Waste for Product: Pd and Pt Nanoparticle-Modified Ni Foam as a Universal Catalyst for Hydrogen/Oxygen Evolution Reaction and Methyl Orange Degradation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Spectra of Reagents
2.2. Synthesis of Catalyst with Different Composition
2.3. Catalyst Characterization
2.3.1. SEM/EDS Analysis of the Catalyst
2.3.2. XRD Analysis of the Catalysts
2.4. Catalyst Performance for Hydrogen/Oxygen Evolution Reaction
2.5. Catalyst Performance for Methyl Orange Removal from Aqueous Solution
2.5.1. Process of Methyl Orange Degradation Using Ascorbic Acid
2.5.2. Process of Methyl Orange Degradation Using Ascorbic Acid and in the Presence of Catalysts—Long-Term Removal
2.5.3. The Methyl Orange Degradation in the Presence of Catalyst and H2O2—Short-Term Removal
3. Materials and Methods
3.1. Reagents
3.2. Methods of Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salonen, L.M.; Petrovykh, D.Y.; Kolen’ko, Y.V. Sustainable catalysts for water electrolysis: Selected strategies for reduction and replacement of platinum-group metals. Mater. Today Sustain. 2021, 11–12, 100060. [Google Scholar] [CrossRef]
- Chen, H.; Liang, X.; Liu, Y.; Ai, X.; Asefa, T.; Zou, X. Active Site Engineering in Porous Electrocatalysts. Adv. Mater. 2020, 32, e2002435. [Google Scholar] [CrossRef]
- Sheng, W.; Gasteiger, H.A.; Shao-Horn, Y. Hydrogen Oxidation and Evolution Reaction Kinetics on Platinum: Acid vs Alkaline Electrolytes. J. Electrochem. Soc. 2010, 157, B1529. [Google Scholar] [CrossRef]
- Shah, A.H.; Wan, C.; Huang, Y.; Duan, X. Toward Molecular Level Understandings of Hydrogen Evolution Reaction on Platinum Surface. J. Phys. Chem. C 2023, 127, 12841–12848. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Sultan, S.; Myung, C.W.; Yoon, T.; Li, N.; Ha, M.; Harzandi, A.M.; Park, H.J.; Kim, D.Y.; Chandrasekaran, S.S.; et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 2018, 3, 773–782. [Google Scholar] [CrossRef]
- Hou, J.; Yang, M.; Ke, C.; Wei, G.; Priest, C.; Qiao, Z.; Wu, G.; Zhang, J. Platinum-group-metal catalysts for proton exchange membrane fuel cells: From catalyst design to electrode structure optimization. EnergyChem 2020, 2, 100023. [Google Scholar] [CrossRef]
- Spiegel, R.J. Platinum and fuel cells. Transp. Res. Part D Transp. Environ. 2004, 9, 357–371. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Y.; Liu, A.; Zhang, Z.; Lv, Q.; Liu, B. Current progress and performance improvement of Pt/C catalysts for fuel cells. J. Mater. Chem. A 2020, 8, 24284–24306. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Vasileff, A.; Jiao, Y.; Chen, S.; Song, L.; Zheng, B.; Zheng, Y.; Qiao, S.-Z. Strain Effect in Bimetallic Electrocatalysts in the Hydrogen Evolution Reaction. ACS Energy Lett. 2018, 3, 1198–1204. [Google Scholar] [CrossRef]
- Yu, W.; Porosoff, M.D.; Chen, J.G. Review of Pt-Based Bimetallic Catalysis: From Model Surfaces to Supported Catalysts. Chem. Rev. 2012, 112, 5780–5817. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Cheprakov, A.V. The Heck Reaction as a Sharpening Stone of Palladium Catalysis. Chem. Rev. 2000, 100, 3009–3066. [Google Scholar] [CrossRef] [PubMed]
- D’Alterio, M.C.; Casals-Cruañas, È.; Tzouras, N.V.; Talarico, G.; Nolan, S.P.; Poater, A. Mechanistic Aspects of the Palladium-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction. Chem. Eur. J. 2021, 27, 13481–13493. [Google Scholar] [CrossRef]
- Emadi, R.; Bahrami Nekoo, A.; Molaverdi, F.; Khorsandi, Z.; Sheibani, R.; Sadeghi-Aliabadi, H. Applications of palladium-catalyzed C–N cross-coupling reactions in pharmaceutical compounds. RSC Adv. 2023, 13, 18715–18733. [Google Scholar] [CrossRef]
- Doucet, H.; Hierso, J.-C. Palladium-Based Catalytic Systems for the Synthesis of Conjugated Enynes by Sonogashira Reactions and Related Alkynylations. Angew. Chem. Int. Ed. 2007, 46, 834–871. [Google Scholar] [CrossRef] [PubMed]
