Hydrodeoxygenation of Phenolic Compounds and Lignin Bio-Oil Surrogate Mixture over Ni/BEA Zeolite Catalyst and Investigation of Its Deactivation
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterization
2.2. Model Compound Hydrodeoxygenation
- Hydroxy- and methyl-substituted phenols (phenol, o-/m-cresol, and catechol) with C-O-H and C-C side chains on the phenolic ring.
- Alkoxy (methoxy)-substituted phenols (guaiacol, syringol, 2-methoxy-4-methyl-phenol) with at least one C-O-C side chain,
- Alkoxy (methoxy-) substituted aromatics (anisole and 1,2,3-trimethoxybenzene) with one and three C-O-C side chains.
- Dimer (2-phenoxy-1-phenyl ethanol) is used as a model compound to simulate the small oligomers of lignin fast-pyrolysis bio-oil.
2.3. Hydrodeoxygenation of Surrogate Mixture
2.4. Carbon/Coke Quantification of Used Catalysts
2.5. Structural, Porosity, and Surface Characteristics of Used and Regenerated Catalysts
2.5.1. XRD Results
2.5.2. XPS Results
2.5.3. Acidity Results
2.5.4. Porosity Results
3. Materials and Methods
3.1. Catalyst Preparation and Characterization
3.2. Catalytic Hydrodeoxygenation Experiments
3.2.1. Hydrodeoxygenation of Phenolic Compounds
3.2.2. Hydrodeoxygenation of Surrogate Mixture
3.2.3. Product Separation and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Union. Regulation (EU) 2023/2405 of the European Parliament and of the Council of 18 October 2023 on ensuring a level playing field for sustainable air transport (ReFuelEU Aviation). Off. J. Eur. Union 2023. Available online: http://data.europa.eu/eli/reg/2023/2405/oj (accessed on 15 December 2024).
- Song, M.J.; Zhang, X.H.; Chen, Y.B.; Zhang, Q.; Chen, L.A.; Liu, J.G.; Ma, L.L. Hydroprocessing of lipids: An effective production process for sustainable aviation fuel. Energy 2023, 283, 129107. [Google Scholar] [CrossRef]
- Why, E.S.K.; Ong, H.C.; Lee, H.V.; Chen, W.H.; Asikin-Mijan, N.; Varman, M. Conversion of bio-jet fuel from palm kernel oil and its blending effect with jet A-1 fuel. Energy Convers. Manag. 2021, 243, 114311. [Google Scholar] [CrossRef]
- Alkhoori, S.; Alareeqi, S.; Dabbawala, A.A.; Siakavelas, G.; Latsiou, A.; Anjum, D.H.; Harfouche, M.; Vasiliades, M.A.; Hinder, S.J.; Baker, M.A.; et al. Steering palm oil hydrodeoxygenation towards biofuel production: An experimental and theoretical approach to unveil periodic trends. Mater. Today Chem. 2024, 40, 102240. [Google Scholar] [CrossRef]
- Kordouli, E.; Lycourghiotis, S.; Bourikas, K.; Lycourghiotis, A.; Kordulis, C. Renewable diesel synthesis by hydro-processing in green solvents. Curr. Opin. Green Sustain. Chem. 2024, 48, 100936. [Google Scholar] [CrossRef]
- Wang, H.L.; Yang, B.; Zhang, Q.; Zhu, W.B. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons. Renew. Sustain. Energy Rev. 2020, 120, 109612. [Google Scholar] [CrossRef]
- Wang, W.C.; Tao, L. Bio-jet fuel conversion technologies. Renew. Sustain. Energy Rev. 2016, 53, 801–822. [Google Scholar] [CrossRef]
- Wang, T.J.; Li, K.; Liu, Q.Y.; Zhang, Q.; Qiu, S.B.; Long, J.X.; Chen, L.G.; Ma, L.L.; Zhang, Q. Aviation fuel synthesis by catalytic conversion of biomass hydrolysate in aqueous phase. Appl. Energy 2014, 136, 775–780. [Google Scholar] [CrossRef]
