An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds
Abstract
:1. Introduction
2. Characteristics of Pyrolysis Oils
2.1. Properties of Bio-Oil
2.2. Compositions of Bio-Oil
3. HDO
3.1. HDO of Model Compounds
3.1.1. HDO of Aromatic Monomers
3.1.2. HDO of Aromatic Dimers
3.1.3. HDO of Other Oxygenates
3.2. HDO of Actual Pyrolysis Oil
3.2.1. Two-Stage Hydrotreatment
3.2.2. Co-Feeding Solvents
3.2.3. In-Situ Hydrogenation
4. HDO Catalysts
4.1. Transition Metal Sulfide Catalysts
4.2. Noble Metal Catalysts
4.3. Non-Noble Metal Catalysts
4.4. Catalyst Deactivation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev. 2006, 106, 4044–4098. [Google Scholar] [CrossRef] [PubMed]
- Vispute, T.P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G.W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science 2010, 330, 1222–1227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Nolte, M.W.; Shanks, B.H. Investigation of primary reactions and secondary effects from the pyrolysis of different celluloses. ACS Sustain. Chem. Eng. 2014, 2, 2820–2830. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Sipilä, K.; Kuoppala, E.; Fagernäs, L.; Oasmaa, A. Characterization of biomass-based flash pyrolysis oils. Biomass Bioenergy 1998, 14, 103–113. [Google Scholar] [CrossRef]
- Onay, O. Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol. 2007, 88, 523–531. [Google Scholar] [CrossRef]
- Oasmaa, A.; Solantausta, Y.; Arpiainen, V.; Kuoppala, E.; Sipilä, K. Fast pyrolysis bio-oils from wood and agricultural residues. Energy Fuels 2009, 24, 1380–1388. [Google Scholar] [CrossRef]
- Lu, Q.; Yang, X.-L.; Zhu, X.-F. Analysis on chemical and physical properties of bio-oil pyrolyzed from rice husk. J. Anal. Appl. Pyrolysis 2008, 82, 191–198. [Google Scholar] [CrossRef]
- Yildiz, G.; Ronsse, F.; Venderbosch, R.; van Duren, R.; Kersten, S.R.; Prins, W. Effect of biomass ash in catalytic fast pyrolysis of pine wood. Appl. Catal. B Environ. 2015, 168, 203–211. [Google Scholar] [CrossRef]
- Kubička, D.; Horáček, J. Deactivation of hds catalysts in deoxygenation of vegetable oils. Appl. Catal. A Gen. 2011, 394, 9–17. [Google Scholar] [CrossRef]
- Scahill, J.; Diebold, J.; Feik, C. Removal of residual char fines from pyrolysis vapors by hot gas filtration. In Developments in Thermochemical Biomass Conversion; Springer: Dordrecht, The Netherlands, 1997; pp. 253–266. [Google Scholar]
- Pattiya, A.; Suttibak, S. Production of bio-oil via fast pyrolysis of agricultural residues from cassava plantations in a fluidised-bed reactor with a hot vapour filtration unit. J. Anal. Appl. Pyrolysis 2012, 95, 227–235. [Google Scholar] [CrossRef]
- Baldwin, R.M.; Feik, C.J. Bio-oil stabilization and upgrading by hot gas filtration. Energy Fuels 2013, 27, 3224–3238. [Google Scholar] [CrossRef]
- Jung, S.-H.; Kang, B.-S.; Kim, J.-S. Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system. J. Anal. Appl. Pyrolysis 2008, 82, 240–247. [Google Scholar] [CrossRef]
- Park, H.J.; Dong, J.-I.; Jeon, J.-K.; Park, Y.-K.; Yoo, K.-S.; Kim, S.-S.; Kim, J.; Kim, S. Effects of the operating parameters on the production of bio-oil in the fast pyrolysis of japanese larch. Chem. Eng. J. 2008, 143, 124–132. [Google Scholar] [CrossRef]
- Tessarolo, N.S.; Silva, R.V.; Vanini, G.; Casilli, A.; Ximenes, V.L.; Mendes, F.L.; de Rezende Pinho, A.; Romão, W.; de Castro, E.V.; Kaiser, C.R. Characterization of thermal and catalytic pyrolysis bio-oils by high-resolution techniques: 1H-NMR, GC × GC-TOFMS and FT-ICR MS. J. Anal. Appl. Pyrolysis 2016, 117, 257–267. [Google Scholar] [CrossRef]
- Wang, S.-R.; Luo, Z.-Y.; Tan, H.; Hong, J.; Dong, L.-J.; Fang, M.-X.; Cen, K.-F. The analyses of characteristics of bio-oil produced from biomass by flash pyrolysis. J. Eng. Thermophys. 2004, 25, 1049–1052. [Google Scholar]
- Tessarolo, N.S.; dos Santos, L.R.; Silva, R.S.; Azevedo, D.A. Chemical characterization of bio-oils using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. J. Chromatogr. A 2013, 1279, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Tessarolo, N.S.; Silva, R.C.; Vanini, G.; Pinho, A.; Romão, W.; de Castro, E.V.; Azevedo, D.A. Assessing the chemical composition of bio-oils using ft-icr mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry. Microchem. J. 2014, 117, 68–76. [Google Scholar] [CrossRef]
- Jarvis, J.M.; McKenna, A.M.; Hilten, R.N.; Das, K.; Rodgers, R.P.; Marshall, A.G. Characterization of pine pellet and peanut hull pyrolysis bio-oils by negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2012, 26, 3810–3815. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, Q.; Zhang, Y.; He, Y.; Chung, K.H.; Zhao, S.; Xu, C. Characterization of red pine pyrolysis bio-oil by gas chromatography-mass spectrometry and negative-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 2012, 26, 4532–4539. [Google Scholar] [CrossRef]
- Mullen, C.A.; Strahan, G.D.; Boateng, A.A. Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy. Energy Fuels 2009, 23, 2707–2718. [Google Scholar] [CrossRef]
- Staš, M.; Kubička, D.; Chudoba, J.; Pospíšil, M. Overview of analytical methods used for chemical characterization of pyrolysis bio-oil. Energy Fuels 2014, 28, 385–402. [Google Scholar] [CrossRef]
- Shafaghat, H.; Rezaei, P.S.; Daud, W.M.A.W. Effective parameters on selective catalytic hydrodeoxygenation of phenolic compounds of pyrolysis bio-oil to high-value hydrocarbons. RSC Adv. 2015, 5, 103999–104042. [Google Scholar] [CrossRef]
