Effect of Surface Passivation on Photoelectrochemical Water Splitting Performance of WO3 Vertical Plate-Like Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the As-Prepared Films
2.2. Photoelectrochemical Measurements of the Films
3. Experimental Section
3.1. Sample Preparation
3.2. Structure Characterization
3.3. Photoelectrochemical Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kapilashrami, M.; Zhang, Y.; Liu, Y.-S.; Hagfeldt, A.; Guo, J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chem. Rev. 2014, 114, 9662–9707. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, H.; Ling, Y.; Tang, Y.; Yang, X.; Fitzmorris, R.C.; Wang, C.; Zhang, J.Z.; Li, Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2011, 11, 3026–3033. [Google Scholar] [CrossRef] [PubMed]
- Kargar, A.; Jing, Y.; Kim, S.J.; Riley, C.T.; Pan, X.; Wang, D. ZnO/CuO Heterojunction Branched Nanowires for Photoelectrochemical Hydrogen Generation. ACS Nano 2013, 7, 11112–11120. [Google Scholar] [CrossRef] [PubMed]
- Amano, F.; Tian, M.; Wu, G.; Ohtani, B.; Chen, A. Facile preparation of platelike tungsten oxide thin film electrodes with high photoelectrode activity. ACS Appl. Mater. Interfaces 2011, 3, 4047–4052. [Google Scholar] [CrossRef] [PubMed]
- Kalanur, S.S.; Hwang, Y.J.; Chae, S.Y.; Joo, O.S. Facile growth of aligned WO3 nanorods on FTO substrate for enhanced photoanodic water oxidation activity. J. Mater. Chem. A 2013, 1, 3479–3488. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Haider, Z.; Van, T.K.; Pawar, A.U.; Kang, M.J.; Kim, C.W.; Kang, Y.S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070–6093. [Google Scholar] [CrossRef]
- Su, J.; Feng, X.; Sloppy, J.D.; Guo, L.; Grimes, C.A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2010, 11, 203–208. [Google Scholar] [CrossRef] [PubMed]
- Amano, F.; Tian, M.; Ohtani, B.; Chen, A. Photoelectrochemical properties of tungsten trioxide thin film electrodes prepared from facet-controlled rectangular platelets. J. Solid State Electrochem. 2012, 16, 1965–1973. [Google Scholar] [CrossRef]
- Amano, F.; Li, D.; Ohtani, B. Photoelectrochemical property of tungsten oxide films of vertically aligned flakes for visible-light-induced water oxidation. J. Electrochem. Soc. 2011, 158, K42–K46. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Song, G.; Kim, C.W.; Kang, Y.S. Fabrication of (001)-oriented monoclinic WO3 film on FTO substrate. Nanoscale 2013, 5, 5279–5282. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.Y.; Song, G.; Hong, J.; Van, T.K.; Pawar, A.U.; Kim, D.Y.; Kim, C.W.; Haider, Z.; Kang, Y.S. Facile Fabrication of WO3 Nanoplates Thin Films with Dominant Crystal Facet of (002) for Water Splitting. Cryst. Growth Des. 2014, 14, 6057–6066. [Google Scholar] [CrossRef]
- Yang, J.; Li, W.; Li, J.; Sun, D.; Chen, Q. Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J. Mater. Chem. 2012, 22, 17744–17752. [Google Scholar] [CrossRef]
- Liu, Y.; He, H.; Li, J.; Li, W.; Yang, Y.; Li, Y.; Chen, Q. ZnO nanoparticle-functionalized WO3 plates with enhanced photoelectrochemical properties. RSC Adv. 2015, 5, 46928–46934. [Google Scholar] [CrossRef]
- Su, J.; Guo, L.; Bao, N.; Grimes, C.A. Nanostructured WO3/BiVO4 Heterojunction Films for Efficient Photoelectrochemical Water Splitting. Nano Lett. 2011, 11, 1928–1933. [Google Scholar] [CrossRef] [PubMed]