- Huber, G.W.; Chheda, J.N.; Barrett, C.J.; Dumesic, J.A. Production of liquid alkanes by aqueous-phase processing of biomass-derived carbohydrates. Science 2005, 308, 1446–1450. [Google Scholar] [CrossRef]
- Kunkes, E.L.; Simonetti, D.A.; West, R.M.; Serrano-Ruiz, J.C.; Gartner, C.A.; Dumesic, J.A. Catalytic conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes. Science 2008, 322, 417–421. [Google Scholar] [CrossRef]
- Lebedeva, D.; Schick, L.W.; Cracco, D.; Sangsuwan, W.; Castiella-Ona, G.; Silva, D.O.; Marson, A.; Grape, E.S.; Inge, A.K.; Rossi, L.M.; et al. Sustainable aviation fuel from prehydrolysis liquors. Green Chem. 2024, 26, 7258–7267. [Google Scholar] [CrossRef]
- Lazaridis, P.A.; Fotopoulos, A.P.; Karakoulia, S.A.; Triantafyllidis, K.S. Catalytic Fast Pyrolysis of Kraft Lignin With Conventional, Mesoporous and Nanosized ZSM-5 Zeolite for the Production of Alkyl-Phenols and Aromatics. Front. Chem. 2018, 6, 295. [Google Scholar] [CrossRef] [PubMed]
- Charisteidis, I.; Lazaridis, P.; Fotopoulos, A.; Pachatouridou, E.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Triantafyllidis, K. Catalytic Fast Pyrolysis of Lignin Isolated by Hybrid Organosolv—Steam Explosion Pretreatment of Hardwood and Softwood Biomass for the Production of Phenolics and Aromatics. Catalysts 2019, 9, 935. [Google Scholar] [CrossRef]
- Margellou, A.G.; Lazaridis, P.A.; Charisteidis, I.D.; Nitsos, C.K.; Pappa, C.P.; Fotopoulos, A.P.; Van den Bosch, S.; Sels, B.F.; Triantafyllidis, K.S. Catalytic fast pyrolysis of beech wood lignin isolated by different biomass (pre)treatment processes: Organosolv, hydrothermal and enzymatic hydrolysis. Appl. Catal. A-Gen. 2021, 623, 118298. [Google Scholar] [CrossRef]
- Soldatos, P.; Margellou, A.; Pappa, C.; Torofias, S.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Triantafyllidis, K. Conversion of beechwood organosolv lignin via fast pyrolysis and in situ catalytic upgrading towards aromatic and phenolic-rich bio-oil. Sustain. Chem. Environ. 2024, 6, 100107. [Google Scholar] [CrossRef]
- Kim, J.S. Production, separation and applications of phenolic-rich bio-oil—A review. Bioresour. Technol. 2015, 178, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Shi, C.; Liu, F.; Wang, W.; Ai, M.; Huang, Z.; Zhang, X.; Pan, L.; Zou, J.J. Advances in Heterogeneous Catalysts for Lignin Hydrogenolysis. Adv. Sci. 2024, 11, e2306693. [Google Scholar] [CrossRef] [PubMed]
- Li, B.S.; Feng, B.X.; Wu, K.Y.; Yang, T.H. Hydrodeoxygenation of lignin derived bio-oil into aromatic hydrocarbons over Ni-Cu-Ru/HZSM-5 catalyst. J. Fuel Chem. Technol. 2023, 51, 358–365. [Google Scholar] [CrossRef]
- Zhao, M.X.; Hu, J.; Lu, P.; Wu, S.L.; Liu, C.; Sun, Y.H. Efficient hydrodeoxygenation of lignin-derived bio-oil to hydrocarbon fuels over bifunctional RuCoW/NC catalysts. Fuel 2022, 326, 125020. [Google Scholar] [CrossRef]
- Zormpa, F.F.; Margellou, A.G.; Karakoulia, S.A.; Delli, E.; Triantafyllidis, K.S. Hydrodeoxygenation of lignin bio-oil model compounds and surrogate mixtures over zeolite supported nickel catalysts. Catal. Today 2024, 433, 114654. [Google Scholar] [CrossRef]
