, R.O. Homogeneous Hydrogenation of Methyl Linoleate Catalyzed by Iron Pentacarbonyl. Characterization of Methyl Octadecadienoate—Iron Tricarbonyl Complexes1. J. Org. Chem. 1964, 29, 3292–3297. [Google Scholar] [CrossRef]
- Abley, P.; McQuillin, F.J. Homogeneous Hydrogenation of Methyl Linoleate by Means of Nickel and Rhodium Complexes in Dimethylformamide. J. Catal. 1972, 24, 536–540. [Google Scholar] [CrossRef]
- Bailar, J.C. The Selective Homogeneous Hydrogenation of Soybean Methyl Esters. J. Am. Oil Chem. Soc. 1970, 47, 475–477. [Google Scholar] [CrossRef]
- BS EN 14112; Fat and Oil Derivatives. Fatty Acid Methyl Esters (FAME). Determination of Oxidation Stability (Accelerated Oxidation Test). European standards: Plzen, Czech Republic, 2020.
- Quaranta, E.; Dibenedetto, A.; Colucci, A.; Cornacchia, D. Partial Hydrogenation of FAMEs with High Content of C18:2 Dienes. Selective Hydrogenation of Tobacco Seed Oil-Derived Biodiesel. Fuel 2022, 326, 125030. [Google Scholar] [CrossRef]
- Kongprawes, G.; Wongsawaeng, D.; Hosemann, P.; Ngaosuwan, K.; Kiatkittipong, W.; Assabumrungrat, S. Improvement of Oxidation Stability of Fatty Acid Methyl Esters Derived from Soybean Oil via Partial Hydrogenation Using Dielectric Barrier Discharge Plasma. Int. J. Energy Res. 2021, 45, 4519–4533. [Google Scholar] [CrossRef]
- Atkinson, B.N.; Chhatwal, A.R.; Williams, J.M.J. Catalytic amide bond forming methods. In Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Three Volumes; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Henderson, W.; McIndoe, J.S. Mass Spectrometry of Inorganic and Organometallic Compounds: Tools—Techniques—Tips; Wiley: Hoboken, NJ, USA, 2005; Volume 9. [Google Scholar] [CrossRef]
- Park, J.K.; Shin, W.K.; An, D.K. New and efficient synthesis of amides from acid chlorides using diisobutyl(amino)aluminum. Bull. Korean Chem. Soc. 2013, 34, 1592–1594. [Google Scholar] [CrossRef]
Complex | Fragment m/z | Identification of Fragment | Elemental Analysis |
---|---|---|---|
Found (Expected) | |||
C4-Co | C:39.79 (39.48) H:7.97 (8.7) N:6.55 (6.1) | ||
816.3 | [CoL2X2 + K]+ | ||
547.28 | [CoLX + S + K]+ | ||
C5-Ni | 540.15 | [NiLX2 + H]+ | C:34.91 (33.6) H:4.67 (4.81) N:5.55 (5.14) |
180.10 | [NiLX2 + 3H]+3 | ||
286.41 | [NiLX2 + H + K]+2 | ||
C6-Pd | 505.3 | [PdLX2 + H]+ | C:33.95 (35.8) H:6.78 (5.2) N:6.23 (5.6) |
302.99 | [PdLX2 + S + Na + H]+2 | ||
Entry | Catalyst | Substrate | Composition of Mixture (%) | ||
---|---|---|---|---|---|
C18:0 | C18:1 | C18:2 | |||
1 | C1-Co | ML | 86 | 14 | 0 |
2 | C2-Ni | ML | 96 | 4 | 0 |
3 | C3-Pd | ML | 100 | 0 | 0 |
4 | C4-Co | ML | 100 | 0 | 0 |
5 | C5-Ni | ML | 100 | 0 | 0 |
6 | C6-Pd | ML | 100 | 0 | 0 |
7* | C6-Pd | ML | 3.21 | 28.47 | 68.20 |
Entry | Catalyst | Composition of Product (%) | ||||
---|---|---|---|---|---|---|
C16:0 | C18:2 | C18:2 Isomers | C18:1 | C18:0 | ||
Initial composition BD1 | 13.45 | 18.1 | - | 64.11 | 4.00 | |
1 | C1-Co | 13.1 | 0 | - | 0 | 86.8 |
