In Situ Metallic Bi-Modified (110)BiOBr Nanosheets with Surface Plasmon Resonance Effect for Enhancing Photocatalytic Performance Despite of Larger Optical Band Gap
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Photocatalytic Performance
2.2. Optoelectronic Performance and Active Species
2.3. Photocatalytic Mechanism
3. Materials and Methods
3.1. Materials
3.2. Preparation of (102)BiOBr and (110)BiOBr
3.3. Preparation of Bi/(110)BiOBr
3.4. Material Characterization
3.5. Photocatalytic Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, Y.-W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef]
- Pham, P.V.; Mai, T.-H.; Do, H.-B.; Vasundhara, M.; Nguyen, V.-H.; Nguyen, T.; Bui, H.V.; Dao, V.-D.; Gupta, R.K.; Ponnusamy, V.K.; et al. Layer-by-layer thinning of two-dimensional materials. Chem. Soc. Rev. 2024, 53, 5190–5226. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Liu, N.; Chen, B.; Dai, C.; Wang, N. Recent Modification Strategies of MoS2 towards Electrocatalytic Hydrogen Evolution. Catalysts 2024, 14, 126. [Google Scholar] [CrossRef]
- Kang, Z.; Lin, E.; Qin, N.; Wu, J.; Yuan, B.; Bao, D. Effect of oxygen vacancies and crystal symmetry on piezocatalytic properties of Bi2WO6 ferroelectric nanosheets for wastewater decontamination. Environ. Sci. Nano 2021, 8, 1376–1388. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Ran, M.; Sun, Y.; Huang, H.; Dong, F. Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4: Enhanced photocatalysis and reaction mechanism. Appl. Catal. B Environ. 2019, 243, 313–321. [Google Scholar] [CrossRef]
- Mishra, S.; Acharya, L.; Marandi, B.; Sanjay, K.; Acharya, R. Boosted photocatalytic accomplishment of 3D/2D hierarchical structured Bi4O5I2/g-C3N4 p-n type direct Z-scheme heterojunction towards synchronous elimination of Cr(VI) and tetracycline. Diam. Relat. Mater. 2024, 142, 110834. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, C.; Chen, F.; Chen, R. Self-Assembly of Porous Hierarchical BiOBr Sub-Microspheres for Efficient Aerobic Photooxidation of Benzyl Alcohol under Simulated Sunlight Irradiation. Catalysts 2023, 13, 958. [Google Scholar] [CrossRef]
- Alapi, T.; Veres, B.; Náfrádi, M.; Farkas, L.; Pap, Z.; Covic, A. Application of BiOX Photocatalyst to Activate Peroxydisulfate Ion-Investigation of a Combined Process for the Removal of Organic Pollutants from Water. Catalysts 2023, 13, 513. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Surface Engineering of g-C3N4 by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance. Angew. Chem. Int. Ed. 2020, 59, 4519–4524. [Google Scholar] [CrossRef]
- Qi, Y.; Zhao, S.; Jiang, X.; Kang, Z.; Gao, S.; Liu, W.; Shen, Y. Visible-Light-Driven BiOBr-TiO2-Attapulgite Photocatalyst with Excellent Photocatalytic Activity for Multiple Xanthates. Catalysts 2023, 13, 1504. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Liu, B.; Miao, Y. Recent developments in bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomater. Sci. 2022, 10, 5809–5830. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guo, H.; Yin, H.; Nie, Q.; Zou, S. Accelerated Photodegradation of Organic Pollutants over BiOBr/Protonated g-C3N4. Catalysts 2022, 12, 1109. [Google Scholar] [CrossRef]
- Wang, M.; Osella, S.; Brescia, R.; Liu, Z.; Gallego, J.; Cattelan, M.; Crisci, M.; Agnoli, S.; Gatti, T. 2D MoS2/BiOBr van der Waals heterojunctions by liquid-phase exfoliation as photoelectrocatalysts for hydrogen evolution. Nanoscale 2023, 15, 522–531. [Google Scholar] [CrossRef]
- He, D.; Cao, D.; Ben, C.; Lan, Y.; Zhang, H.; Jiang, M.; Wu, S.; Zhang, Y.; Meng, Q.B.; Song, X.-M. Ionic liquid gel microspheres as an emerging platform for constructing liquid compartment microreactors. Green Chem. 2022, 24, 5952–5964. [Google Scholar] [CrossRef]