- Zerva, C.; Karakoulia, S.A.; Kalogiannis, K.G.; Margellou, A.; Iliopoulou, E.F.; Lappas, A.A.; Papayannakos, N.; Triantafyllidis, K.S. Hydrodeoxygenation of phenol and biomass fast pyrolysis oil (bio-oil) over Ni/WO3-ZrO2 catalyst. Catal. Today 2021, 366, 57–67. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Grunwaldt, J.D.; Jensen, P.A.; Jensen, A.D. Screening of Catalysts for Hydrodeoxygenation of Phenol as a Model Compound for Bio-oil. ACS Catal. 2013, 3, 1774–1785. [Google Scholar] [CrossRef]
- Kim, H.; Lim, Y.H.; Park, J.H.; Ha, J.-M.; Kim, D.H. Hydrodeoxygenation of guaiacol over physically mixed Co/TiO2 and WO3/TiO2 catalysts. Green Chem. 2024, 26, 2692–2704. [Google Scholar] [CrossRef]
- Gracia, J.; Ayala-Cortés, A.; Di Stasi, C.; Remón, J.; Torres, D.; Pinilla, J.L.; Suelves, I. Highly selective catalytic hydrodeoxygenation of guaiacol to benzene in continuous operation mode. Fuel Process. Technol. 2024, 255, 108064. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.Z.; Liu, R.L.; Wang, S.P.; Chen, L.M.; Li, K.G. Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Alkane Fuels over Bifunctional Zeolite-Supported Metal Catalysts. ACS Sustain. Chem. Eng. 2014, 2, 683–691. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Y.; Liu, W.; Zhao, X.; Luo, H.; Miao, G.; Wang, Z.; Li, S.; Kong, L. Synergy of metallic Pt and oxygen vacancy sites in Pt–WO3−xcatalysts for efficiently promoting vanillin hydrodeoxygenation to methylcyclohexane. Green Chem. 2022, 24, 9489–9495. [Google Scholar] [CrossRef]
- Sankaranarayanan, T.M.; Berenguer, A.; Ochoa-Hernández, C.; Moreno, I.; Jana, P.; Coronado, J.M.; Serrano, D.P.; Pizarro, P. Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties. Catal. Today 2015, 243, 163–172. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Tannous, J.H. Catalytic Hydrodeoxygenation of Phenols and Cresols to Gasoline Range Biofuels. Chem. Rec. 2024, 24, e202400092. [Google Scholar] [CrossRef]
- Zhang, X.; Yan, H.; Zhu, L.J.; Li, T.; Wang, S.R. Hydrodeoxygenation of Lignin-Derived Monomers and Dimers over a Ru Supported Solid Super Acid Catalyst for Cycloalkane Production. Adv. Sustain. Syst. 2020, 4, 1900136. [Google Scholar] [CrossRef]
- Yan, B.; Ding, W.; Shi, G.; Lin, X.; Zhang, S. Study on the catalytic hydrodeoxygenation of lignin dimers: Adsorption properties and linkages cleavage. Bioresour. Technol. 2024, 394, 130264. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Lercher, J.A. Selective Hydrodeoxygenation of Lignin-Derived Phenolic Monomers and Dimers to Cycloalkanes on Pd/C and HZSM-5 Catalysts. Chemcatchem 2012, 4, 64–68. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Wang, T.; Ma, L.; Yu, Y.; Chen, L. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts. Bioresour. Technol. 2013, 134, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Shafaghat, H.; Rezaei, P.S.; Daud, W.M.A.W. Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta. J. Ind. Eng. Chem. 2016, 35, 268–276. [Google Scholar] [CrossRef]
- Yao, G.; Wu, G.J.; Dai, W.L.; Guan, N.J.; Li, L.D. Hydrodeoxygenation of lignin-derived phenolic compounds over bi-functional Ru/H-Beta under mild conditions. Fuel 2015, 150, 175–183. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Chrysikou, L.P.; Meletidis, G.; Terzis, G.; Auersvald, M.; Kubicka, D.; Bezergianni, S. Bio-based refinery intermediate production via hydrodeoxygenation of fast pyrolysis bio-oil. Renew. Energy 2021, 168, 593–605. [Google Scholar] [CrossRef]
