Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microchannel Reactor Assembly and Enzyme Immobilization Reproducibility
2.2. Effect of pH and Temperature on the Catalytic Activity of the Free and Immobilized Invertase
2.3. Operational Stability in Recirculation Mode
2.4. Immobilized Invertase Kinetic Parameters in Continuous Flow
2.5. Mass Transfer Effects
2.6. Operational Stability on Continuous Mode
3. Materials and Methods
3.1. Materials
3.2. Hydrolytic Activity of the Free Enzyme
3.3. Optimum pH and Temperature Determination for the Free Enzyme
3.4. Free Enzyme Kinetic Parameters
3.5. Microchannel Reactor Assembly
3.6. Enzyme Covalent Immobilization
3.7. Hydrolytic Activity of the Immobilized Enzyme
3.8. Microchannel Reactor Assembly and Enzyme Immobilization Reproducibility
3.9. Optimum pH and Temperature Determination for the Immobilized Enzyme
3.10. Operational Stability in Recirculation Mode
3.11. Continuous Flow Operation
3.12. Effect of Flow Rate and Feed Concentrations on Product Yield
3.13. Mass Transfer Effects
3.14. Operational Stability under Continuous Flow
3.15 Analytical Methods
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Gomez, F.A. The future of microfluidic point-of-care diagnostic devices. Bioanalysis 2013, 5, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Chemistry in microstructured reactors. Angew. Chem. Int. Ed. 2004, 43, 406–446. [Google Scholar] [CrossRef] [PubMed]
- Jung, W.; Han, J.; Choi, J.-W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Kutter, J.P. Liquid phase chromatography on microchips. J. Chromatogr. A 2012, 1221, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Nuchtavorn, N.; Suntornsuk, W.; Lunte, S.M.; Suntornsuk, L. Recent applications of microchip electrophoresis to biomedical analysis. J. Pharm. Biomed. Anal. 2015, 13, 72–96. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.; Wiles, C. Recent advances in synthetic micro reaction technology. Chem. Commun. 2007, 5, 443–467. [Google Scholar] [CrossRef] [PubMed]
- Bolivar, J.M.; Wiesbauer, J.; Nidetzky, B. Biotransformations in microstructured reactors: More than flowing with the stream? Trends Biotechnol. 2011, 29, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P. Miniaturization in biocatalysis. Int. J. Mol. Sci. 2010, 11, 858–879. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.P.C.; Fernandes, P. Microfluidic devices: Useful tools for bioprocess intensification. Molecules 2011, 16, 8368–8401. [Google Scholar] [CrossRef] [PubMed]
- Wohlgemuth, R.; Plazl, I.; Žnidaršič-Plazl, P.; Gernaey, K.V.; Woodley, J.M. Microscale technology and biocatalytic processes: Opportunities and challenges for synthesis. Trends Biotechnol. 2015, 33, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Hajba, L.; Guttman, A. Continuous-flow biochemical reactors: Biocatalysis, bioconversion, and bioanalytical applications utilizing immobilized microfluidic enzyme reactors. J. Flow Chem. 2016, 6, 8–12. [Google Scholar] [CrossRef] [Green Version]
- Matosevic, S.; Lye, G.J.; Baganz, F. Immobilised enzyme microreactor for screening of multi-step bioconversions: Characterisation of a de novo transketolase-ω-transaminase pathway to synthesise chiral amino alcohols. J. Biotechnol. 2011, 155, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, F.; Fernandes, P. Packed bed enzyme microreactor: Application in sucrose hydrolysis as proof-of-concept. Biochem. Eng. J. 2015, 104, 74–81. [Google Scholar] [CrossRef]