- Gazvoda, M.; Virant, M.; Pinter, B.; Košmrlj, J. Mechanism of copper-free Sonogashira reaction operates through palladium-palladium transmetallation. Nat. Commun. 2018, 9, 4814. [Google Scholar] [CrossRef] [PubMed]
- Pianowska, K.; Kluczka, J.; Benke, G.; Goc, K.; Malarz, J.; Ochmański, M.; Leszczyńska-Sejda, K. Solvent Extraction as a Method of Recovery and Separation of Platinum Group Metals. Materials 2023, 16, 4681. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.; Ding, Y.; Wen, Q.; Liu, B.; Zhang, S. Separation and purification of platinum group metals from aqueous solution: Recent developments and industrial applications. Resour. Conserv. Recycl. 2021, 167, 105417. [Google Scholar] [CrossRef]
- Kalavrouziotis, I.K.; Koukoulakis, P.H. The Environmental Impact of the Platinum Group Elements (Pt, Pd, Rh) Emitted by the Automobile Catalyst Converters. Water Air Soil Pollut. 2009, 196, 393–402. [Google Scholar] [CrossRef]
- Gagnon, Z.E.; Newkirk, C.; Hicks, S. Impact of Platinum Group Metals on the Environment: A Toxicological, Genotoxic and Analytical Chemistry Study. J. Environ. Sci. Health Part A 2006, 41, 397–414. [Google Scholar] [CrossRef]
- Ravindra, K.; Bencs, L.; Van Grieken, R. Platinum group elements in the environment and their health risk. Sci. Total Environ. 2004, 318, 1–43. [Google Scholar] [CrossRef]
- Pach, A.; Zaryczny, A.; Michałek, T.; Kamiński, H.; Kutyła, D.; Tokarski, T.; Chat-Wilk, K.; Hessel, V.; Luty-Błocho, M. One-Step Synthesis of Pt–Pd@ACF Catalyst in the Microreactor System for the Hydrogen Evolution Reaction. Ind. Eng. Chem. Res. 2024, 63, 7018–7030. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Pach, A.; Kutyła, D.; Kula, A.; Małecki, S.; Jeleń, P.; Hessel, V. Waste for Product—Synthesis and Electrocatalytic Properties of Palladium Nanopyramid Layer Enriched with PtNPs. Materials 2024, 17, 4165. [Google Scholar] [CrossRef]
- Wang, D.; Chen, Y.; Yao, B.; Meng, T.; Xu, Y.; Jiao, D.; Xing, Z.; Yang, X. Microdynamic modulation through Pt–O–Ni proton and electron “superhighway” for pH-universal hydrogen evolution. J. Energy Chem. 2025, 101, 808–815. [Google Scholar] [CrossRef]
- Wojnicki, M.; Podborska, A. The Mechanism of Redox Reaction between Palladium(II) Complex Ions and Potassium Formate in Acidic Aqueous Solution. Arch. Metall. Mater. 2017, 62, 737–745. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Szot, A.; Hessel, V.; Fitzner, K. The Kinetics of the Redox Reaction of Platinum(IV) Ions with Ascorbic Acid in the Presence of Oxygen. Materials 2023, 16, 4630. [Google Scholar] [CrossRef]
- Kutyła, D.; Nakajima, K.; Fukumoto, M.; Wojnicki, M.; Kołczyk-Siedlecka, K. Electrocatalytic Performance of Ethanol Oxidation on Ni and Ni/Pd Surface-Decorated Porous Structures Obtained by Molten Salts Deposition/Dissolution of Al-Ni Alloys. Int. J. Mol. Sci. 2023, 24, 3836. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.T.; Scates, R.; Twigg, M.V. X-ray diffraction study of nickel oxide reduction by hydrogen. Appl. Catal. A Gen. 2003, 246, 137–150. [Google Scholar] [CrossRef]
- Song, C.; Cao, L.; Li, B.; Huang, X.; Ye, K.; Zhu, K.; Cao, D.; Cheng, K.; Wang, G. Highly efficient palladium nanoparticles decorated reduced graphene oxide sheets supported on nickel foam for hydrogen peroxide electroreduction. Appl. Surf. Sci. 2017, 426, 1046–1054. [Google Scholar] [CrossRef]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tian, X.; Lin, Y.-W.; Wang, Z. Nickel foam and stainless steel mesh as electrocatalysts for hydrogen evolution reaction, oxygen evolution reaction and overall water splitting in alkaline media. RSC Adv. 2019, 9, 31563–31571. [Google Scholar] [CrossRef]
- Zhao, S.; Li, R.; Lv, Y.; Ye, H. Self-supported urchin-like NiCoPt/nickel foam as an efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Chem. Phys. Lett. 2024, 834, 140973. [Google Scholar] [CrossRef]