- Kumar, A.; Khani, Y.; Ko, C.H.; Jae, J.; Banerjee, A.; Bhaskar, T.; Park, Y.-K. Production of Valuable Aromatics from the Hydrodeoxygenation of Guaiacol and Real Bio-Oil over Ni–Nb/HZSM-5 under Supercritical Ethanol. ACS Sustain. Chem. Eng. 2024, 12, 10786–10804. [Google Scholar] [CrossRef]
- Duan, H.; Dong, J.; Gu, X.; Peng, Y.K.; Chen, W.; Issariyakul, T.; Myers, W.K.; Li, M.J.; Yi, N.; Kilpatrick, A.F.R.; et al. Hydrodeoxygenation of water-insoluble bio-oil to alkanes using a highly dispersed Pd-Mo catalyst. Nat. Commun. 2017, 8, 591. [Google Scholar] [CrossRef]
- Templis, C.C.; Revelas, C.J.; Papastylianou, A.A.; Papayannakos, N.G. Phenol Hydrodeoxygenation over a Reduced and Sulfided NiMo/γ-Al2O3 Catalyst. Ind. Eng. Chem. Res. 2019, 58, 6278–6287. [Google Scholar] [CrossRef]
- Kristensen, T.A.; Hulteberg, C.P.; Wallenberg, R.L.; Abdelaziz, O.Y.; Blomberg, S. Promoting Effect of Ce and La on Ni-Mo/delta-Al(2)O(3) Catalysts in the Hydrodeoxygenation of Vanillin. Energy Fuels 2024, 38, 9827–9835. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, G.; Liu, C.; Ma, W.; Yan, B.; Zhang, J. Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review. Renew. Sustain. Energy Rev. 2017, 71, 296–308. [Google Scholar] [CrossRef]
- Viljava, T.R.; Komulainen, R.S.; Krause, A.O.I. Effect of H2S on the stability of CoMo/Al2O3 catalysts during hydrodeoxygenation. Catal. Today 2000, 60, 83–92. [Google Scholar] [CrossRef]
- Robinson, A.M.; Hensley, J.E.; Medlin, J.W. Bifunctional Catalysts for Upgrading of Biomass-Derived Oxygenates: A Review. ACS Catal. 2016, 6, 5026–5043. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Shu, C.-M.; Sarangi, P.K.; Shadangi, K.P.; Rakshit, S.; Kennedy, J.F.; Gupta, V.K.; Sharma, M. Catalytic hydrodeoxygenation of bio-oil and model compounds—Choice of catalysts, and mechanisms. Renew. Sustain. Energy Rev. 2023, 187, 113700. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, X.; He, H.; Huo, D.; Li, X.; Dai, L.; Si, C. The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass. Int. J. Biol. Macromol. 2023, 242, 124773. [Google Scholar] [CrossRef] [PubMed]
- Ambursa, M.M.; Juan, J.C.; Yahaya, Y.; Taufiq-Yap, Y.H.; Lin, Y.-C.; Lee, H.V. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renew. Sustain. Energy Rev. 2021, 138, 110667. [Google Scholar] [CrossRef]
- de Souza, P.M.; Rabelo-Neto, R.C.; Borges, L.E.P.; Jacobs, G.; Davis, B.H.; Resasco, D.E.; Noronha, F.B. Hydrodeoxygenation of Phenol over Pd Catalysts. Effect of Support on Reaction Mechanism and Catalyst Deactivation. ACS Catal. 2017, 7, 2058–2073. [Google Scholar] [CrossRef]
- Ghampson, I.T.; Sepúlveda, C.; Dongil, A.B.; Pecchi, G.; García, R.; Fierro, J.L.G.; Escalona, N. Phenol hydrodeoxygenation: Effect of support and Re promoter on the reactivity of Co catalysts. Catal. Sci. Technol. 2016, 6, 7289–7306. [Google Scholar] [CrossRef]