- Zhao, C.; He, J.; Lemonidou, A.A.; Li, X.; Lercher, J.A. Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. J. Catal. 2011, 280, 8–16. [Google Scholar] [CrossRef]
- Resasco, D.E.; Crossley, S.P. Implementation of concepts derived from model compound studies in the separation and conversion of bio-oil to fuel. Catal. Today 2015, 257, 185–199. [Google Scholar] [CrossRef]
- Hong, D.-Y.; Miller, S.J.; Agrawal, P.K.; Jones, C.W. Hydrodeoxygenation and coupling of aqueous phenolics over bifunctional zeolite-supported metal catalysts. Chem. Commun. 2010, 46, 1038–1040. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, T.M.; Berenguer, A.; Ochoa-Hernández, C.; Moreno, I.; Jana, P.; Coronado, J.M.; Serrano, D.P.; Pizarro, P. Hydrodeoxygenation of anisole as bio-oil model compound over supported Ni and Co catalysts: Effect of metal and support properties. Catal. Today 2015, 243, 163–172. [Google Scholar] [CrossRef]
- Pichaikaran, S.; Arumugam, P. Vapour phase hydrodeoxygenation of anisole over ruthenium and nickel supported mesoporous aluminosilicate. Green Chem. 2016, 18, 2888–2899. [Google Scholar] [CrossRef]
- Nguyen, T.-S.; Laurenti, D.; Afanasiev, P.; Konuspayeva, Z.; Piccolo, L. Titania-supported gold-based nanoparticles efficiently catalyze the hydrodeoxygenation of guaiacol. J. Catal. 2016, 344, 136–140. [Google Scholar] [CrossRef]
- Zhao, H.; Li, D.; Bui, P.; Oyama, S. Hydrodeoxygenation of guaiacol as model compound for pyrolysis oil on transition metal phosphide hydroprocessing catalysts. Appl. Catal. A Gen. 2011, 391, 305–310. [Google Scholar] [CrossRef]
- Mullen, C.A.; Boateng, A.A. Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. J. Anal. Appl. Pyrolysis 2011, 90, 197–203. [Google Scholar] [CrossRef]
- Bayerbach, R.; Meier, D. Characterization of the water-insoluble fraction from fast pyrolysis liquids (pyrolytic lignin). Part IV: Structure elucidation of oligomeric molecules. J. Anal. Appl. Pyrolysis 2009, 85, 98–107. [Google Scholar] [CrossRef]
- Jongerius, A.L.; Jastrzebski, R.; Bruijnincx, P.C.; Weckhuysen, B.M. Como sulfide-catalyzed hydrodeoxygenation of lignin model compounds: An extended reaction network for the conversion of monomeric and dimeric substrates. J. Catal. 2012, 285, 315–323. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, J.; Liu, R.; Wang, S.; Chen, L.; Li, K. Hydrodeoxygenation of lignin-derived phenolic monomers and dimers to alkane fuels over bifunctional zeolite-supported metal catalysts. ACS Sustain. Chem. Eng. 2014, 2, 683–691. [Google Scholar] [CrossRef]
- Parsell, T.H.; Owen, B.C.; Klein, I.; Jarrell, T.M.; Marcum, C.L.; Haupert, L.J.; Amundson, L.M.; Kenttämaa, H.I.; Ribeiro, F.; Miller, J.T. Cleavage and hydrodeoxygenation (HDO) of C–O bonds relevant to lignin conversion using pd/zn synergistic catalysis. Chem. Sci. 2013, 4, 806–813. [Google Scholar] [CrossRef]
- Strassberger, Z.; Alberts, A.H.; Louwerse, M.J.; Tanase, S.; Rothenberg, G. Catalytic cleavage of lignin β-O-4 link mimics using copper on alumina and magnesia–alumina. Green Chem. 2013, 15, 768–774. [Google Scholar] [CrossRef]
- Furimsky, E. The mechanism of catalytic hydrodeoxygenation of furan. Appl. Catal. 1983, 6, 159–164. [Google Scholar] [CrossRef]
- Zheng, H.-Y.; Zhu, Y.-L.; Teng, B.-T.; Bai, Z.-Q.; Zhang, C.-H.; Xiang, H.-W.; Li, Y.-W. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran. J. Mol. Catal. A Chem. 2006, 246, 18–23. [Google Scholar] [CrossRef]
- Sitthisa, S.; Resasco, D.E. Hydrodeoxygenation of furfural over supported metal catalysts: A comparative study of Cu, Pd and Ni. Catal. Lett. 2011, 141, 784–791. [Google Scholar] [CrossRef]
- Wan, H.; Chaudhari, R.V.; Subramaniam, B. Aqueous phase hydrogenation of acetic acid and its promotional effect on p-cresol hydrodeoxygenation. Energy Fuels 2012, 27, 487–493. [Google Scholar] [CrossRef]
- Wildschut, J.; Arentz, J.; Rasrendra, C.; Venderbosch, R.; Heeres, H. Catalytic hydrotreatment of fast pyrolysis oil: Model studies on reaction pathways for the carbohydrate fraction. Environ. Prog. Sustain. Energy 2009, 28, 450–460. [Google Scholar] [CrossRef]
- Elliott, D.; Baker, E. Biomass Liquefaction Product Analysis and Upgrading; Pacific Northwest Lab: Richland, WA, USA, 1983. [Google Scholar]
- Xiong, W.-M.; Fu, Y.; Zeng, F.-X.; Guo, Q.-X. An in situ reduction approach for bio-oil hydroprocessing. Fuel Process. Technol. 2011, 92, 1599–1605. [Google Scholar] [CrossRef]
- Elliott, D.C.; Baker, E.G. Process for Upgrading Biomass Pyrolyzates. U.S. Patent, 1 March 1989. [Google Scholar]
- Wildschut, J.; Mahfud, F.H.; Venderbosch, R.H.; Heeres, H.J. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind. Eng. Chem. Res. 2009, 48, 10324–10334. [Google Scholar] [CrossRef]
- Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Rotness, L.J.; Zacher, A.H. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ. Prog. Sustain. Energy 2009, 28, 441–449. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Gunawan, R.; Hu, X.; de Miguel Mercader, F.; Westerhof, R.; Chaitwat, W.; Hasan, M.M.; Mourant, D.; Li, C.-Z. Effects of temperature on the hydrotreatment behaviour of pyrolysis bio-oil and coke formation in a continuous hydrotreatment reactor. Fuel Process. Technol. 2016, 148, 175–183. [Google Scholar] [CrossRef]
- DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review. Available online: https://www.energy.gov/sites/prod/files/2015/04/f21/thermochemical_conversion_abdullah_231401.pdf (accessed on 28 October 2016).
