Promoting the Synthesis of Ethanol and Butanol by Salicylic Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Copper-Cobalt/SA-MWCNTs Catalyst
2.2. Alcohol Synthesis from Syngas
3. Experimental Section
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Alcohol Synthesis from Syngas
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xiong, H.; Jewell, L.L.; Coville, N.J. Shaped Carbons As Supports for the Catalytic Conversion of Syngas to Clean Fuels. ACS Catal. 2015, 5, 2640–2658. [Google Scholar] [CrossRef]
- Yue, Y.; Ma, X.; Gong, J. An Alternative Synthetic Approach for Efficient Catalytic Conversion of Syngas to Ethanol. Acc. Chem. Res. 2014, 47, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.W.; Kleitz, F.; Jun, J.W.; Chae, H.J.; Kim, C.U. Catalytic conversion of syngas to higher alcohols over mesoporous perovskite catalysts. J. Ind. Eng. Chem. 2017, 51, 196–205. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z.; Zhang, R.; Wang, B. Ethanol Synthesis from Syngas on the Stepped Rh(211) Surface: Effect of Surface Structure and Composition. J. Phys. Chem. C 2014, 118, 22691–22701. [Google Scholar] [CrossRef]
- Surisetty, V.R.; Dalai, A.K.; Kozinski, J. Effect of Rh Promoter on MWCNT Supported Alkali Modified MoS2 Catalysts for Higher Alcohols Synthesis from CO Hydrogenation. Appl. Catal. A 2010, 381, 282–288. [Google Scholar] [CrossRef]
- Lopez, L.; Velasco, J.; Montes, V.; Marinas, A.; Cabrera, S.; Boutonnet, M.; Järås, S. Synthesis of Ethanol from Syngas over Rh/MCM-41 Catalyst: Effect of Water on Product Selectivity. Catalysts 2015, 5, 1737–1755. [Google Scholar] [CrossRef]
- Subramani, V.; Gangwal, S.K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol. Energy Fuels 2008, 22, 814–839. [Google Scholar] [CrossRef]
- Zhao, L.; Li, W.; Zhou, J.; Mu, X.; Fang, K. One-step synthesis of Cu Co alloy/Mn2O3Al2O3 composites and their application in higher alcoholsynthesis from syngas. Int. J. Hydrogen Energy 2017, 42, 17414–17424. [Google Scholar] [CrossRef]
- Gupta, M.; Smith, M.L.; Spivey, J.J. Heterogeneous Catalytic Conversion of Dry Syngas to Ethanol and Higher Alcohols on Cu-Based Catalysts. ACS Catal. 2011, 1, 641–656. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Wang, L.; Yu, L.M.; Han, P.D.; Huang, W. Experimental and Theoretical Studies of Ethanol Synthesis from Syngas over CuZnAl Catalysts without Other Promoters. J. Phys. Chem. C 2014, 118, 12890–12898. [Google Scholar] [CrossRef]
- Yang, Q.; Cao, A.; Kang, N.; Ning, H.; Wang, J.; Liu, Z.T.; Liu, Y. Bimetallic Nano Cu–Co Based Catalyst for Direct Ethanol Synthesis from Syngas and Its Structure Variation with Reaction Time in Slurry Reactor. Ind. Eng. Chem. Res. 2017, 56, 2889–2898. [Google Scholar] [CrossRef]
- Morrill, M.R.; Thao, N.T.; Shou, H.; Davis, R.J.; Barton, D.G.; Ferrari, D.; Agrawal, P.K.; Jones, K.W. Origins of Unusual Alcohol Selectivities over Mixed MgAl Oxide-Supported K/MoS2 Catalysts for Higher Alcohol Synthesis from Syngas. ACS Catal. 2013, 3, 1665–1675. [Google Scholar] [CrossRef]