- Teles, C.A.; de Souza, P.M.; Rabelo-Neto, R.C.; Teran, A.; Jacobs, G.; Vilela Weikert, C.; Magriotis, Z.M.; Gonçalves, V.O.O.; Resasco, D.E.; Noronha, F.B. Reaction pathways for the HDO of guaiacol over supported Pd catalysts: Effect of support type in the deoxygenation of hydroxyl and methoxy groups. Mol. Catal. 2022, 523, 111491. [Google Scholar] [CrossRef]
- Yan, P.; Bryant, G.; Li, M.M.-J.; Mensah, J.; Kennedy, E.; Stockenhuber, M. Shape selectivity of zeolite catalysts for the hydrodeoxygenation of biocrude oil and its model compounds. Microporous Mesoporous Mater. 2020, 309, 110561. [Google Scholar] [CrossRef]
- Song, W.; Liu, Y.; Baráth, E.; Zhao, C.; Lercher, J.A. Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green Chem. 2015, 17, 1204–1218. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, H.; Jung, H.; Ha, J.-M.; Kim, D.H. Investigation of ruthenium loaded beta zeolite catalyst performance in vanillin hydrodeoxygenation yielding both monomeric and dimeric cycloalkanes. Chem. Eng. J. 2024, 499, 155888. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Santosa, D.M.; Wang, H.; Zuo, P.; Wang, C.; Mittal, A.; Gieleciak, R.; Klein, D.P.; Manto, M.J.; et al. Engineered Ru on HY zeolite catalyst for continuous and selective hydrodeoxygenation of lignin phenolics to cycloalkanes under moderate conditions. Appl. Catal. A Gen. 2024, 676, 119649. [Google Scholar] [CrossRef]
- Shafaghat, H.; Sirous Rezaei, P.; Daud, W.M.A.W. Catalytic hydrogenation of phenol, cresol and guaiacol over physically mixed catalysts of Pd/C and zeolite solid acids. RSC Adv. 2015, 5, 33990–33998. [Google Scholar] [CrossRef]
- Yan, P.; Li, M.M.-J.; Kennedy, E.; Adesina, A.; Zhao, G.; Setiawan, A.; Stockenhuber, M. The role of acid and metal sites in hydrodeoxygenation of guaiacol over Ni/Beta catalysts. Catal. Sci. Technol. 2020, 10, 810–825. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Yu, Z.; Wang, A.; Liu, S.; Yao, Y.; Sun, Z.; Li, X.; Liu, Y.; Wang, Y.; Camaioni, D.M.; Lercher, J.A. Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides. Catal. Today 2019, 319, 48–56. [Google Scholar] [CrossRef]
- López, M.; Palacio, R.; Mamede, A.-S.; Fernández, J.J.; Royer, S. Hydrodeoxygenation of guaiacol into cyclohexane over mesoporous silica supported Ni–ZrO2 catalyst. Microporous Mesoporous Mater. 2020, 309, 110452. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Li, C.-L.; Wan, H.-P.; Lee, H.-T.; Liu, C.-F. Catalytic Hydrodeoxygenation of Guaiacol on Rh-Based and Sulfided CoMo and NiMo Catalysts. Energy Fuels 2011, 25, 890–896. [Google Scholar] [CrossRef]
- Available online: https://www.iza-structure.org/ (accessed on 13 December 2024).
- Jmol: An Open-Source Java Viewer for Chemical Structures in 3D. Available online: http://www.jmol.org/ (accessed on 25 November 2024).
- Jae, J.; Tompsett, G.A.; Foster, A.J.; Hammond, K.D.; Auerbach, S.M.; Lobo, R.F.; Huber, G.W. Investigation into the shape selectivity of zeolite catalysts for biomass conversion. J. Catal. 2011, 279, 257–268. [Google Scholar] [CrossRef]
- Yan, P.; Kennedy, E.; Stockenhuber, M. Natural zeolite supported Ni catalysts for hydrodeoxygenation of anisole. Green Chem. 2021, 23, 4673–4684. [Google Scholar] [CrossRef]
- Zhu, X.; Lobban, L.L.; Mallinson, R.G.; Resasco, D.E. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J. Catal. 2011, 281, 21–29. [Google Scholar] [CrossRef]