2 | C2-Ni | 13.2 | 0 | - | 0 | 86.7 |
3 | C3-Pd | 13.3 | 0 | - | 0 | 86.3 |
4 | C4-Co | 13.2 | 0 | - | 1.89 | 85.0 |
5 | C5-Ni | 13.1 | 0 | - | 3.14 | 83.7 |
6 | C6-Pd | 13.3 | 0 | - | 5.64 | 81.2 |
7a | C6-Pd | 25.83 # | 12.5 | 3.01 | 41.54 | 14.48 |
Maun Jatropha (BD3) | Used Sunflower Oil (BD2) | |||
---|---|---|---|---|
Product Composition (%) | Product Composition (%) | |||
Before | After | Before | After | |
C16:2 | 0.089 | 0 | 0 | 0 |
C16:0 | 18.79 | 20.2 | 9.7 | 18.23 |
C18:2 | 40.8 | 25.75 | 71.9 | 25.9 |
C18:1 | 34.4 | 30.44 | 14.1 | 45.3 |
C18:0 | 5 | 16.23 | 2.9 | 7.5 |
C18:2 isomers | 0 | 7.38 | 0 | 3.07 |
Entry | Catalyst | FAME | Selectivity (%) | Conversion (%) | Time (h) | T (°C) | Reference | |
---|---|---|---|---|---|---|---|---|
C18:0 | C18:1 | |||||||
1 | Fe(CO)5 | ML | 0 | 3.4 | 100 | 7 | 150 | [26] |
2 | Fe(CO)5-ML | ML | 5.1 | 33.5 | 100 | 7 | 150 | [26] |
3 | NiCl2DMF | ML | 15 | 85 | 98.3 | 24 | - | [27] |
4 | Py3RhCl2DMF | ML | 3 | 95 | 92.8 | 24 | - | [27] |
5 | Pd0PEG400 | ML | 7 | 93 | 100 | 3.2 | 75 | [25] |
6 | Pd0PEG400 | Sunflower | 5.4 | 86.9 | 98.6 | 3.2 | 120 | [25] |
7 | Pt(PPH3)2ClSn | Soybean | 0 | 78.2 | 95.6 | 3 | 90 | [28] |
8 | Pd(C3H2N2Me2)2Cl2 | ML | 100 | - | 100 | 0.5 | 50 | [10] |
Entry | Catalyst | FAME | Composition of mixture (%) | Time (h) | T (°C) | Reference | ||
C18:0 | C18:1 | C18:2 | ||||||
9 | C1-Co | ML | 86 | 14 | 0 | 12 | 120 | This Work |
10 | C2-Ni | ML | 96 | 4 | 0 | 12 | 120 | This Work |
11 | C3-Pd | ML | 100 | 0 | 0 | 12 | 120 | This Work |
12 | C4-Co | ML | 100 | 0 | 0 | 12 | 120 | This Work |
13 | C5-Ni | ML | 100 | 0 | 0 | 12 | 120 | This Work |
14 | C6-Pd | ML | 3.21 | 28.47 | 68.29 | 6 | 120 | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sejie, F.P.; Oyetunji, O.A.; Makhubela, B.C.E.; Darkwa, J.; de Leeuw, N.H. Evaluation of Cobalt, Nickel, and Palladium Complexes as Catalysts for the Hydrogenation and Improvement of Oxidative Stability of Biodiesel. Catalysts 2024, 14, 653. https://doi.org/10.3390/catal14090653
Sejie FP, Oyetunji OA, Makhubela BCE, Darkwa J, de Leeuw NH. Evaluation of Cobalt, Nickel, and Palladium Complexes as Catalysts for the Hydrogenation and Improvement of Oxidative Stability of Biodiesel. Catalysts. 2024; 14(9):653. https://doi.org/10.3390/catal14090653
Chicago/Turabian StyleSejie, Fortunate P., Olayinka A. Oyetunji, Banothile C. E. Makhubela, James Darkwa, and Nora H. de Leeuw. 2024. "Evaluation of Cobalt, Nickel, and Palladium Complexes as Catalysts for the Hydrogenation and Improvement of Oxidative Stability of Biodiesel" Catalysts 14, no. 9: 653. https://doi.org/10.3390/catal14090653
APA StyleSejie, F. P., Oyetunji, O. A., Makhubela, B. C. E., Darkwa, J., & de Leeuw, N. H. (2024). Evaluation of Cobalt, Nickel, and Palladium Complexes as Catalysts for the Hydrogenation and Improvement of Oxidative Stability of Biodiesel. Catalysts, 14(9), 653. https://doi.org/10.3390/catal14090653