- Churin, E.; Maggi, R.; Grange, P.; Delmon, B. Characterization and upgrading of a bio-oil produced by pyrolysis of biomass. In Research in Thermochemical Biomass Conversion; Springer: Berlin, Germany, 1988; pp. 896–909. [Google Scholar]
- Zhang, S.; Yan, Y.; Li, T.; Ren, Z. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol. 2005, 96, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Long, J.; Kong, W.; Zhang, Q.; Chen, L.; Wang, T.; Ma, L.; Li, Y. Catalytic upgrading of bio-oil over Ni-based catalysts supported on mixed oxides. Energy Fuels 2014, 28, 2562–2570. [Google Scholar] [CrossRef]
- Zhao, C.; Lercher, J.A. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angew. Chem. 2012, 124, 6037–6042. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, C.; Zhai, Y.; Liu, Y.; Zhang, R.; Tang, X. Upgrading of bio-oil using supercritical 1-butanol over a Ru/C heterogeneous catalyst: Role of the solvent. Energy Fuels 2014, 28, 4611–4621. [Google Scholar] [CrossRef]
- Oh, S.; Kim, U.-J.; Choi, I.-G.; Choi, J.W. Solvent effects on improvement of fuel properties during hydrodeoxygenation process of bio-oil in the presence of Pt/C. Energy 2016, 113, 116–123. [Google Scholar] [CrossRef]
- Xu, Y.; Long, J.; Liu, Q.; Li, Y.; Wang, C.; Zhang, Q.; Lv, W.; Zhang, X.; Qiu, S.; Wang, T. In situ hydrogenation of model compounds and raw bio-oil over raney Ni catalyst. Energy Convers. Manag. 2015, 89, 188–196. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Y.; Wang, C.; Wang, C.; Ma, L.; Wang, T.; Zhang, X.; Zhang, Q. In-situ hydrogenation of model compounds and raw bio-oil over Mi/CMK-3 catalyst. Fuel Process. Technol. 2016, 161, 226–231. [Google Scholar] [CrossRef]
- Rinaldi, R. Catalytic Hydrogenation for Biomass Valorization; Royal Society of Chemistry: London, UK, 2014. [Google Scholar]
- Yoosuk, B.; Tumnantong, D.; Prasassarakich, P. Unsupported MoS2 and CoMoS2 catalysts for hydrodeoxygenation of phenol. Chem. Eng. Sci. 2012, 79, 1–7. [Google Scholar] [CrossRef]
- Yoosuk, B.; Tumnantong, D.; Prasassarakich, P. Amorphous unsupported Ni-Mo sulfide prepared by one step hydrothermal method for phenol hydrodeoxygenation. Fuel 2012, 91, 246–252. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Tye, C.T.; Smith, K.J. Influence of MoS2 catalyst morphology on the hydrodeoxygenation of phenols. Catal. Commun. 2008, 9, 1364–1368. [Google Scholar] [CrossRef]
- Bui, V.N.; Laurenti, D.; Afanasiev, P.; Geantet, C. Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: Promoting effect of cobalt on HDO selectivity and activity. Appl. Catal. B Environ. 2011, 101, 239–245. [Google Scholar] [CrossRef]
- Bunch, A.Y.; Ozkan, U.S. Investigation of the reaction network of benzofuran hydrodeoxygenation over sulfided and reduced Ni-Mo/Al2O3 catalysts. J. Catal. 2002, 206, 177–187. [Google Scholar] [CrossRef]
- Yang, Y.; Gilbert, A.; Xu, C.C. Hydrodeoxygenation of bio-crude in supercritical hexane with sulfided CoMo and CoMoP catalysts supported on MgO: A model compound study using phenol. Appl. Catal. A Gen. 2009, 360, 242–249. [Google Scholar] [CrossRef]
- Ruiz, P.; Frederick, B.; De Sisto, W.; Austin, R.; Radovic, L.; Leiva, K.; García, R.; Escalona, N.; Wheeler, M. Guaiacol hydrodeoxygenation on MoS2 catalysts: Influence of activated carbon supports. Catal. Commun. 2012, 27, 44–48. [Google Scholar] [CrossRef]
- Loricera, C.; Pawelec, B.; Infantes-Molina, A.; Álvarez-Galván, M.; Huirache-Acuña, R.; Nava, R.; Fierro, J.L.G. Hydrogenolysis of anisole over mesoporous sulfided CoMoW/SBA-15 (16) catalysts. Catal. Today 2011, 172, 103–110. [Google Scholar] [CrossRef]
- Sepúlveda, C.; García, R.; Reyes, P.; Ghampson, I.; Fierro, J.L.G.; Laurenti, D.; Vrinat, M.; Escalona, N. Hydrodeoxygenation of guaiacol over ReS2/activated carbon catalysts. Support and re loading effect. Appl. Catal. A Gen. 2014, 475, 427–437. [Google Scholar] [CrossRef]
- Laurent, E.; Delmon, B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts: I. Catalytic reaction schemes. Appl. Catal. A Gen. 1994, 109, 77–96. [Google Scholar] [CrossRef]