- Ghampson, I.T.; Canales, R.; Escalona, N. A study of the hydrodeoxygenation of anisole over Re-MoOx/TiO2 catalyst. Appl. Catal. A Gen. 2018, 549, 225–236. [Google Scholar] [CrossRef]
- Güvenatam, B.; Kurşun, O.; Heeres, E.H.J.; Pidko, E.A.; Hensen, E.J.M. Hydrodeoxygenation of mono- and dimeric lignin model compounds on noble metal catalysts. Catal. Today 2014, 233, 83–91. [Google Scholar] [CrossRef]
- Li, L.; Huang, Z.; Shu, F.; Gao, Y.; Long, J. Hydrodeoxygenation of heavy lignin bio-oil to oxygenated fuel catalyzed by CuxNiy/MgO. Fuel 2024, 357, 129805. [Google Scholar] [CrossRef]
- Fu, Z.-P.; Zhao, Y.-P.; Wu, F.-P.; Xie, J.-X.; Qiu, L.-L.; Xiao, J.; Liang, J.; Bai, Y.-H.; Liu, F.-J.; Cao, J.-P. Selective hydrogenolysis of C-O bonds in lignin model compounds and Kraft lignin over highly efficient NixCoyAl catalysts. Mol. Catal. 2023, 547, 113334. [Google Scholar] [CrossRef]
- Le, T.M.; Pham, X.-T.; Ho, P.H.; Pham, T.L.M.; Cao, X.T.; Nguyen, T.N.; Giang, H.N.; Phung, T.K. Catalytic Conversion of 2-Phenethyl Phenyl Ether and 2-Phenoxy-1-Phenyl Ethanol Over ZSM-5, Y and Beta Zeolites. ChemistrySelect 2024, 9, e202403967. [Google Scholar] [CrossRef]
- Jastrzebski, R.; Constant, S.; Lancefield, C.S.; Westwood, N.J.; Weckhuysen, B.M.; Bruijnincx, P.C.A. Tandem Catalytic Depolymerization of Lignin by Water-Tolerant Lewis Acids and Rhodium Complexes. ChemSusChem 2016, 9, 2074–2079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Tian, F.; Chen, J.; Shi, Y.; Cao, H.; Ning, P.; Sun, S.; Xie, Y. Conversion of phenol to cyclohexane in the aqueous phase over Ni/zeolite bi-functional catalysts. Front. Chem. Sci. Eng. 2021, 15, 288–298. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, H.; Baxter, N.C.; Liao, Y.; Zhao, Y.; Wang, S. Guaiacol hydrodeoxygenation over Pd catalyst with mesoporous ZSM-5 support synthesized by solid-state crystallization. Catal. Today 2020, 358, 60–67. [Google Scholar] [CrossRef]
- Hafeez, S.; Aristodemou, E.; Manos, G.; Al-Salem, S.M.; Constantinou, A. Computational fluid dynamics (CFD) and reaction modelling study of bio-oil catalytic hydrodeoxygenation in microreactors. React. Chem. Eng. 2020, 5, 1083–1092. [Google Scholar] [CrossRef]
- Subramanyam, M.D.; Gollakota, A.R.K.; Kishore, N. CFD simulations of catalytic hydrodeoxygenation of bio-oil using Pt/Al2O3 in a fixed bed reactor. RSC Adv. 2015, 5, 90354–90366. [Google Scholar] [CrossRef]
- Gollakota, A.R.K.; Subramanyam, M.D.; Kishore, N.; Gu, S. CFD simulations on the effect of catalysts on the hydrodeoxygenation of bio-oil. RSC Adv. 2015, 5, 41855–41866. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Liu, Y.; Tang, S.; Chen, G.; Zhang, R.; Tang, X. Coke formation on the surface of Ni/HZSM-5 and Ni-Cu/HZSM-5 catalysts during bio-oil hydrodeoxygenation. Fuel 2017, 189, 23–31. [Google Scholar] [CrossRef]
- Anekwe, I.M.S.; Chetty, M.; Khotseng, L.; Kiambi, S.L.; Maharaj, L.; Oboirien, B.; Isa, Y.M. Stability, deactivation and regeneration study of a newly developed HZSM-5 and Ni-doped HZSM-5 zeolite catalysts for ethanol-to-hydrocarbon conversion. Catal. Commun. 2024, 186, 106802. [Google Scholar] [CrossRef]