- Halim, A.A.; Szita, N.; Baganz, F. Characterization and multi-step transketolase-ω-transaminase bioconversions in an immobilized enzyme microreactor (IEMR) with packed tube. J. Biotechnol. 2013, 168, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Matosevic, S.; Szita, N.; Baganz, F. Fundamentals and applications of immobilized microfluidic enzymatic reactors. J. Chem. Technol. Biotechnol. 2011, 86, 325–334. [Google Scholar] [CrossRef]
- Stojkovič, G.; Plazl, I.; Žnidaršič-Plazl, P. l-Malic acid production within a microreactor with surface immobilised fumarase. Microfluid. Nanofluid. 2010, 10, 627–635. [Google Scholar] [CrossRef]
- Thomsen, M.S.; Nidetzky, B. Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Biotechnol. J. 2009, 4, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Cvjetko, M.; Vorkapić-Furač, J.; Žnidaršič-Plazl, P. Isoamyl acetate synthesis in imidazolium-based ionic liquids using packed bed enzyme microreactor. Process Biochem. 2012, 47, 1344–1350. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.; Qi, D.; Deng, C.; Yang, P.; Zhang, X. On-chip enzymatic microreactor using trypsin-immobilized superparamagnetic nanoparticles for highly efficient proteolysis. J. Chromatogr. A 2007, 1176, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Honda, T.; Miyazaki, M.; Nakamura, H.; Maeda, H. Immobilization of enzymes on a microchannel surface through cross-linking polymerization. Chem. Commun. 2005, 40, 5062–5064. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, M.; Kaneno, J.; Uehara, M.; Fujii, M.; Shimizu, H.; Maeda, H. Simple method for preparation of nanostructure on microchannel surface and its usage for enzyme-immobilization. Chem. Commun. 2003, 5, 648–649. [Google Scholar] [CrossRef]
- Novick, S.J.; Rozzell, J.D. Immobilization of enzymes by covalent attachment. In Microbial Enzymes and Biotransformations; Barredo, J.L., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 247–272. [Google Scholar]
- Mohamad, N.B.; Marzuki, N.H.C.; Buang, N.A.; Huyop, F.; Wahab, R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015, 29, 205–220. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Zhang, Y.; He, L.; An, R.; Li, B.; Ying, H.; Wu, J.; Chen, Y.; Zhou, J.; Lu, X. Facile synthesis of amino-functionalized mesoporous TiO2 microparticles for adenosine deaminase immobilization. Micropor. Mesopor. Mat. 2017, 239, 158–166. [Google Scholar] [CrossRef]
- Meller, K.; Pomastowski, P.; Grzywiński, D.; Szumski, M.; Buszewski, B. Preparation and evaluation of dual-enzyme microreactor with co-immobilized trypsin and chymotrypsin. J. Chromatogr. A 2016, 1440, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Ghafourifar, G.; Waldron, K.C. Capillary electrophoretic peptide mapping to probe the immobilization/digestion conditions of glutaraldehyde-crosslinked chymotrypsin. Curr. Anal. Chem. 2016, 12, 65–73. [Google Scholar] [CrossRef]
- Akgöl, S.; Kaçar, Y.; Denizli, A.; Arıca, M. Hydrolysis of sucrose by invertase immobilized onto novel magnetic polyvinylalcohol microspheres. Food Chem. 2001, 74, 281–288. [Google Scholar] [CrossRef]
- Azodi, M.; Falamaki, C.; Mohsenifar, A. Sucrose hydrolysis by invertase immobilized on functionalized porous silicon. J. Mol Catal. B: Enzymatic. 2011, 69, 154–160. Available online: http://www.sciencedirect.com/science/article/pii/S1381117711000257 (accessed on 9 January 2017). [Google Scholar] [CrossRef]
- Kotwal, S.M.; Shankar, V. Immobilized invertase. Biotechnol. Adv. 2009, 27, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Sanjay, G.; Sugunan, S. Fixed bed reactor performance of invertase immobilized on montmorillonite. Catal. Commun. 2006, 7, 1005–1011. [Google Scholar] [CrossRef]
- Santagapita, P.R.; Mazzobre, M.F.; Buera, P. Invertase stability in alginate beads: Effect of trehalose and chitosan inclusion and of drying methods. Food Res. Int. 2012, 47, 321–330. [Google Scholar] [CrossRef]