- Szilágyi, I.M.; Santala, E.; Heikkilä, M.; Pore, V.; Kemell, M.; Nikitin, T.; Teucher, G.; Firkala, T.; Khriachtchev, L.; Räsänen, M.; Ritala, M.; Leskelä, M. Photocatalytic Properties of WO3/TiO2 Core/Shell Nanofibers prepared by Electrospinning and Atomic Layer Deposition. Chem. Vap. Depos. 2013. [Google Scholar] [CrossRef]
- Sun, Y.; Murphy, C.J.; Reyes-Gil, K.R.; Reyes-Garcia, E.A.; Thornton, J.M.; Morris, N.A.; Raftery, D. Photoelectrochemical and structural characterization of carbon-doped WO3 films prepared via spray pyrolysis. Int. J. Hydrogen Energy 2009, 34, 8476–8484. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Li, W.; Yang, Y.; Li, Y.; Chen, Q. Enhancement of the Photoelectrochemical Performance of WO3 Vertical Arrays Film for Solar Water Splitting by Gadolinium Doping. J. Phys. Chem. C 2015, 119, 14834–14842. [Google Scholar] [CrossRef]
- Zhang, T.; Zhu, Z.; Chen, H.; Bai, Y.; Xiao, S.; Zheng, X.; Xue, Q.; Yang, S. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: A combined experimental and theoretical study. Nanoscale 2015, 7, 2933–2940. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Yao, Y.; Bai, D.; Xu, R.; Mei, J.; Wu, D.; Gao, Z.; Jiang, K. Au nanoparticle decorated WO3 photoelectrode for enhanced photoelectrochemical properties. RSC Adv. 2015, 5, 60339–60344. [Google Scholar] [CrossRef]
- Ghosh, S.; Acharyya, S.S.; Kumar, M.; Bal, R. One-pot preparation of nanocrystalline Ag-WO3 catalyst for the selective oxidation of styrene. RSC Adv. 2015, 5, 37610–37616. [Google Scholar] [CrossRef]
- Kim, W.; Tachikawa, T.; Monllor-Satoca, D.; Kim, H.-I.; Majima, T.; Choi, W. Promoting water photooxidation on transparent WO3 thin films using an alumina overlayer. Energy Environ. Sci. 2013, 6, 3732–3739. [Google Scholar] [CrossRef]
- Shanmugam, M.; Baroughi, M.F.; Galipeau, D. Effect of atomic layer deposited ultra thin HfO2 and Al2O3 interfacial layers on the performance of dye sensitized solar cells. Thin Solid Films 2010, 518, 2678–2682. [Google Scholar] [CrossRef]
- Ramasamy, P.; Kang, M.-S.; Cha, H.-J.; Kim, J. Highly efficient dye-sensitized solar cells based on HfO2 modified TiO2 electrodes. Mater. Res. Bull. 2013, 48, 79–83. [Google Scholar] [CrossRef]
- Li, L.; Xu, C.; Zhao, Y.; Chen, S.; Ziegler, K.J. Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes. ACS. Appl. Mater. Interfaces 2015, 7, 12824–12831. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, J.; Li, W.; Liu, Q.; Yang, Y.; Li, Y.; Chen, Q. Enhanced photoelectrochemical performance of WO3 film with HfO2 passivation layer. Int. J. Hydrogen Energy 2015, 40, 8856–8863. [Google Scholar] [CrossRef]
- Rettie, A.J.E.; Klavetter, K.C.; Lin, J.-F.; Dolocan, A.; Celio, H.; Ishiekwene, A.; Bolton, H.L.; Pearson, K.N.; Hahn, N.T.; Mullins, C.B. Improved Visible Light Harvesting of WO3 by Incorporation of Sulfur or Iodine: A Tale of Two Impurities. Chem. Mater. 2014, 26, 1670–1677. [Google Scholar] [CrossRef]
- Cabello, G.; Lillo, L.; Buono-Core, G.E. Zr(IV) and Hf(IV) β-diketonate complexes as precursors for the photochemical deposition of ZrO2 and HfO2 thin films. J. Non-Cryst. Solids 2008, 354, 982–988. [Google Scholar] [CrossRef]
- Čížek, J.; Melikhova, O.; Procházka, I. Hydrogen-induced defects and multiplication of dislocations in Palladium. J. Alloys Compd. 2015, 645, S312–S315. [Google Scholar] [CrossRef]