- Vogt, E.T.C.; Fu, D.; Weckhuysen, B.M. Carbon Deposit Analysis in Catalyst Deactivation, Regeneration, and Rejuvenation. Angew. Chem. Int. Ed. Engl. 2023, 62, e202300319. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.; Smart, R.S.C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. [Google Scholar] [CrossRef]
- Jiang, Y.; Chen, J.; Zhang, J.; Zeng, Y.; Wang, Y.; Zhou, F.; Kiani, M.; Wang, R. Controlled decoration of Pd on Ni(OH)2 nanoparticles by atomic layer deposition for high ethanol oxidation activity. Appl. Surf. Sci. 2017, 420, 214–221. [Google Scholar] [CrossRef]
- Gardner, T.H.; Shekhawat, D.; Berry, D.A.; Smith, M.W.; Salazar, M.; Kugler, E.L. Effect of nickel hexaaluminate mirror cation on structure-sensitive reactions during n-tetradecane partial oxidation. Appl. Catal. A Gen. 2007, 323, 1–8. [Google Scholar] [CrossRef]
- Komvokis, V.G.; Karakoulia, S.; Iliopoulou, E.F.; Papapetrou, M.C.; Vasalos, I.A.; Lappas, A.A.; Triantafyllidis, K.S. Upgrading of Fischer–Tropsch synthesis bio-waxes via catalytic cracking: Effect of acidity, porosity and metal modification of zeolitic and mesoporous aluminosilicate catalysts. Catal. Today 2012, 196, 42–55. [Google Scholar] [CrossRef]
- Triantafyllidis, K.S.; Nalbandian, L.; Trikalitis, P.N.; Ladavos, A.K.; Mavromoustakos, T.; Nicolaides, C.P. Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Microporous Mesoporous Mater. 2004, 75, 89–100. [Google Scholar] [CrossRef]
- Triantafillidis, C.S.; Vlessidis, A.G.; Nalbandian, L.; Evmiridis, N.P. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites. Microporous Mesoporous Mater. 2001, 47, 369–388. [Google Scholar] [CrossRef]
- Triantafillidis, C.S.; Vlessidis, A.G.; Evmiridis, N.P. Dealuminated H−Y Zeolites: Influence of the Degree and the Type of Dealumination Method on the Structural and Acidic Characteristics of H−Y Zeolites. Ind. Eng. Chem. Res. 2000, 39, 307–319. [Google Scholar] [CrossRef]
- Zhao, C.; Kasakov, S.; He, J.; Lercher, J.A. Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. J. Catal. 2012, 296, 12–23. [Google Scholar] [CrossRef]
- Cordero-Lanzac, T.; Palos, R.; Hita, I.; Arandes, J.M.; Rodríguez-Mirasol, J.; Cordero, T.; Bilbao, J.; Castaño, P. Revealing the pathways of catalyst deactivation by coke during the hydrodeoxygenation of raw bio-oil. Appl. Catal. B Environ. 2018, 239, 513–524. [Google Scholar] [CrossRef]
Catalyst | DNi 1 (nm) | SBET 2 (m2/g) | Smicro 3 (m2/g) | Smm 4 (m2/g) | Vtotal 5 (cm3/g) | Vmicro 3 (cm3/g) | Brønsted 6 (μmol/g) | Lewis 6 (μmol/g) | B/L |
---|---|---|---|---|---|---|---|---|---|
10%Ni/BETA (12.5) | 14 | 562 | 371 | 191 | 1.151 | 0.154 | 102 | 182 | 0.56 |
320 °C, 1 h, 50 bar H2, C/F = 0.2, 50%, 400 rpm | 15 | 169 | 65 | 104 | 1.009 | 0.029 | 18 | 74 | 0.24 |
Regenerated | 12 | 306 | 213 | 92 | 1.143 | 0.092 | 50 | 126 | 0.40 |
220 °C, 3 h, 50 bar H2, C/F = 0.2, 50%, 400 rpm | 16 | 497 | 340 | 157 | 1.208 | 0.148 | 19 | 264 | 0.07 |
Regenerated | 12 | 474 | 343 | 131 | 1.037 | 0.149 | 78 | 251 | 0.31 |
220 °C, 1 h, 50 bar H2, C/F = 0.2, 50%, 600 rpm | 16 | 419 | 266 | 153 | 0.945 | 0.115 | 53 | 262 | 0.20 |
Regenerated | 18 | 507 | 337 | 170 | 1.059 | 0.146 | 42 | 149 | 0.28 |
Peak | Peak Energy (eV) | Relative Contribution | |||||
---|---|---|---|---|---|---|---|
