Evaluation of Energy-Saving Combo of MEA-EAE-AMP Tri-Solvent with Absorber and Desorber Catalysts in a Hot Oil-Based Bench-Scale Pilot Plant
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of the Desorber Catalysts on Capture Performance
2.1.1. Effect of the Desorber Catalysts on Absorption Efficiency
2.1.2. Effect of the Desorber Catalysts on Cyclic Capacity
2.1.3. Effect of the Desorber Catalysts on Heat Duty
2.1.4. Effect of the Desorber Catalyst on Temperature Profiles
2.2. Effect of the Absorber–Desorber Catalysts on Capture Performance
2.2.1. Effect of the Absorber–Desorber Catalysts on Absorption Efficiency
2.2.2. Effect of the Absorber–Desorber Catalysts on Cyclic Capacity
2.2.3. Effect of the Absorber–Desorber Catalysts on Heat Duty
2.2.4. Effect of the Absorber–Desorber Catalysts on Temperature Profiles
3. Theory
3.1. Main Reaction Schemes of CO2 Absorption–Desorption Within Tri-Solvent
- Carbamate formation:
- Carbamates breakdown:
- AmineH+ deprotonation:
- Bicarbonate decomposition:
CO2 + Cat−
3.2. Calculations of Absorption Efficiency, Cyclic Capacity, and Heat Duty
4. Experimental Section
4.1. Materials
4.2. Experimental Apparatus and Procedures
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Nomenclature | |
AE | absorption efficiency (%) |
CC | cyclic capacity (mmol CO2/min) |
HD | heat duty (GJ/tCO2) or (kJ/g) |
CPHM | the heat capacity of a hot medium (J/(g·K) |
mHM | the mass flow rate of a hot medium (kg/min) |
CA | amine concentration (k mol/m3) (mol/L) |
FG1 | volumetric flow rate of inlet feed gas (SLPM) |
FG2 | volumetric flow rate of outlet off gas (SLPM) |
Xin | CO2 concentrations in the inlet gas |
Xout | CO2 concentrations in the outlet gas |
FL | liquid flow rate of absorbent (mL/min) |
MWCO2 | molecular weight of CO2 (g/mol) |
id | internal diameter (m) |
mCO2 | mass flow rate of CO2 product (g/min) |
THM,in, THM,out | temperature in and out of heating medium (K) |
Wcat | weight of catalysts (g) |
Greek Symbols | |
αlean | CO2 loading of lean amine (mol of CO2/mol amine) |
αrich | CO2 loading of rich amine (mol of CO2/mol amine) |
Abbreviation | |
AMP | 2-amino-2-methyl-1-propanol |
BEA | Butylethanol amine |
DEEA | N, N-diethylethanolamine |
EAE | 2-(ethylamino)ethanol |
MEA | Monoethanol amine |
References
- Rochelle, G.T. Amine Scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Yang, J.; Yan, J.; Lee, C.; Hashim, H.; Chen, B. A holistic low carbon city indicator framework for sustainable development. Appl. Energy 2017, 185, 1919–1930. [Google Scholar] [CrossRef]
- Feng, J.-C.; Yan, J.; Yu, Z.; Zeng, X.; Xu, W. Case study of an industrial park toward zero carbon emission. Appl. Energy 2018, 209, 65–78. [Google Scholar] [CrossRef]
- Liu, S.; Gao, H.; He, C.; Liang, Z. Experimental evaluation of highly efficient primary and secondary amines with lower energy by a novel method for post-combustion CO2 capture. Appl. Energy 2019, 233–234, 443–452. [Google Scholar] [CrossRef]
- Guo, J.-X.; Huang, C. Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050. Appl. Energy 2020, 259, 114112. [Google Scholar] [CrossRef]
- Oh, H.-T.; Ju, Y.; Chung, K.; Lee, C.-H. Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes. Energy 2020, 206, 118164. [Google Scholar] [CrossRef]
- Vega, F.; Baena-Moreno, F.M.; Gallego Fernández, L.M.; Portillo, E.; Navarrete, B.; Zhang, Z. Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale. Appl. Energy 2020, 260, 114313. [Google Scholar] [CrossRef]