- Massoth, F.; Politzer, P.; Concha, M.; Murray, J.; Jakowski, J.; Simons, J. Catalytic hydrodeoxygenation of methyl-substituted phenols: Correlations of kinetic parameters with molecular properties. J. Phys. Chem. B 2006, 110, 14283–14291. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Li, C.-L.; Wan, H.-P.; Lee, H.-T.; Liu, C.-F. Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuels 2011, 25, 890–896. [Google Scholar] [CrossRef]
- Nava, R.; Pawelec, B.; Castaño, P.; Álvarez-Galván, M.; Loricera, C.; Fierro, J.L.G. Upgrading of bio-liquids on different mesoporous silica-supported CoMo catalysts. Appl. Catal. B Environ. 2009, 92, 154–167. [Google Scholar] [CrossRef]
- Ardiyanti, A.; Gutierrez, A.; Honkela, M.; Krause, A.; Heeres, H. Hydrotreatment of wood-based pyrolysis oil using zirconia-supported mono-and bimetallic (Pt, Pd, Rh) catalysts. Appl. Catal. A Gen. 2011, 407, 56–66. [Google Scholar] [CrossRef]
- Zanuttini, M.; Lago, C.; Querini, C.; Peralta, M. Deoxygenation of m-cresol on Pt/γ-Al2O3 catalysts. Catal. Today 2013, 213, 9–17. [Google Scholar] [CrossRef]
- Zhu, X.; Lobban, L.L.; Mallinson, R.G.; Resasco, D.E. Bifunctional transalkylation and hydrodeoxygenation of anisole over a Pt/HBeta catalyst. J. Catal. 2011, 281, 21–29. [Google Scholar] [CrossRef]
- Zhu, X.; Nie, L.; Lobban, L.L.; Mallinson, R.G.; Resasco, D.E. Efficient conversion of m-cresol to aromatics on a bifunctional Pt/HBeta catalyst. Energy Fuels 2014, 28, 4104–4111. [Google Scholar] [CrossRef]
- Dwiatmoko, A.A.; Zhou, L.; Kim, I.; Choi, J.-W.; Suh, D.J.; Ha, J.-M. Hydrodeoxygenation of lignin-derived monomers and lignocellulose pyrolysis oil on the carbon-supported Ru catalysts. Catal. Today 2016, 265, 192–198. [Google Scholar] [CrossRef]
- Lu, M.; Zhu, J.; Li, M.; Shan, Y.; He, M.; Song, C. TiO2-modified Pd/SiO2 for catalytic hydrodeoxygenation of guaiacol. Energy Fuels 2016, 30, 6671–6676. [Google Scholar] [CrossRef]
- Echeandia, S.; Pawelec, B.; Barrio, V.; Arias, P.; Cambra, J.; Loricera, C.; Fierro, J.L.G. Enhancement of phenol hydrodeoxygenation over Pd catalysts supported on mixed HY zeolite and Al2O3. An approach to O-removal from bio-oils. Fuel 2014, 117, 1061–1073. [Google Scholar] [CrossRef]
- Griffin, M.B.; Ferguson, G.A.; Ruddy, D.A.; Biddy, M.J.; Beckham, G.T.; Schaidle, J.A. Role of the support and reaction conditions on the vapor-phase deoxygenation of m-cresol over Pt/C and Pt/TiO2 catalysts. ACS Catal. 2016, 6, 2715–2727. [Google Scholar] [CrossRef]
- Yang, J.; Li, S.; Zhang, L.; Liu, X.; Wang, J.; Pan, X.; Li, N.; Wang, A.; Cong, Y.; Wang, X. Hydrodeoxygenation of furans over Pd-FeOx/SiO2 catalyst under atmospheric pressure. Appl. Catal. B Environ. 2017, 201, 266–277. [Google Scholar] [CrossRef]
- Xu, G.-Y.; Guo, J.-H.; Qu, Y.-C.; Zhang, Y.; Fu, Y.; Guo, Q.-X. Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over a Ru-solid base bifunctional catalyst. Green Chem. 2016, 18, 5510–5517. [Google Scholar] [CrossRef]
- Robinson, A.; Ferguson, G.A.; Gallagher, J.R.; Cheah, S.; Beckham, G.T.; Schaidle, J.A.; Hensley, J.E.; Medlin, J.W. Enhanced hydrodeoxygenation of m-cresol over bimetallic Pt-Mo catalysts through an oxophilic metal-induced tautomerization pathway. ACS Catal. 2016, 6, 4356–4368. [Google Scholar] [CrossRef]
- Hunns, J.A.; Arroyo, M.; Lee, A.F.; Serrano, D.; Wilson, K. Hierarchical mesoporous Pd/ZSM-5 for the selective catalytic hydrodeoxygenation of m-cresol to methylcyclohexane. Catal. Sci. Technol. 2016, 6, 2560–2564. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, G.; Wang, H.; Liu, X.; Han, J.; Ge, Q.; Zhu, X. Insights into the major reaction pathways of vapor-phase hydrodeoxygenation of m-cresol on a Pt/HBeta catalyst. ChemCatChem 2016, 8, 551–561. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Zheng, H.; Zhang, C.; Zhang, B.; Li, Y. Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts. J. Mol. Catal. A Chem. 2011, 351, 217–227. [Google Scholar] [CrossRef]
- Nimmanwudipong, T.; Aydin, C.; Lu, J.; Runnebaum, R.C.; Brodwater, K.C.; Browning, N.D.; Block, D.E.; Gates, B.C. Selective hydrodeoxygenation of guaiacol catalyzed by platinum supported on magnesium oxide. Catal. Lett. 2012, 142, 1190–1196. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Y.; He, T.; Hu, H.; Wu, J. Hydrodeoxygenation of dibenzofuran over noble metal supported on mesoporous zeolite. Catal. Commun. 2011, 12, 1201–1205. [Google Scholar] [CrossRef]