- Hensley, J.E.; Lovestead, T.M.; Christensen, E.; Dutta, A.; Bruno, T.J.; McCormick, R. Compositional Analysis and Advanced Distillation Curve for Mixed Alcohols Produced via Syngas on a K-CoMoSx Catalyst. Energy Fuels 2013, 27, 3246–3260. [Google Scholar] [CrossRef]
- Surisetty, V.R.; Dalai, A.K.; Kozinski, J. Synthesis of higher alcohols from synthesis gas over Co-promoted alkali-modified MoS2 catalysts supported on MWCNTs. Appl. Catal. A Gen. 2010, 385, 153–162. [Google Scholar] [CrossRef]
- Dong, X.; Liang, X.L.; Li, H.Y.; Lin, G.D.; Zhang, P.; Zhang, H.B. Preparation and characterization of carbon nanotube-promoted Co–Cu catalyst for higher alcohol synthesis from syngas. Catal. Today 2009, 147, 158–165. [Google Scholar] [CrossRef]
- Sims, A.; Jeffers, M.; Talapatra, S.; Mondal, K.; Pokhrel, S.; Liang, L.; Zhang, X.; Elias, A.L.; Sumpter, B.G.; Meunier, V.; et al. Hydro-deoxygenation of CO on functionalized carbon nanotubes for liquid fuels production. Carbon 2017, 121, 274–284. [Google Scholar] [CrossRef]
- Pomalaza, G.; Capron, M.; Ordomsky, V.; Dumeignil, F. Recent Breakthroughs in the Conversion of Ethanol to Butadiene. Catalysts 2016, 6, 203. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Kannapu, H.P.R.; Suh, Y.W. Cross-Aldol Condensation of Acetone and n-Butanol into Aliphatic Ketones over Supported Cu Catalysts on Ceria-Zirconia. Catalysts 2017, 7, 249. [Google Scholar] [CrossRef]
- Eswaramoorthi, I.; Sundaramurthy, V.; Das, N.; Dalai, A.K.; Adjaye, J. Application of Multi-Walled Carbon Nanotubes as Efficient Support to Nimo Hydrotreating Catalyst. Appl. Catal. A 2008, 339, 187–195. [Google Scholar] [CrossRef]
- Contarin, S.; Kevan, L. X-ray Photoelectron Spectroscopic Study of Copper-Exchanged X- and Y-Type Sodium Zeolites: Resolution of Two Cupric Ion Components and Dependence on Dehydration and X-Irradiation. J. Phys. Chem. 1986, 90, 1630–1632. [Google Scholar] [CrossRef]
- Ernst, B.; Bensaddik, A.; Hilaire, L.; Chaumette, P.; Kiennemann, A. Study on a Cobalt Silica Catalyst during Reduction and Fischer-Tropsch Reaction: In Situ EXAFS Compared to XPS and XRD. Catal. Today 1998, 39, 329–341. [Google Scholar] [CrossRef]
- Rinaldi, A.; Frank, B.; Su, D.S.; Hamid, S.B.A.; Schlögl, R. Facile Removal of Amorphous Carbon from Carbon Nanotubes by Sonication. Chem. Mater. 2011, 23, 926–928. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, J.; Wang, L.; Ji, P. Promoting the Synthesis of Ethanol and Butanol by Salicylic Acid. Catalysts 2017, 7, 295. https://doi.org/10.3390/catal7100295
Zou J, Wang L, Ji P. Promoting the Synthesis of Ethanol and Butanol by Salicylic Acid. Catalysts. 2017; 7(10):295. https://doi.org/10.3390/catal7100295
Chicago/Turabian StyleZou, Jinxin, Lei Wang, and Peijun Ji. 2017. "Promoting the Synthesis of Ethanol and Butanol by Salicylic Acid" Catalysts 7, no. 10: 295. https://doi.org/10.3390/catal7100295
APA StyleZou, J., Wang, L., & Ji, P. (2017). Promoting the Synthesis of Ethanol and Butanol by Salicylic Acid. Catalysts, 7(10), 295. https://doi.org/10.3390/catal7100295