Fresh | Used | Regenerated | |||||
Before Etching | After Etching | Before Etching | After Etching | Before Etching | After Etching | ||
Nickel | |||||||
Ni2p3/2, Ni0 | 853.0 ± 0.3 | 0.0% | 61.9% | 0.0% | 34.5% | 11.2% | 56.1% |
Ni2p3/2, Ni2+ | 854.3 ± 0.2 | 76.7% | 0.0% | 36.6% | 65.5% | 28.6% | 32.1% |
Ni2p3/2, Ni3+, Ni(OOH) | 857.3 ± 0.2 | 0.0% | 0.0% | 63.4% | 0.0% | 60.2% | 11.8% |
Ni2p1/2, Ni0 | 869.9 ± 0.3 | 0.0% | 38.1% | 0.0% | 0.0% | 0.0% | 0.0% |
Ni2p1/2, Ni2+ | 872.5 ± 0.2 | 23.3% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Ni2p1/2, Ni3+ | 875.4 ± 0.2 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Silicon | |||||||
Si2p, Si-O in zeolite | 103.5 ± 0.2 | 100% | 100% | 71.7% | 71.7% | 57.7% | 23.9% |
Si2p, Si-Al in zeolite | 104.4 ± 0.2 | 0% | 0% | 28.3% | 28.3% | 42.3% | 76.1% |
Aluminum | |||||||
Al2p, Al-O-Si, in zeolite | 74.5 ± 0.2 | 0.0% | 0.0% | 36.7% | 36.0% | 10.8% | 7.8% |
Al2p, Al-O, in oxides | 75.6 ± 0.2 | 100% | 100% | 63.3% | 64.0% | 89.2% | 33.4% |
Al2p, Al3+ | 76.6 ± 0.2 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 58.8% |
Carbon | |||||||
C1s, C-C | 284.6 ± 0.2 | 71.9% | 58.4% | 45.6% | 50.3% | 63.6% | 47.3% |
C1s, C-O | 286.0 ± 0.2 | 23.2% | 31.0% | 30.1% | 26.9% | 28.0% | 33.9% |
C1s, O-C=O | 287.5 ± 0.2 | 4.9% | 10.6% | 12.7% | 8.4% | 8.4% | 18.7% |
C1s, CO-OH | 289.4 ± 0.2 | 0.0% | 0.0% | 3.7% | 0.0% | 0.0% | 0.0% |
C1s, C–metal | 283.5 ± 0.2 | 0.0% | 0.0% | 7.9% | 14.4% | 0.0% | 0.0% |
Oxygen | |||||||
O1s, C=O | 532.0 ± 0.2 | 4.3% | 4.0% | 16.9% | 16.0% | 6.5% | 9.2% |
O1s, C-O | 533.5 ± 0.2 | 5.0% | 6.2% | 37.1% | 26.4% | 35.4% | 41.3% |
O1s, -OH | 534.7 ± 0.2 | 11.2% | 12.2% | 5.7% | 4.9% | 14.5% | 23.4% |
O1s, moisture | 536.4 ± 0.2 | 0.0% | 0.0% | 0.0% | 0.0% | 11.1% | 0.0% |
O1s, O–metal | 531.0 ± 0.2 | 2.7% | 4.7% | 3.3% | 8.6% | 2.7% | 2.0% |
O1s, Si-O | 532.8 ± 0.2 | 76.9% | 72.9% | 37.0% | 44.0% | 29.7% | 24.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Margellou, A.G.; Zormpa, F.F.; Karfaridis, D.; Karakoulia, S.A.; Triantafyllidis, K.S. Hydrodeoxygenation of Phenolic Compounds and Lignin Bio-Oil Surrogate Mixture over Ni/BEA Zeolite Catalyst and Investigation of Its Deactivation. Catalysts 2025, 15, 48. https://doi.org/10.3390/catal15010048
Margellou AG, Zormpa FF, Karfaridis D, Karakoulia SA, Triantafyllidis KS. Hydrodeoxygenation of Phenolic Compounds and Lignin Bio-Oil Surrogate Mixture over Ni/BEA Zeolite Catalyst and Investigation of Its Deactivation. Catalysts. 2025; 15(1):48. https://doi.org/10.3390/catal15010048
Chicago/Turabian StyleMargellou, Antigoni G., Foteini F. Zormpa, Dimitrios Karfaridis, Stamatia A. Karakoulia, and Konstantinos S. Triantafyllidis. 2025. "Hydrodeoxygenation of Phenolic Compounds and Lignin Bio-Oil Surrogate Mixture over Ni/BEA Zeolite Catalyst and Investigation of Its Deactivation" Catalysts 15, no. 1: 48. https://doi.org/10.3390/catal15010048
APA StyleMargellou, A. G., Zormpa, F. F., Karfaridis, D., Karakoulia, S. A., & Triantafyllidis, K. S. (2025). Hydrodeoxygenation of Phenolic Compounds and Lignin Bio-Oil Surrogate Mixture over Ni/BEA Zeolite Catalyst and Investigation of Its Deactivation. Catalysts, 15(1), 48. https://doi.org/10.3390/catal15010048