New Catalysts and Reactors for the Synthesis or Conversion of Methanol
- -
- High energy density;
- -
- Applicable for existing technologies;
- -
- Suited for heavy-duty applications;
- -
- Quick deployment since no infrastructural adaptions are required.
Acknowledgments
Conflicts of Interest
List of Contributions
- Kaiser, D.; Beckmann, L.; Walter, J.; Bertau, M. Conversion of Green Methanol to Methyl Formate. Catalysts 2021, 11, 869. https://doi.org/10.3390/catal11070869.
- Duyar, M.S.; Gallo, A.; Regli, S.K.; Snider, J.L.; Singh, J.A.; Valle, E.; McEnaney, J.; Bent, S.F.; Rønning, M.; Jaramillo, T.F. Understanding Selectivity in CO2 Hydrogenation to Methanol for MoP Nanoparticle Catalysts Using In Situ Techniques. Catalysts 2021, 11, 143. https://doi.org/10.3390/catal11010143.
- Trifan, B.; Lasobras, J.; Soler, J.; Herguido, J.; Menéndez, M. Modifications in the Composition of CuO/ZnO/Al2O3 Catalyst for the Synthesis of Methanol by CO2 Hydrogenation. Catalysts 2021, 11, 774. https://doi.org/10.3390/catal11070774.
- Sanz-Martínez, A.; Lasobras, J.; Soler, J.; Herguido, J.; Menéndez, M. Methanol to Gasoline (MTG): Preparation, Characterization and Testing of HZSM-5 Zeolite-Based Catalysts to Be Used in a Fluidized Bed Reactor. Catalysts 2022, 12, 134. https://doi.org/10.3390/catal12020134.
- Poller, M.J.; Torsten, C.; Wolf, T.; Körne, C.; Wasserscheid, P.; Albert, J. 3D-Printed Raney-Cu POCS as Promising New Catalysts for Methanol Synthesis. Catalysts 2022, 12, 1288. https://doi.org/10.3390/catal12101288.
- Rodionov, I.A.; Gruzdeva, E.O.; Mazur, A.S.; Kurnosenko, S.A.; Silyukov., O.I.; Zvereva, I.A. Photocatalytic Hydrogen Generation from Aqueous Methanol Solution over n-Butylamine-Intercalated Layered Titanate H2La2Ti3O10: Activity and Stability of the Hybrid Photocatalyst. Catalysts 2022, 12, 1556. https://doi.org/10.3390/catal12121556.
- Walter, J.P.; Wolff, T.; Hamel, C. Selective Methanol Oxidation to Green Oxygenates—Catalyst Screening, Reaction Kinetics and Performance in Fixed-Bed and Membrane Reactors. Catalysts 2023, 13, 787. https://doi.org/10.3390/catal13050787.
- Mbatha, S.; Thomas, S.; Parkhomenko, K.; Roger A.C.; Louis, B.; Cui, X.; Everson, R.; Langmi, H.; Musyoka, N.; Ren, J. Development of an Improved Kinetic Model for CO2 Hydrogenation to Methanol. Catalysts 2023, 13, 1349. https://doi.org/10.3390/catal13101349.