- Valerio, S.G.; Alves, J.S.; Klein, M.P.; Rodrigues, R.C.; Hertz, P.F. High operational stability of invertase from Saccharomyces cerevisiae immobilized on chitosan nanoparticles. Carbohydr. Polym. 2013, 92, 462–468. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, S.; Tyagi, P.; Sindhi, V.; Yadavilli, K.S. Invertase and its applications—A brief review. J. Pharm. Res. 2013, 7, 792–797. [Google Scholar] [CrossRef]
- Amaya-Delgado, L.; Hidalgo-Lara, M.E.; Montes-Horcasitas, M.C. Hydrolysis of sucrose by invertase immobilized on nylon-6 microbeads. Food Chem. 2006, 99, 299–304. [Google Scholar] [CrossRef]
- Catana, R.; Eloy, M.; Rocha, J.R.; Ferreira, B.S.; Cabral, J.M.S.; Fernandes, P. Stability evaluation of an immobilized enzyme system for inulin hydrolysis. Food Chem. 2006, 101, 260–266. [Google Scholar] [CrossRef]
- Goulart, A.J.; Francisco, A.; Tavano, O.L.; Vinueza, J.C.; Contiero, J.; Monti, R. Glucose and fructose production by Saccharomyces cerevisiae invertase immobilized on MANAE-agarose support. J. Basic Appl. Pharm. Sci. 2013, 34, 169–175. [Google Scholar]
- Dehghanifard, E.; Jonidi Jafari, A.; Rezaei Kalantary, R.; Mahvi, A.H.; Faramarzi, M.A.; Esrafili, A. Biodegradation of 2,4-dinitrophenol with laccase immobilized on nano-porous silica beads. Iranian J. Environ. Health Sci. Eng. 2013, 10, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Mirzadeh, S.-S.; Khezri, S.-M.; Rezaei, S.; Forootanfar, H.; Mahvi, A.H.; Faramarzi, M.A. Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J. Environ. Heal. Sci. Eng. 2014, 12, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Pezzella, C.; Russo, M.E.; Marzocchella, A.; Salatino, P.; Sannia, G. Immobilization of a Pleurotus ostreatus laccase mixture on perlite and its application to dye decolourisation. Biomed Res. Int. 2014, 2014, 308613. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.A.; Tzanov, T.; Paar, A.; Gudelj, M.; Gübitz, G.M.; Cavaco-Paulo, A. Immobilization of catalases from Bacillus SF on alumina for the treatment of textile bleaching effluents. Enzyme Microb. Technol. 2001, 28, 815–819. [Google Scholar] [CrossRef]
- Rekuć, A.; Bryjak, J.; Szymańska, K.; Jarzębski, A.B. Laccase immobilization on mesostructured cellular foams affords preparations with ultra high activity. Process Biochem. 2009, 44, 191–198. [Google Scholar] [CrossRef]
- Anes, J.; Fernandes, P. Towards the continuous production of fructose syrups from inulin using inulinase entrapped in PVA-based particles. Biocatal. Agric. Biotechnol. 2014, 3, 296–302. [Google Scholar] [CrossRef]
- Wilson, R.J.; Kay, G.; Lilly, M.D. The preparation and kinetics of lactate dehydrogenase attached to water-insoluble particles and sheets. Biochem. J. 1968, 108, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Cadena, P.G.; Wiggers, F.N.; Silva, R.A.; Lima Filho, J.L.; Pimentel, M.C.B. Kinetics and bioreactor studies of immobilized invertase on polyurethane rigid adhesive foam. Bioresour. Technol. 2011, 102, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Prodanović, R.; Jovanović, S.; Vujčić, Z. Immobilization of invertase on a new type of macroporous glycidyl methacrylate. Biotechnol. Lett. 2001, 23, 1171–1174. [Google Scholar] [CrossRef]
- Kerby, M.B.; Legge, R.S.; Tripathi, A. Measurements of kinetic parameters in a microfluidic reactor. Anal. Chem. 2006, 78, 8273–8280. [Google Scholar] [CrossRef] [PubMed]
- Lilly, M.D.; Hornby, W.E.; Crook, E.M. The kinetics of carboxymethylcellulose-ficin in packed beds. Biochem. J. 1966, 100, 718–723. [Google Scholar] [CrossRef] [PubMed]