- Cai, Z.; Lei, S.; Hu, Y.; Chen, Y.; Shen, M.; Lei, M. Iron doped BiOBr loaded on carbon spheres for improved visible-light-driven detoxification of 2-chloroethyl sulfide. Dalton Trans. 2023, 52, 3040–3051. [Google Scholar] [CrossRef]
- Jin, Y.; Li, F.; Li, T.; Xing, X.; Fan, W.; Zhang, L.; Hu, C. Enhanced internal electric field in S-doped BiOBr for intercalation, adsorption and degradation of ciprofloxacin by photoinitiation. Appl. Catal. B Environ. 2022, 302, 120824. [Google Scholar] [CrossRef]
- An, W.; Wang, H.; Yang, T.; Xu, J.; Wang, Y.; Liu, D.; Hu, J.; Cui, W.; Liang, Y. Enriched photocatalysis-Fenton synergistic degradation of organic pollutants and coking wastewater via surface oxygen vacancies over Fe-BiOBr composites. Chem. Eng. J. 2023, 451, 138653. [Google Scholar] [CrossRef]
- Zhou, S.; Shi, T.; Chen, Z.; Kilin, D.S.; Shui, L.; Jin, M.; Yi, Z.; Yuan, M.; Li, N.; Yang, X.; et al. First-Principles Study of Optoelectronic Properties of the Noble Metal (Ag and Pd) Doped BiOX (X = F, Cl, Br, and I) Photocatalytic System. Catalysts 2019, 9, 198. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Y.; Zhou, Z.; Zhao, Y.; Liu, L. Enhanced Photocatalytic Properties in BiOBr Nanosheets with Dominantly Exposed (102) Facets. J. Phys. Chem. C 2014, 118, 14662–14669. [Google Scholar] [CrossRef]
- Wang, Y.; He, J.; Zhu, Y.; Zhang, H.; Yang, C.; Wang, K.; Wu, S.-c.; Chueh, Y.-L.; Jiang, W. Hierarchical Bi-doped BiOBr microspheres assembled from nanosheets with (001) facet exposed via crystal facet engineering toward highly efficient visible light photocatalysis. Appl. Surf. Sci. 2020, 514, 145927. [Google Scholar] [CrossRef]
- Mi, Y.; Li, H.; Zhang, Y.; Du, N.; Hou, W. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable crystal facets and sizes. Catal. Sci. Technol. 2018, 8, 2588–2597. [Google Scholar] [CrossRef]
- Wu, X.; Ng, Y.H.; Wang, L.; Du, Y.; Dou, S.X.; Amal, R.; Scott, J. Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J. Mater. Chem. A 2017, 5, 8117–8124. [Google Scholar] [CrossRef]
- Li, H.; Hu, T.; Du, N.; Zhang, R.; Liu, J.; Hou, W. Wavelength-dependent differences in photocatalytic performance between BiOBr nanosheets with dominant exposed (001) and (010) facets. Appl. Catal. B Environ. 2016, 187, 342–349. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Hu, L.; Gao, M.; Feng, J. A Tight-Connection g-C3N4/BiOBr (001) S-Scheme Heterojunction Photocatalyst for Boosting Photocatalytic Degradation of Organic Pollutants. Nanomaterials 2024, 14, 1071. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Chen, J.; Li, Y.; Wen, M.; Liu, H.; Li, G.; An, T. In-situ decoration of metallic Bi on BiOBr with exposed (110) facets and surface oxygen vacancy for enhanced solar light photocatalytic degradation of gaseous n-hexane. Chin. J. Catal. 2020, 41, 1603–1612. [Google Scholar] [CrossRef]
- Jia, W.; Peng, D.; Feng, Z.; Wu, X.; Liu, Y.; Zheng, X.; Yuan, X. UV-light-assisted green preparation of Bi/BiOBr/RGO composites with oxygen vacancies toward enhanced photocatalytic removal of organic dye. New J. Chem. 2020, 44, 7749–7757. [Google Scholar] [CrossRef]
- Cao, F.; Wang, J.; Wang, Y.; Zhou, J.; Li, S.; Qin, G.; Fan, W. An in situ Bi-decorated BiOBr photocatalyst for synchronously treating multiple antibiotics in water. Nanoscale Adv. 2019, 1, 1124–1129. [Google Scholar] [CrossRef]
- Zheng, C.; Cao, C.; Ali, Z. In situ formed Bi/BiOBrxI1−x heterojunction of hierarchical microspheres for efficient visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 2015, 17, 13347–13354. [Google Scholar] [CrossRef]