- González-Borja, M.Á.; Resasco, D.E. Anisole and guaiacol hydrodeoxygenation over monolithic Pt–Sn catalysts. Energy Fuels 2011, 25, 4155–4162. [Google Scholar] [CrossRef]
- Nimmanwudipong, T.; Runnebaum, R.C.; Block, D.E.; Gates, B.C. Catalytic conversion of guaiacol catalyzed by platinum supported on alumina: Reaction network including hydrodeoxygenation reactions. Energy Fuels 2011, 25, 3417–3427. [Google Scholar] [CrossRef]
- Wawrzetz, A.; Peng, B.; Hrabar, A.; Jentys, A.; Lemonidou, A.; Lercher, J. Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. J. Catal. 2010, 269, 411–420. [Google Scholar] [CrossRef]
- Lee, C.R.; Yoon, J.S.; Suh, Y.-W.; Choi, J.-W.; Ha, J.-M.; Suh, D.J.; Park, Y.-K. Catalytic roles of metals and supports on hydrodeoxygenation of lignin monomer guaiacol. Catal. Commun. 2012, 17, 54–58. [Google Scholar] [CrossRef]
- Gutierrez, A.; Kaila, R.; Honkela, M.; Slioor, R.; Krause, A. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catal. Today 2009, 147, 239–246. [Google Scholar] [CrossRef]
- Mortensen, P.M.; Grunwaldt, J.-D.; Jensen, P.A.; Jensen, A.D. Screening of catalysts for hydrodeoxygenation of phenol as a model compound for bio-oil. ACS Catal. 2013, 3, 1774–1785. [Google Scholar] [CrossRef]
- Dongil, A.; Ghampson, I.; García, R.; Fierro, J.L.G.; Escalona, N. Hydrodeoxygenation of guaiacol over Ni/carbon catalysts: Effect of the support and ni loading. RSC Adv. 2016, 6, 2611–2623. [Google Scholar] [CrossRef]
- Shafaghat, H.; Rezaei, P.S.; Daud, W.M.A.W. Catalytic hydrodeoxygenation of simulated phenolic bio-oil to cycloalkanes and aromatic hydrocarbons over bifunctional metal/acid catalysts of Ni/HBeta, Fe/HBeta and NiFe/HBeta. J. Ind. Eng. Chem. 2016, 35, 268–276. [Google Scholar] [CrossRef]
- Olcese, R.; Bettahar, M.; Petitjean, D.; Malaman, B.; Giovanella, F.; Dufour, A. Gas-phase hydrodeoxygenation of guaiacol over Fe/SiO2 catalyst. Appl. Catal. B Environ. 2012, 115, 63–73. [Google Scholar] [CrossRef]
- Selvaraj, M.; Shanthi, K.; Maheswari, R.; Ramanathan, A. Hydrodeoxygenation of guaiacol over MoO3-NiO/mesoporous silicates: Effect of incorporated heteroatom. Energy Fuels 2014, 28, 2598–2607. [Google Scholar] [CrossRef]
- Loricera, C.; Castaño, P.; Infantes-Molina, A.; Hita, I.; Gutierrez, A.; Arandes, J.; Fierro, J.L.G.; Pawelec, B. Designing supported znni catalysts for the removal of oxygen from bio-liquids and aromatics from diesel. Green Chem. 2012, 14, 2759–2770. [Google Scholar] [CrossRef]
- Ghampson, I.T.; Sepúlveda, C.; García, R.; Fierro, J.L.G.; Escalona, N. Carbon nanofiber-supported ReOx catalysts for the hydrodeoxygenation of lignin-derived compounds. Catal. Sci. Technol. 2016, 6, 4356–4369. [Google Scholar] [CrossRef]
- Levy, R.; Boudart, M. Platinum-like behavior of tungsten carbide in surface catalysis. Science 1973, 181, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Frühberger, B.; Chen, J. Reaction of ethylene with clean and carbide-modified Mo (110): Converting surface reactivities of molybdenum to Pt-group metals. J. Am. Chem. Soc. 1996, 118, 11599–11609. [Google Scholar] [CrossRef]
- Hwu, H.H.; Chen, J.G. Surface chemistry of transition metal carbides. Chem. Rev. 2005, 105, 185–212. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-S.; Wang, Z.; Wu, R.J.; Bhan, A. Selective vapor-phase hydrodeoxygenation of anisole to benzene on molybdenum carbide catalysts. J. Catal. 2014, 319, 44–53. [Google Scholar] [CrossRef]
- Chen, C.-J.; Lee, W.-S.; Bhan, A. Mo2C catalyzed vapor phase hydrodeoxygenation of lignin-derived phenolic compound mixtures to aromatics under ambient pressure. Appl. Catal. A Gen. 2016, 510, 42–48. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, C.-J.; Luc, W.; Chen, J.G.; Bhan, A.; Jiao, F. Ordered mesoporous metal carbides with enhanced anisole hydrodeoxygenation selectivity. ACS Catal. 2016, 6, 3506–3514. [Google Scholar] [CrossRef]
- Saidi, M.; Samimi, F.; Karimipourfard, D.; Nimmanwudipong, T.; Gates, B.C.; Rahimpour, M.R. Upgrading of lignin-derived bio-oils by catalytic hydrodeoxygenation. Energy Environ. Sci. 2014, 7, 103–129. [Google Scholar] [CrossRef]