- Wang, F.; di Valentin, C.; Pacchioni, G. Rational Band Gap Engineering of WO3 Photocatalyst for Visible light Water Splitting. ChemCatChem 2012, 4, 476–478. [Google Scholar] [CrossRef]
- Le Formal, F.; Tetreault, N.; Cornuz, M.; Moehl, T.; Gratzel, M.; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2011, 2, 737–743. [Google Scholar] [CrossRef]
- Hsiao, P.-T.; Chen, L.-C.; Li, T.-L.; Teng, H. Vapor treatment of nanocrystalline WO3 photoanodes for enhanced photoelectrochemical performance in the decomposition of water. J. Mater. Chem. 2011, 21, 19402–19409. [Google Scholar] [CrossRef]
- Devadoss, A.; Sudhagar, P.; Ravidhas, C.; Hishinuma, R.; Terashima, C.; Nakata, K.; Kondo, T.; Shitanda, I.; Yuasa, M.; Fujishima, A. Simultaneous glucose sensing and biohydrogen evolution from direct photoelectrocatalytic glucose oxidation on robust Cu2O-TiO2 electrodes. Phys. Chem. Chem. Phys. 2014, 16, 21237–21242. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Feng, X.; Hu, R.; Li, Y.; Xie, K.; Li, Y.; Gu, H. Effect of Ag nanoparticle size on the photoelectrochemical properties of Ag decorated TiO2 nanotube arrays. J. Alloys Compd. 2013, 554, 72–79. [Google Scholar] [CrossRef]
- Afanas' ev, V.V.; Stesmans, A.; Delabie, A.; Bellenger, F.; Houssa, M.; Meuris, M. Electronic structure of GeO2-passivated interfaces of (100) Ge with Al2O3 and HfO2. Appl. Phys. Lett. 2008, 92, 2109. [Google Scholar]
- Rumaiz, A.K.; Woicik, J.C.; Carini, G.A.; Siddons, D.P.; Cockayne, E.; Huey, E.; Lysaght, P.S.; Fischer, D.A.; Genova, V. Band alignment of atomic layer deposited HfO2 on clean and N passivated germanium surfaces. Appl. Phys. Lett. 2010, 97, 242108. [Google Scholar] [CrossRef]
- He, T.; Ma, Y.; Cao, Y.; Hu, X.; Liu, H.; Zhang, G.; Yang, W.; Yao, J. Photochromism of WO3 Colloids Combined with TiO2 Nanoparticles. J. Phys. Chem. B 2002, 106, 12670–12676. [Google Scholar] [CrossRef]
- Arai, T.; Yanagida, M.; Konishi, Y.; Iwasaki, Y.; Sugihara, H.; Sayama, K. Efficient Complete Oxidation of Acetaldehyde into CO2 over CuBi2O4/WO3 Composite Photocatalyst under Visible and UV Light Irradiation. J. Phys. Chem. C 2007, 111, 7574–7577. [Google Scholar] [CrossRef]
- Liu, C.; Yang, Y.; Li, W.; Li, J.; Li, Y.; Shi, Q.; Chen, Q. Highly Efficient Photoelectrochemical Hydrogen Generation Using ZnxBi2S3+x Sensitized Platelike WO3 Photoelectrodes. ACS. Appl. Mater. Interfaces 2015, 7, 10763–10770. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Xie, R.; Liu, Y.; Li, J.; Li, W. Effect of Surface Passivation on Photoelectrochemical Water Splitting Performance of WO3 Vertical Plate-Like Films. Catalysts 2015, 5, 2024-2038. https://doi.org/10.3390/catal5042024
Yang Y, Xie R, Liu Y, Li J, Li W. Effect of Surface Passivation on Photoelectrochemical Water Splitting Performance of WO3 Vertical Plate-Like Films. Catalysts. 2015; 5(4):2024-2038. https://doi.org/10.3390/catal5042024
Chicago/Turabian StyleYang, Yahui, Renrui Xie, Yang Liu, Jie Li, and Wenzhang Li. 2015. "Effect of Surface Passivation on Photoelectrochemical Water Splitting Performance of WO3 Vertical Plate-Like Films" Catalysts 5, no. 4: 2024-2038. https://doi.org/10.3390/catal5042024
APA StyleYang, Y., Xie, R., Liu, Y., Li, J., & Li, W. (2015). Effect of Surface Passivation on Photoelectrochemical Water Splitting Performance of WO3 Vertical Plate-Like Films. Catalysts, 5(4), 2024-2038. https://doi.org/10.3390/catal5042024