- Gelowitz, D.; Supap, T.; Abdulaziz, N.; Sema, T.; Idem, R.; Tontiwachwuthikul, P. Part 8: Post-combustion CO2 capture: Pilot plant operation issues. Carbon Manag. 2012, 4, 215–231. [Google Scholar] [CrossRef]
- Srisang, W.; Pouryousefi, F.; Osei, P.A.; Decardi-Nelson, B.; Akachuku, A.; Tontiwachwuthikul, P.; Idem, R. Evaluation of the heat duty of catalyst-aided amine-based post combustion CO2 capture. Chem. Eng. Sci. 2017, 170, 48–57. [Google Scholar] [CrossRef]
- Nwaoha, C.; Tontiwachwuthikul, P.; Benamor, A. CO2 capture from lime kiln using AMP-DA2MP amine solvent blend: A pilot plant study. J. Environ. Chem. Eng. 2018, 6, 7102–7110. [Google Scholar] [CrossRef]
- Choi, J.; Cho, H.; Yun, S.; Jang, M.-G.; Oh, S.-Y.; Binns, M.; Kim, J.-K. Process design and optimization of MEA-based CO2 capture processes for non-power industries. Energy 2019, 185, 971–980. [Google Scholar] [CrossRef]
- Yun, S.; Oh, S.-Y.; Kim, J.-K. Techno-economic assessment of absorption-based CO2 capture process based on novel solvent for coal-fired power plant. Appl. Energy 2020, 268, 114933. [Google Scholar] [CrossRef]
- Alivand, M.S.; Mazaheri, O.; Wu, Y.; Stevens, G.W.; Scholes, C.A.; Mumford, K.A. Catalytic Solvent Regeneration for Energy-Efficient CO2 Capture. ACS Sustain. Chem. Eng. 2020, 8, 18755–18788. [Google Scholar] [CrossRef]
- Afari, D.B.; Coker, J.; Narku-Tetteh, J.; Idem, R. Comparative Kinetic Studies of Solid Absorber Catalyst (K/MgO) and Solid Desorber Catalyst (HZSM-5)-Aided CO2 Absorption and Desorption from Aqueous Solutions of MEA and Blended Solutions of BEA-AMP and MEA-MDEA. Ind. Eng. Chem. Res. 2018, 57, 15824–15839. [Google Scholar] [CrossRef]
- Narku-Tetteh, J.; Afari, D.B.; Coker, J.; Idem, R. Evaluation of the Roles of Absorber and Desorber Catalysts in the Heat Duty and Heat of CO2 Desorption from Butylethanolamine–2-Amino-2-methyl-1-propanol and Monoethanolamine–Methyldiethanolamine Solvent Blends in a Bench-Scale CO2 Capture Pilot Plant. Energy Fuels 2018, 32, 9711–9726. [Google Scholar] [CrossRef]
- Akachuku, A.; Osei, P.A.; Decardi-Nelson, B.; Srisang, W.; Pouryousefi, F.; Ibrahim, H.; Idem, R. Experimental and kinetic study of the catalytic desorption of CO2 from CO2-loaded monoethanolamine (MEA) and blended monoethanolamine—Methyl-diethanolamine (MEA-MDEA) solutions. Energy 2019, 179, 475–489. [Google Scholar] [CrossRef]
- Natewong, P.; Prasongthum, N.; Reubroycharoen, P.; Idem, R. Evaluating the CO2 Capture Performance Using a BEA-AMP Biblend Amine Solvent with Novel High-Performing Absorber and Desorber Catalysts in a Bench-Scale CO2 Capture Pilot Plant. Energy Fuels 2019, 33, 3390–3402. [Google Scholar] [CrossRef]
- Srisang, W.; Pouryousefi, F.; Osei, P.A.; Decardi-Nelson, B.; Akachuku, A.; Tontiwachwuthikul, P.; Idem, R. CO2 capture efficiency and heat duty of solid acid catalyst-aided CO2 desorption using blends of primary-tertiary amines. Int. J. Greenh. Gas Control 2018, 69, 52–59. [Google Scholar] [CrossRef]
- Zhang, N.; Shi, H.; Wang, H.; Feng, Y.; Jin, J.; Tontiwachwuthikul, P.; Fang, M. Evaluating CO2 Capture Performance of Trisolvent MEA–BEA–AMP with Heterogeneous Catalysts in a Novel Bench-Scale Pilot Plant. ACS Omega 2023, 9, 1838–1849. [Google Scholar] [CrossRef]
- Li, Y.; Yu, X.; Zhu, Y.; Sun, Y.; Feng, Y.; Shi, H.; Jin, J. Catalytic CO2 Capture Performance of a MEA-EAE-DEEA Trisolvent in a Hot Silicon Oil-Based Pilot Plant. Ind. Eng. Chem. Res. 2024, 63, 17637–17649. [Google Scholar] [CrossRef]
- Idem, R.; Supap, T.; Shi, H.; Gelowitz, D.; Ball, M.; Campbell, C.; Tontiwachwuthikul, P. Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants. Int. J. Greenh. Gas Control 2015, 40, 6–25. [Google Scholar] [CrossRef]