- Ghampson, I.; Sepulveda, C.; Garcia, R.; Frederick, B.; Wheeler, M.; Escalona, N.; DeSisto, W. Guaiacol transformation over unsupported molybdenum-based nitride catalysts. Appl. Catal. A Gen. 2012, 413, 78–84. [Google Scholar] [CrossRef]
- Sepúlveda, C.; Leiva, K.; García, R.; Radovic, L.; Ghampson, I.; DeSisto, W.; Fierro, J.L.G.; Escalona, N. Hydrodeoxygenation of 2-methoxyphenol over Mo2N catalysts supported on activated carbons. Catal. Today 2011, 172, 232–239. [Google Scholar] [CrossRef]
- Furimsky, E. Metal carbides and nitrides as potential catalysts for hydroprocessing. Appl. Catal. A Gen. 2003, 240, 1–28. [Google Scholar] [CrossRef]
- Farag, H.; Sakanishi, K.; Kouzu, M.; Matsumura, A.; Sugimoto, Y.; Saito, I. Investigation of the influence of H2S on hydrodesulfurization of dibenzothiophene over a bulk MoS2 catalyst. Ind. Eng. Chem. Res. 2003, 42, 306–310. [Google Scholar] [CrossRef]
- Saito, M.; Anderson, R. The activity of several molybdenum compounds for the methanation of CO. J. Catal. 1980, 63, 438–446. [Google Scholar] [CrossRef]
- Li, K.; Wang, R.; Chen, J. Hydrodeoxygenation of anisole over silica-supportedNi2P, MoP, and NiMoP catalysts. Energy Fuels 2011, 25, 854–863. [Google Scholar] [CrossRef]
- Bui, P.; Cecilia, J.A.; Oyama, S.T.; Takagaki, A.; Infantes-Molina, A.; Zhao, H.; Li, D.; Rodríguez-Castellón, E.; López, A.J. Studies of the synthesis of transition metal phosphides and their activity in the hydrodeoxygenation of a biofuel model compound. J. Catal. 2012, 294, 184–198. [Google Scholar] [CrossRef]
- Furimsky, E.; Massoth, F.E. Deactivation of hydroprocessing catalysts. Catal. Today 1999, 52, 381–495. [Google Scholar] [CrossRef]
- Popov, A.; Kondratieva, E.; Goupil, J.M.; Mariey, L.; Bazin, P.; Gilson, J.-P.; Travert, A.; Maugé, F. Bio-oils hydrodeoxygenation: Adsorption of phenolic molecules on oxidic catalyst supports. J. Phys. Chem. C 2010, 114, 15661–15670. [Google Scholar] [CrossRef]
- Bui, V.N.; Laurenti, D.; Delichère, P.; Geantet, C. Hydrodeoxygenation of guaiacol: Part II: Support effect for CoMoS catalysts on HDO activity and selectivity. Appl. Catal. B Environ. 2011, 101, 246–255. [Google Scholar] [CrossRef]
- Zanuttini, M.; Dalla Costa, B.; Querini, C.; Peralta, M. Hydrodeoxygenation of m-cresol with Pt supported over mild acid materials. Appl. Catal. A Gen. 2014, 482, 352–361. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Liu, Y.; Hou, X.; Zhang, R.; Tang, X. Coke deposition on Ni/HZSM-5 in bio-oil hydrodeoxygenation processing. Energy Fuels 2015, 29, 1722–1728. [Google Scholar] [CrossRef]
- Xu, X.; Jiang, E.; Du, Y.; Li, B. BTX from the gas-phase hydrodeoxygenation and transmethylation of guaiacol at room pressure. Renew. Energy 2016, 96, 458–468. [Google Scholar] [CrossRef]
- Song, H.; Gong, J.; Song, H.-L.; Li, F.; Zhang, J.; Chen, Y.-G. Preparation of core-shell structured Ni2P/Al2O3@ TiO2 and its hydrodeoxygenation performance for benzofuran. Catal. Commun. 2016, 85, 1–4. [Google Scholar] [CrossRef]
- Dongil, A.; Bachiller-Baeza, B.; Rodriguez-Ramos, I.; Fierro, J.L.G.; Escalona, N. The effect of Cu loading on Ni/carbon nanotubes catalysts for hydrodeoxygenation of guaiacol. RSC Adv. 2016, 6, 26658–26667. [Google Scholar] [CrossRef]
- Berenguer, A.; Sankaranarayanan, T.; Gómez, G.; Moreno, I.; Coronado, J.; Pizarro, P.; Serrano, D. Evaluation of transition metal phosphides supported on ordered mesoporous materials as catalysts for phenol hydrodeoxygenation. Green Chem. 2016, 18, 1938–1951. [Google Scholar] [CrossRef]
- Tran, N.T.; Uemura, Y.; Ramli, A. Hydrodeoxygenation of guaiacol over Al-MCM-41 supported metal catalysts: A comparative study of Co and Ni. Procedia Eng. 2016, 148, 1252–1258. [Google Scholar] [CrossRef]
- Jongerius, A.L.; Gosselink, R.W.; Dijkstra, J.; Bitter, J.H.; Bruijnincx, P.C.; Weckhuysen, B.M. Carbon nanofiber supported transition-metal carbide catalysts for the hydrodeoxygenation of guaiacol. ChemCatChem 2013, 5, 2964–2972. [Google Scholar] [CrossRef]