- Pach, A.; Zaryczny, A.; Podborska, A.; Luty-Błocho, M. The Role of Ascorbic Acid in the Process of Azo Dye Degradation in Aqueous Solution. Molecules 2024, 29, 3659. [Google Scholar] [CrossRef] [PubMed]
- Podborska, A.; Luty-Błocho, M. Molecular structure of methyl orange and its role in the process of [Pd(Azo)] compound and MOF formation. J. Mol. Struct. 2023, 1273, 134312. [Google Scholar] [CrossRef]
- Colonna, G.M.; Caronna, T.; Marcandalli, B. Oxidative degradation of dyes by ultraviolet radiation in the presence of hydrogen peroxide. Dyes Pigments 1999, 41, 211–220. [Google Scholar] [CrossRef]
- Ince, N.H. “Critical” effect of hydrogen peroxide in photochemical dye degradation. Water Res. 1999, 33, 1080–1084. [Google Scholar] [CrossRef]
- Dhawle, R.; Frontistis, Z.; Mantzavinos, D.; Lianos, P. Production of hydrogen peroxide with a photocatalytic fuel cell and its application to UV/H2O2 degradation of dyes. Chem. Eng. J. Adv. 2021, 6, 100109. [Google Scholar] [CrossRef]
- Swaminathan, K.; Sandhya, S.; Carmalin Sophia, A.; Pachhade, K.; Subrahmanyam, Y.V. Decolorization and degradation of H-acid and other dyes using ferrous–hydrogen peroxide system. Chemosphere 2003, 50, 619–625. [Google Scholar] [CrossRef]
- Malik, P.K.; Saha, S.K. Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Sep. Purif. Technol. 2003, 31, 241–250. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, S.; Wang, M.; Pan, S.; Ma, H.; Zou, J. Spectrophotometric determination of hydrogen peroxide in water by oxidative decolorization of azo dyes using Fenton system. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 221, 117138. [Google Scholar] [CrossRef] [PubMed]
- Luty-Błocho, M.; Wojnicki, M.; Włoch, G.; Fitzner, K. Green method for efficient PdNPs deposition on carbon carrier in the microreactor system. J. Nanopart. Res. Interdiscip. Forum Nanoscale Sci. Technol. 2018, 20, 239. [Google Scholar] [CrossRef] [PubMed]
- Luty-Błocho, M. The influence of steric stabilization on process of Au, Pt nanoparticles formation. Arch. Metall. Mater. 2019, 64, 55–63. [Google Scholar] [CrossRef]
Catalyst | 2Θ, deg | Compound | Ref. |
---|---|---|---|
Ni foam | 44.5 | Ni | [27] |
51.86 | |||
76.39 | |||
Blank | 44.99 | Ni | This work |
52.29 | |||
76.94 |
Catalyst | Overpotential (@−100 mA·cm−2) | Tafel Slope (mV·dec−1) | Ref. |
---|---|---|---|
Pd0Pt1.0@Ni | −0.2787 V | 137.9 | |
Pd0.25Pt0.75@Ni | −0.2539 V | 132.5 | |
Pd0.5Pt0.5@Ni | −0.2498 V | 125.2 | This work |
Pd0.75Pt0.25@Ni | −0.2220 V | 120.9 | |
Pd1.0Pt0@Ni | −0.2630 V | 123.0 | |
Ni foam | −0.444 V | ~130 | [30] |
Pt/C on GC | not reported | 38 | [30] |
Pt/C | −0.235 V | 34 | |
NiPt | −0.180 V | 30 | [31] |
NiCoPt | −0.150 V | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Druciarek, J.; Kutyła, D.; Pach, A.; Kula, A.; Luty-Błocho, M. Waste for Product: Pd and Pt Nanoparticle-Modified Ni Foam as a Universal Catalyst for Hydrogen/Oxygen Evolution Reaction and Methyl Orange Degradation. Catalysts 2025, 15, 133. https://doi.org/10.3390/catal15020133
Druciarek J, Kutyła D, Pach A, Kula A, Luty-Błocho M. Waste for Product: Pd and Pt Nanoparticle-Modified Ni Foam as a Universal Catalyst for Hydrogen/Oxygen Evolution Reaction and Methyl Orange Degradation. Catalysts. 2025; 15(2):133. https://doi.org/10.3390/catal15020133
Chicago/Turabian StyleDruciarek, Julia, Dawid Kutyła, Adrianna Pach, Anna Kula, and Magdalena Luty-Błocho. 2025. "Waste for Product: Pd and Pt Nanoparticle-Modified Ni Foam as a Universal Catalyst for Hydrogen/Oxygen Evolution Reaction and Methyl Orange Degradation" Catalysts 15, no. 2: 133. https://doi.org/10.3390/catal15020133
APA StyleDruciarek, J., Kutyła, D., Pach, A., Kula, A., & Luty-Błocho, M. (2025). Waste for Product: Pd and Pt Nanoparticle-Modified Ni Foam as a Universal Catalyst for Hydrogen/Oxygen Evolution Reaction and Methyl Orange Degradation. Catalysts, 15(2), 133. https://doi.org/10.3390/catal15020133