- Lloret, L.; Eibes, G.; Moreira, M.T.; Feijoo, G.; Lema, J.M.; Miyazakib, M. Improving the catalytic performance of laccase using a novel continuous-flow microreactor. Chem. Eng. J. 2013, 223, 497–506. [Google Scholar] [CrossRef]
- Commenge, J.-M.; Falk, L.; Corriou, J.-P.; Matlosz, M. Analysis of microstructured reactor characteristics for process miniaturization and intensification. Chem. Eng. Technol. 2005, 28, 446–458. [Google Scholar] [CrossRef]
- Carrara, C.R.; Mammarella, E.J.; Rubiolo, A.C. Prediction of the fixed-bed reactor behaviour using dispersion and plug-flow models with different kinetics for immobilised enzyme. Chem. Eng. J. 2003, 92, 123–129. [Google Scholar] [CrossRef]
- Vodopivec, M.; Podgornik, A.; Berovic, M.; Strancar, A. Characterization of CIM monoliths as enzyme reactors. J. Chromatogr. B 2003, 795, 105–113. [Google Scholar] [CrossRef]
- Seong, G.H.; Heo, J.; Crooks, R.M. Measurement of enzyme kinetics using a continuous-flow microfluidic system. Anal. Chem. 2003, 75, 3161–3167. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Yang, T.; Cremer, P.S. Design and characterization of immobilized enzymes in microfluidic systems. Anal. Chem. 2002, 74, 379–385. [Google Scholar] [CrossRef] [PubMed]
- David, A.E.; Wang, N.S.; Yang, V.C.; Yang, A.J. Chemically surface modified gel (CSMG): An excellent enzyme-immobilization matrix for industrial processes. J. Biotechnol. 2006, 125, 395–407. [Google Scholar] [CrossRef] [PubMed]
- Sabularse, V.C.; Tud, M.T.; Lacsamana, M.S.; Solivas, J.L. Black and white lahar as inorganic support for the immobilization of yeast invertase. ASEAN J. Sci. Technol. Dev. 2005, 22, 331–344. [Google Scholar] [CrossRef]
- Uzun, K.; Çevik, E.; Şenel, M.; Baykal, A.; Abasıyanık, M.F.; Toprak, M.S. Covalent immobilization of invertase on PAMAM-dendrimer modified superparamagnetic iron oxide nanoparticles. J. Nanopart. Res. 2010, 12, 3057–3067. [Google Scholar] [CrossRef]
- Kumar, S.; Chauhan, V.S.; Nahar, P. Invertase embedded-PVC tubing as a flow-through reactor aimed at conversion of sucrose into inverted sugar. Enzyme Microb. Technol. 2008, 43, 517–522. [Google Scholar] [CrossRef]
- Carvalho, F.; Paradiso, P.; Saramago, B.; Ferraria, A.M.; do Rego, A.M.B.; Fernandes, P. An integrated approach for the detailed characterization of an immobilized enzyme. J. Mol. Catal. B 2016, 125, 64–74. [Google Scholar] [CrossRef]
- Helfferich, F.G. Kinetics of Multistep Reactions, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 39–76. [Google Scholar]
- Tibhe, J.D.; Fu, H.; Noël, T.; Wang, Q.; Meuldijk, J.; Hessel, V. Flow synthesis of phenylserine using threonine aldolase immobilized on Eupergit support. Beilstein J. Org. Chem. 2013, 9, 2168–2179. [Google Scholar] [CrossRef] [PubMed]
- Carbonell, R.G. Mass transfer coefficients in coiled tubes. Biotechnol. Bioeng. 1975, 17, 1383–1385. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, F.; Marques, M.P.C.; Fernandes, P. Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor. Catalysts 2017, 7, 42. https://doi.org/10.3390/catal7020042
Carvalho F, Marques MPC, Fernandes P. Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor. Catalysts. 2017; 7(2):42. https://doi.org/10.3390/catal7020042
Chicago/Turabian StyleCarvalho, Filipe, Marco P. C. Marques, and Pedro Fernandes. 2017. "Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor" Catalysts 7, no. 2: 42. https://doi.org/10.3390/catal7020042
APA StyleCarvalho, F., Marques, M. P. C., & Fernandes, P. (2017). Sucrose Hydrolysis in a Bespoke Capillary Wall-Coated Microreactor. Catalysts, 7(2), 42. https://doi.org/10.3390/catal7020042