- Prasomsri, T.; Shetty, M.; Murugappan, K.; Román-Leshkov, Y. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy Environ. Sci. 2014, 7, 2660–2669. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Ma, L.; Zhang, Q.; Yu, Y.; Liu, Q. Characterization and catalytic properties of Ni and NiCu catalysts supported on ZrO2-SiO2 for guaiacol hydrodeoxygenation. Catal. Commun. 2013, 33, 15–19. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q.; Wang, T.; Ma, L.; Yu, Y.; Chen, L. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts. Bioresour. Technol. 2013, 134, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Romero, Y.; Richard, F.; Renème, Y.; Brunet, S. Hydrodeoxygenation of benzofuran and its oxygenated derivatives (2, 3-dihydrobenzofuran and 2-ethylphenol) over NiMoP/Al2O3 catalyst. Appl. Catal. A Gen. 2009, 353, 46–53. [Google Scholar] [CrossRef]
- Yakovlev, V.; Khromova, S.; Sherstyuk, O.; Dundich, V.; Ermakov, D.Y.; Novopashina, V.; Lebedev, M.Y.; Bulavchenko, O.; Parmon, V. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catal. Today 2009, 144, 362–366. [Google Scholar] [CrossRef]
- Echeandia, S.; Arias, P.; Barrio, V.; Pawelec, B.; Fierro, J.L.G. Synergy effect in the HDO of phenol over Ni–W catalysts supported on active carbon: Effect of tungsten precursors. Appl. Catal. B Environ. 2010, 101, 1–12. [Google Scholar] [CrossRef]
Property | Bio-Oil | Diesel [6] | ||
---|---|---|---|---|
Pine Saw Dust [7] | Eucalyptus [7] | Rice Husk [8] | ||
Density (kg/L) | 1.206 | 1.229 | 1.14 | 0.84 |
C (wt %) | 40.6 | 42.3 | 39.92 | 86.58 |
H (wt %) | 7.6 | 7.5 | 8.15 | 13.29 |
O (wt %) | 51.7 | 50.1 | 51.11 | 0.01 |
N (wt %) | <0.1 | 0.1 | 0.61 | 65 ppm |
Ash | 0.03 | 0.03 | 0.25 | - |
Viscosity (c St) | 17 (313 K) | 23 (313 K) | 13.2 (313 K) | 2.1 (323 K) |
Moisture content (wt %) | 23.9 | 20.6 | 28 | - |
Higher heating value (MJ/kg) | 16.9 | 17.3 | 16.5 | 45.5 |
PH | 2.7 | 2.2 | 3.2 | - |
Flash point (K) | 326 | 374 | 341 | 327 |
Alkali and Alkali Earth Metals (ppm) | Bio-Oil | ||
---|---|---|---|
Rice Straw [14] | Bamboo [14] | Japanese Larch [15] | |
Na | 46 | 16 | 4.2 |
K | 25 | 6 | <0.1 |
Ca | 32 | 9 | 2.8 |
Mg | 9 | 2 | 0.1 |
Substrates | Conversion (%) | Selectivity (%) | |||||
---|---|---|---|---|---|---|---|
99.8 | |||||||
(4-O-5) | 96.8 | 0.3 | |||||
99.8 | |||||||
(4-O-5) | 97.4 | 0.1 | |||||
99.9 | |||||||
(α-O-4) | 34.5 | 48.8 | 13.1 | ||||
99.9 | |||||||
(α-O-4) | 38.6 | 50.4 | 6.7 | ||||
99.9 | |||||||
(α-O-4) | 25.8 | 33.5 | 2.1 | 15.1 | 20.5 | ||
99.8 | |||||||
(5-5′) | 50.2 | 2.0 | 10.8 | 22.7 | 9.3 | 0.8 | |
99.3 | |||||||
(β-5) | 5.4 | 28.6 | 61.4 | ||||
99.9 | |||||||
(β-5) | 3.8 | 22.6 | 70.4 |
Catalyst | Reactor | Reaction Conditions | Reactant | Con./% | Major Product | Ref. | ||
---|---|---|---|---|---|---|---|---|
Pressure/bar | Temp/°C | WHSV/h−1 | ||||||
MoS | Batch | 28 | 350 | - | Phenol | 71 | Benzene, cyclohexane, Cyclohexene | [59] |
CoMoS | Batch | 28 | 350 | - | Phenol | 98 | Benzene, cyclohexane, Cyclohexene | [59] |
NiMoS | Batch | 28 | 350 | - | Phenol | 96 | Cyclohexane, Benzene, Cyclohexene | [60] |
NiS | Batch | 28 | 350 | - | Phenol | 35 | Cyclohexane, cyclohexene, Benzene | [60] |
MoS2 | Batch | 28 | 350 | - | 4-Methylphenol | 52 | Toluene, 2,4-dimethylphenol | [61] |
MoS2 | Fixed-bed | 40 | 300 | - | Guaiacol | 100 | Phenol, cyclohexane, benzene, methylcyclopentane | [62] |
CoMoS | Fixed-bed | 40 | 300 | - | Guaiacol | ≈95 | Phenol, benzene | [62] |
NiMoS/Al2O3 | Fixed-bed | 21 | 280 | - | 2,3-Dihydrobenzofuran | ≈50 | 2-Ethylphenol, ethylcyclohexane | [63] |
CoMoS/MgO | Batch | 50 | 350 | - | Phenol | 17 | 2-Cyclohexylphenol, cyclohexylbenzene, cyclohexanol | [64] |
MoS2/AC | Batch | 50 | 300 | - | Guaiacol | ≈50 | Phenol, catechol, cyclohexene | [65] |
CoMoWS/SBA-15 | Fixed-bed | 30 | 310 | 24.5 | Anisole | 38 | Phenol, cresol, xylenol | [66] |
ReS2/AC | Batch | 50 | 300 | - | Guaiacol | ≈40 | Phenol, catechol | [67] |
Catalyst | Reactor | Reaction Conditions | Reactant | Con./% | Major Product | Ref. | ||
---|---|---|---|---|---|---|---|---|
Pressure/bar | Temp./°C | WHSV/h−1 | ||||||
TixPd/SiO2 | Fixed-bed | 20 | 300 | 25 | guaiacol | 100 | methoxycyclohexanol, cyclohexanol, cyclohexane | [77] |
Pt/TiO2 | Fixed-bed | 20 | 350 | 200 | Cresol | ≈82 | Cyclohexanol,3-methyl, Cyclohexanone,3-methyl, Cyclohexane, methyl | [79] |
Pd-FeOx/SiO2 | Fixed-bed | 60 | 450 | ≈1.3 | Furans | - | 2-Methyl-decane | [80] |