- Nwaoha, C.; Saiwan, C.; Supap, T.; Idem, R.; Tontiwachwuthikul, P.; Rongwong, W.; Al-Marri, M.J.; Benamor, A. Carbon dioxide (CO2) capture performance of aqueous tri-solvent blends containing 2-amino-2-methyl-1-propanol (AMP) and methyldiethanolamine (MDEA) promoted by diethylenetriamine (DETA). Int. J. Greenh. Gas Control 2016, 53, 292–304. [Google Scholar] [CrossRef]
- Nwaoha, C.; Saiwan, C.; Tontiwachwuthikul, P.; Supap, T.; Rongwong, W.; Idem, R.; Al-Marri, M.J.; Benamor, A. Carbon dioxide (CO2) capture: Absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends. J. Nat. Gas Sci. Eng. 2016, 33, 742–750. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, X.; Yang, Q.; Yu, H.; Liang, Z.; Luo, X. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC). Appl. Energy 2017, 205, 1002–1011. [Google Scholar] [CrossRef]
- Nwaoha, C.; Beaulieu, M.; Tontiwachwuthikul, P.; Gibson, M.D. Techno-economic analysis of CO2 capture from a 1.2 million MTPA cement plant using AMP-PZ-MEA blend. Int. J. Greenh. Gas Control 2018, 78, 400–412. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Liu, H.; Gao, H.; Liang, Z. Evaluating CO2 desorption performance in CO2-loaded aqueous tri-solvent blend amines with and without solid acid catalysts. Appl. Energy 2018, 218, 417–429. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Gao, H.; Luo, X.; Liang, Z.; Tontiwachwuthikul, P. Zeolite catalyst-aided tri-solvent blend amine regeneration: An alternative pathday to reduce the energy comsumption in amine-based CO2 capture process. Appl. Energy 2019, 240, 827–841. [Google Scholar] [CrossRef]
- Shi, H.; Yang, X.; Feng, H.; Fu, J.; Zou, T.; Yao, J.; Wang, Z.; Jiang, L.; Tontiwachwuthikul, P. Evaluating Energy-Efficient Solutions of CO2 Capture within Tri-solvent MEA + BEA + AMP within 0.1 + 2 + 2 – 0.5 + 2 + 2 mol/L Combining Heterogeneous Acid–Base Catalysts. Ind. Eng. Chem. Res. 2021, 60, 7352–7366. [Google Scholar] [CrossRef]
- Shi, H.; Cheng, X.; Peng, J.; Feng, H.; Tontiwachwuthikul, P.; Hu, J. The CO2 absorption and desorption analysis of tri-solvent MEA + EAE + AMP compared with MEA + BEA + AMP along with “coordination effects” evaluation. Environ. Sci. Pollut. Res. 2022, 29, 40686–40700. [Google Scholar] [CrossRef]
- Shi, H.; Peng, J.; Cheng, X.; Yang, X.; Jin, J.; Hu, J. The CO2 desorption analysis of tri-solvent MEA+BEA+DEEA with several commercial solid acid catalysts. Int. J. Greenh. Gas Control 2022, 116, 103647. [Google Scholar] [CrossRef]
- Zhang, B.; Peng, J.; Li, Y.; Shi, H.; Jin, J.; Hu, J.; Lu, S. Evaluating CO2 Desorption Activity of Tri-Solvent MEA + EAE + AMP with Various Commercial Solid Acid Catalysts. Catalysts 2022, 12, 723. [Google Scholar] [CrossRef]
- Shi, H.; Ge, Y.; Lu, S.; Peng, J.; Jin, J.; Jia, L. Catalytic CO2 Desorption Study of Tri-Solvent MEA-EAE-DEEA with Five Solid Acid Catalysts. Catalysts 2023, 13, 975. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; He, X.; Niu, Y.; Li, C.; Amer, M.W.; Barzagli, F. Investigation of the improvement of the CO2 capture performance of aqueous amine sorbents by switching from dual-amine to trio-amine systems. Sep. Purif. Technol. 2023, 316, 123810. [Google Scholar] [CrossRef]
- Shi, H.; Fu, J.; Wu, Q.; Huang, M.; Jiang, L.; Cui, M.; Idem, R.; Tontiwachwuthikul, P. Studies of the coordination effect of DEA-MEA blended amines (within 1 + 4 to 2 + 3 M) under heterogeneous catalysis by means of absorption and desorption parameters. Sep. Purif. Technol. 2020, 236, 116179. [Google Scholar] [CrossRef]