- Mishra, S.; Acharya, R. Recent updates in modification strategies for escalated performance of Graphene/MFe2O4 heterostructured photocatalysts towards energy and environmental applications. J. Alloys Compd. 2023, 960, 170576. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, B.; Ma, J.; Liu, L.; Luo, H.; Wang, W. The BiOBr/Bi/Bi2WO6 photocatalyst with SPR effect and Z-scheme heterojunction synergistically degraded RhB under visible light. Opt. Mater. 2021, 122, 111641. [Google Scholar] [CrossRef]
- Wu, M.; Dong, M.; El-Bahy, Z.M.; Jing, T.; Mersal, G.A.M.; Tian, J.; Qi, H.; Shi, D.; Naik, N.; Murugadoss, V.; et al. Preparation of Bi/BiOBr sensitized titania nanorod arrays via a one-pot solvothermal method and construction of kanamycin photoelectrochemical aptasensors. Dalton Trans. 2022, 51, 8279–8289. [Google Scholar] [CrossRef]
- Donohue, M.D.; Aranovich, G.L. Classification of Gibbs adsorption isotherms. Adv. Colloid Interface Sci. 1998, 76–77, 137–152. [Google Scholar] [CrossRef]
- Kruk, M.; Jaroniec, M. Gas Adsorption Characterization of Ordered Organic−Inorganic Nanocomposite Materials. Chem. Mater. 2001, 13, 3169–3183. [Google Scholar] [CrossRef]
- Hao, J.; He, H.; Gong, S.; Fan, J.; Xu, Q.; Min, Y. WN Coupled with Bi Nanoparticles to Enhance the Localized Surface Plasmon Resonance Effect for Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 19884–19893. [Google Scholar] [CrossRef]
- Qin, M.; Jin, K.; Li, X.; Wang, R.; Zhao, Y.; Wang, H. Bi nanosphere-decorated oxygen-vacancy BiOBr hollow microspheres with exposed (110) facets to enhance the photocatalytic performance for the degradation of azo dyes. New J. Chem. 2022, 46, 12410–12418. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, Z.; Fan, H.; Chen, Y.; Liu, X.; Cao, J.; Lang, J.; Wei, M.; Liu, H.; Yang, L. Oxygen vacancy induced electron traps in tungsten doped Bi2MoO6 for enhanced photocatalytic performance. CrystEngComm 2021, 23, 7270–7277. [Google Scholar] [CrossRef]
- Guo, Y.; Wen, H.; Guo, Y.; Ruan, J.; Huang, H.; Peng, J.; Lin, Z.; Dong, H. Surface states modulation via vacancy engineering for creating band bending on semiconductor BiOBr photocatalysts. Colloids Surf. A Physicochem. Eng. Asp. 2024, 682, 132915. [Google Scholar] [CrossRef]
OL | OV | OA | |
---|---|---|---|
(102)BiOBr | 65% | 16% | 19% |
(110)BiOBr | 68% | 14% | 18% |
Bi(1.0 mmol)/(110)BiOBr | 65% | 19% | 16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mu, Y.; Chu, H.; Fan, H.; Li, X.; Liu, X.; Yang, L.; Wei, M.; Liu, H. In Situ Metallic Bi-Modified (110)BiOBr Nanosheets with Surface Plasmon Resonance Effect for Enhancing Photocatalytic Performance Despite of Larger Optical Band Gap. Catalysts 2024, 14, 654. https://doi.org/10.3390/catal14090654
Mu Y, Chu H, Fan H, Li X, Liu X, Yang L, Wei M, Liu H. In Situ Metallic Bi-Modified (110)BiOBr Nanosheets with Surface Plasmon Resonance Effect for Enhancing Photocatalytic Performance Despite of Larger Optical Band Gap. Catalysts. 2024; 14(9):654. https://doi.org/10.3390/catal14090654
Chicago/Turabian StyleMu, Yunhe, Hongxue Chu, Hougang Fan, Xin Li, Xiaoyan Liu, Lili Yang, Maobin Wei, and Huilian Liu. 2024. "In Situ Metallic Bi-Modified (110)BiOBr Nanosheets with Surface Plasmon Resonance Effect for Enhancing Photocatalytic Performance Despite of Larger Optical Band Gap" Catalysts 14, no. 9: 654. https://doi.org/10.3390/catal14090654
APA StyleMu, Y., Chu, H., Fan, H., Li, X., Liu, X., Yang, L., Wei, M., & Liu, H. (2024). In Situ Metallic Bi-Modified (110)BiOBr Nanosheets with Surface Plasmon Resonance Effect for Enhancing Photocatalytic Performance Despite of Larger Optical Band Gap. Catalysts, 14(9), 654. https://doi.org/10.3390/catal14090654