References
- Wulf, C.; Zapp, P.; Schreiber, A. Review of Power-to-X Demonstration Projects in Europe. Front. Energy Res. 2020, 8, 191. [Google Scholar] [CrossRef]
- Álvarez, A.; Bansode, A.; Urakawa, A.; Bavykina, A.V.; Wezendonk, T.A.; Makkee, M.; Gascon, J.; Kapteijn, F. Challenges in the Greener Production of Formates/Formic Acid, Methanol, and DME by Heterogeneously Catalyzed CO2 Hydrogenation Processes. Chem. Rev. 2017, 117, 9804–9838. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Senthil Kumar, P.; Vo Dai-Viet, N.; Jeevanantham, S.; Bhuvaneswari, V.; Anantha Narayanan, V.; Yaashikaa, P.R.; Swetha, S.; Reshma, B. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci. 2021, 236, 116515. [Google Scholar] [CrossRef]
- Olah, G.A. Beyond Oil and Gas: The Methanol Economy. Angew. Chem. Int. Ed. 2005, 44, 2636–2639. [Google Scholar] [CrossRef] [PubMed]
- Maksimov, P.; Laari, A.; Ruuskanen, V.; Koiranen, T.; Ahola, J. Methanol synthesis through sorption enhanced carbon dioxide hydrogenation. Chem. Eng. J. 2021, 418, 129290. [Google Scholar] [CrossRef]
- Riaz, A.; Zahedi, G.; Klemeš, J.J. A review of cleaner production methods for the manufacture of methanol. J. Clean. Prod. 2013, 57, 19–37. [Google Scholar] [CrossRef]
- Chinchen, G.C.; Spencer, M.S.; Waugh, K.C.; Whan, D.A. Promotion of methanol synthesis and the water-gas shift reactions by adsorbed oxygen on supported copper catalyst. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1987, 83, 2193–2212. [Google Scholar] [CrossRef]
- Nesterenko, N.; Aguilhon, J.; Bodart, P.; Minoux, D.; Dath, J.P. Methanol to Olefins: An Insight into Reaction Pathways and Products Formation. In Zeolites and Zeolite-Like Materials; Sels, B.F., Kustov, L.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 189–263. [Google Scholar] [CrossRef]
- Tian, P.; Wei, Y.; Ye, M.; Liu, Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catal. 2015, 5, 1922–1938. [Google Scholar] [CrossRef]
- Amghizar, I.; Vandewalle, L.A.; Van Geem, K.M.; Marin, G.B. New Trends in Olefin Production. Engineering 2017, 3, 171–178. [Google Scholar] [CrossRef]
- Gogate, M.R. Methanol-to-olefins process technology: Current status and future prospects. Pet. Sci. Technol. 2019, 37, 559–565. [Google Scholar] [CrossRef]
- Ahmadova, R.; Ibrahimov, H.; Babayeva, F.; Rustamov, M.; Kondratenko, E. The perspective of methanol to olefins process over nanostructured zeolite catalysts, mechanism and synthesized methods: A review. Process Petrochem. Oil Refin. 2017, 18, 171–187. [Google Scholar]
- Khadzhiev, S.N.; Kolesnichenko, N.V.; Ezhova, N.N. Manufacturing of lower olefins from natural gas through methanol and its derivatives (review). Pet. Chem. 2008, 48, 325–334. [Google Scholar] [CrossRef]
- Lefevere, J.; Mullens, S.; Meynen, V.; Van Noyen, J. Structured catalysts for methanol-to-olefins conversion: A review. Chem. Pap. 2014, 68, 1143–1153. [Google Scholar] [CrossRef]
- Zaidi, H.A.; Pant, K.K. Catalytic conversion of methanol to gasoline range hydrocarbons. Catal. Today 2004, 96, 155–160. [Google Scholar] [CrossRef]
- Kim, L.; Wald, M.M.; Brandenberger, S.G. One-step catalytic synthesis of 2,2,3-trimethylbutane from methanol. J. Org. Chem. 1978, 43, 3432–3433. [Google Scholar] [CrossRef]
- Hayashi, H.; Moffat, J.B. Conversion of methanol into hydrocarbons over ammonium 12-tungstophosphate. J. Catal. 1983, 83, 192–204. [Google Scholar] [CrossRef]
- Misono, M. Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten. Catal. Rev. Sci. Eng. 1987, 29, 269–321. [Google Scholar] [CrossRef]
- Galadima, A.; Muraza, O. From synthesis gas production to methanol synthesis and potential upgrade to gasoline range hydrocarbons: A review. J. Nat. Gas Sci. Eng. 2015, 25, 303–316. [Google Scholar] [CrossRef]
- Yahyazadeh, A.; Nanda, S.; Dalai, A.K. A Critical Review of the Sustainable Production and Application of Methanol as a Biochemical and Bioenergy Carrier. Reactions 2024, 5, 1–19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soler, J. New Catalysts and Reactors for the Synthesis or Conversion of Methanol. Catalysts 2024, 14, 640. https://doi.org/10.3390/catal14090640
Soler J. New Catalysts and Reactors for the Synthesis or Conversion of Methanol. Catalysts. 2024; 14(9):640. https://doi.org/10.3390/catal14090640
Chicago/Turabian StyleSoler, Jaime. 2024. "New Catalysts and Reactors for the Synthesis or Conversion of Methanol" Catalysts 14, no. 9: 640. https://doi.org/10.3390/catal14090640
APA StyleSoler, J. (2024). New Catalysts and Reactors for the Synthesis or Conversion of Methanol. Catalysts, 14(9), 640. https://doi.org/10.3390/catal14090640