- Shi, H.; Cheng, X.; Peng, J.; Feng, H.; Yang, X.; Quan, L.; Jiang, L.; Tontiwachwuthikul, P. Structure–Activity Correlation Analyses of MEA + 3A1P/MAE Isomers with a Coordinative Effect Study. Ind. Eng. Chem. Res. 2022, 61, 3091–3103. [Google Scholar] [CrossRef]
- Shi, H.; Naami, A.; Idem, R.; Tontiwachwuthikul, P. Catalytic and non catalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents. Int. J. Greenh. Gas Control 2014, 26, 39–50. [Google Scholar] [CrossRef]
- Tan, Z.; Zhang, X.; Zhang, S.; Peng, Y.; Zhao, S.; Xiang, C.; Yue, X.; Zhao, F.; You, K.; Luo, H.a. Enhancing CO2 desorption rate in rich MEA solutions by metal-modified attapulgite catalyst. Sep. Purif. Technol. 2024, 330, 125513. [Google Scholar] [CrossRef]
- Horwitz, W. Association of Official Analytical Chemists (AOAC) Methods; George Banta Co.: Menasha, WI, USA, 1975. [Google Scholar]
Catalyst | BET Surface Area (m2/g) | Average Pore Size (nm) | Acid Strength (mmol/g) | Pore Volume (cm3/g) |
---|---|---|---|---|
HND-8 | >20 | ≥15 | 24.75 | 0.2–0.4 |
HND-580 | ≥20 | ≥15 | ≥4.95 | 0.2–0.45 |
Catalysts | AE (%) | CC (mmol CO2/min) | HD (GJ/tonne CO2) |
---|---|---|---|
100 g HND-580 | 94.5 | 47.5 | 2.74 |
100 g HND-580 + 10 g CaSO4 | 94.9 | 47.5 | 2.68 |
100 g HND-580 + 20 g CaSO4 | 95.1 | 50.0 | 2.60 |
100 g HND-580 + 30 g CaSO4 | 95.8 | 51.3 | 2.51 |
100 g HND-580 + 40 g CaSO4 | 95.9 | 52.5 | 2.47 |
100 g HND-580 + 50 g CaSO4 | 95.4 | 51.3 | 2.49 |
Absorbent Amin Blend | Heating Source | CA (mol/L) | Catalysts Acid–Base | Cyclic Capacity (mmol CO2/min) | Heat Duty (GJ/tCO2) | Group | Ref. |
---|---|---|---|---|---|---|---|
MEA | H2O | 5 | H-ZSM-5/γ-Al2O3 (2:1) | 20.65 | 11.37 | Idem | [18] |
BEA + AMP | H2O | 2 + 2 | HZSM-5 + K/MgO | 38.4–40.8 | 5.56 | Idem | [14,15,17] |
MEA + BEA + AMP | H2O | 0.3 + 2 + 2 | H-ZSM-5/γ-Al2O3 (2:1) + CaMg(CO3)2 | 58.1 | 2.40 | Shi | [19] |
MEA + EAE + DEEA | oil | 0.5 + 2 + 2 | HND-8 + CaMg(CO3)2 | 55.0 | 2.46 | Shi | [20] |
MEA + EAE + AMP | oil | 0.2 + 2 + 2 | HND-580 + CaSO4 | 52.5 | 2.47 | Shi | This study |
Operation Parameter | Value |
---|---|
tri-solvent | 4.2 M MEA-EAE-AMP |
liquid flow rate (mL/min) | 60 |
feed gas flow rate (SLPM) | 6.5 |
CO2 concentration | 15% CO2 balance with 85% N2 |
lean amine inlet temperature, Tinlet | 25 °C, 30 °C |
absorber catalysts | CaSO4 (0–50 g) |
desorber catalysts | HND-8, HND-580 (0–250 g) |
pressure in both towers | 1 atm |
hot silicon oil and Cp a | 1.63 kJ/(kg·k) (100 °C) |
operation temperature of hot oil | 100.5 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Zhang, S.; Wang, H.; Feng, Y.; Jin, J. Evaluation of Energy-Saving Combo of MEA-EAE-AMP Tri-Solvent with Absorber and Desorber Catalysts in a Hot Oil-Based Bench-Scale Pilot Plant. Catalysts 2025, 15, 49. https://doi.org/10.3390/catal15010049
Shi H, Zhang S, Wang H, Feng Y, Jin J. Evaluation of Energy-Saving Combo of MEA-EAE-AMP Tri-Solvent with Absorber and Desorber Catalysts in a Hot Oil-Based Bench-Scale Pilot Plant. Catalysts. 2025; 15(1):49. https://doi.org/10.3390/catal15010049
Chicago/Turabian StyleShi, Huancong, Shaowen Zhang, Hanyun Wang, Yongcheng Feng, and Jing Jin. 2025. "Evaluation of Energy-Saving Combo of MEA-EAE-AMP Tri-Solvent with Absorber and Desorber Catalysts in a Hot Oil-Based Bench-Scale Pilot Plant" Catalysts 15, no. 1: 49. https://doi.org/10.3390/catal15010049
APA StyleShi, H., Zhang, S., Wang, H., Feng, Y., & Jin, J. (2025). Evaluation of Energy-Saving Combo of MEA-EAE-AMP Tri-Solvent with Absorber and Desorber Catalysts in a Hot Oil-Based Bench-Scale Pilot Plant. Catalysts, 15(1), 49. https://doi.org/10.3390/catal15010049