Ru/ZrO2-La(OH)3 | Batch | 10 | 170 | - | Guaiacol | 100 | Cyclohexanol, 2-methoxycyclohexanol, methane | [81] |
PtMo/Al2O3 | Fixed-bed | 5 | 250 | - | Cresol | ≈95 | Methylcyclohexane, 3-methylcyclohexanol | [82] |
Pd/HZSM-5 | Batch | 20 | 200 | - | Cresol | 100 | Methylcyclohexane | [83] |
Pt/Hβ | Fixed-bed | 1 | 350 | 2 | Cresol | 100 | Toluene | [84] |
Ru/CARF a | Batch | 40 | 250 | - | Guaiacol | 97 | Cyclohexanol, 2-methoxycyclohexanol, | [76] |
Ru/MWCNT b | Batch | 40 | 270 | - | Vanillin | 100 | 4-Methylcyclohexanol, 4-propylcyclohexanol, methylcyclohexane | [76] |
Ru/ZrO2 | Fixed-bed | 64 | 200 | 1 | Propanoic acid | 94 | Ethane, propane, methane | [85] |
Ru/Al2O3 | Fixed-bed | 64 | 200 | 1 | Propanoic acid | 58 | Propanol, propane, ethane | [85] |
Ru/C | Fixed-bed | 64 | 190 | 1 | Propanoic acid | 94 | Ethane, methane, propane | [85] |
Pt/MgO | Fixed-bed | 1 | 300 | 11 | Guaiacol | 6 | Phenol, catechol, cyclopentanone | [86] |
Pt/MZ-5 c | Fixed-bed | 40 | 200 | 6 (LHSV) | Dibenzofuran | 98 | Bicyclohexyl, Cyclopentylmethyl-cyclohexane | [87] |
Pt-Sn/CNF/Inconel d | Fixed-bed | 1 | 400 | 0.3 | Guaiacol | 100 | Phenol, benzene | [88] |
Pt/γ-Al2O3 | Fixed-bed | 1 | 300 | 20 | Guaiacol | ≈6 | Catechol, phenol, 3-methylcatechol | [89] |
Zn/Pd/C | Batch | 21 | 150 | - | Vanillylalcohol | >99 | 2-Methoxy-4-methylphenol | [36] |
Pt/Al2O3 | Fixed-bed | 29 | 225 | - | Glycerol | 90 | Ethanol, 1,2-propanediol, carbon dioxide | [90] |
Rh/SiO2-Al2O3 | Batch | 40 | 250 | - | Guaiacol | 100 | Cyclohexane, | [91] |
Ru/SiO2-Al2O3 | Batch | 40 | 250 | - | Guaiacol | 100 | Cyclohexane, cyclohexanol | [91] |
RhPt/ZrO2 | Batch | 80 | 100 | - | Guaiacol | ≈100 | 1-Methyl-1,2-cyclohexanediol, cyclohexanol | [92] |
Catalyst | Reactor | Reaction Condition | Reactant | Con./% | Major Product | Ref. | ||
---|---|---|---|---|---|---|---|---|
Pressure/bar | Temp./K | WHSV/h−1 | ||||||
Fe/Ni/Hβ | Fixed-bed | 1 | 573–723 | 0.25~0.4 | Guaiacol | 100 | Phenol | [119] |
ReOx/CNF a | Batch | 30 | 573 | - | Phenol | 100 | Cyclohexane, benzene | [99] |
Ni/CNT b | Batch | 50 | 573 | - | Guaiacol | 100 | Cyclohexane, cyclohexanol, Methoxycyclohexanol | [94] |
Ni2P/Al2O3@TiO2 | Fixed-bed | 30 | - | 4 | Benzofuran | 95 | Ethylcyclohexane, ethylbenzene, methylcyclohexane | [120] |
NiCu/CNT b | Batch | 50 | 573 | - | Guaiacol | 100 | Cyclohexanol, Cyclohexane, Methoxycyclohexanol | [121] |
Ni2P/Al-SBA-15 | Batch | 40 | 493 | - | Phenol | ≈100 | Cyclohexane | [122] |
Co2P/Al-SBA-15 | Batch | 40 | 493 | - | Phenol | 83 | Cyclohexanol, Cyclohexane | [122] |
MoP/Al-SBA-15 | Batch | 40 | 493 | - | Phenol | ≈20 | Cyclohexanone, benzene, Cyclohexane | [122] |
Ni/Al-MCM-41 | Fixed-bed | 1 | 673 | 0.6 | Guaiacol | ≈100 | Methane | [123] |
Co/Al-MCM-41 | Fixed-bed | 1 | 673 | 0.6 | Guaiacol | ≈100 | Benzene, phenol, methane | [123] |
Mo2C/CNF a | Batch | 55 | 623 | - | Guaiacol | >99 | Phenol, cresol | [124] |
Meso-W2C | Fixed-bed | 1 | 343 | - | Anisole | ≈2 | Benzene | [105] |
W2C/CNF a | Batch | 55 | 623 | - | Guaiacol | 66 | Phenol, cresol | [124] |
MoO3 | Fixed-bed | 1 | 593 | ≈0.2 | Guaiacol | 98 | Benzene, phenol, anisole, toluene | [125] |
NiCu/ZrO2-SiO2 | Batch | 50 | 613 | - | Guaiacol | 91 | Cyclohexane, benzene, catechol, | [126] |
Ni/SiO2-ZrO2 | Batch | 50 | 573 | - | Guaiacol | 100 | Cyclohexane, Cyclohexene | [127] |
Fe/SiO2 | Fixed-bed | 1 | 673 | 0.67 | Guaiacol | 100 | Methane, phenol, benzene | [96] |
Ni/CeO2 | Batch | 100 | 548 | - | Phenol | 100 | Cyclohexanol | [93] |
Ni/MgAl2O4 | Batch | 100 | 548 | - | Phenol | 100 | Cyclohexanol, cyclohexane | [93] |
NiMoP/Al2O3 | Fixed-bed | 70 | 613 | - | Benzofuran | 48 | 2-Ethylphenol, 2,3-dihydrobenzofuran | [128] |
Ni/Cr2O3 | Fixed-bed | 10 | 573 | 6 (LHSV) | Anisole | 90.2 | cyclohexane | [129] |
Ni–Cu/CeO2 | Fixed-bed | 10 | 523 | 1 (LHSV) | Anisole | 100 | cyclohexane | [129] |
Ni-W(Si) c | Fixed-bed | 15 | 523 | 0.5 | Phenol | 100 | cyclohexane | [130] |
Ni-W(P) d | Fixed-bed | 15 | 523 | 0.5 | Phenol | 100 | cyclohexane | [130] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Z.; Zhang, X.; Wang, C.; Ma, L.; Dong, R. An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds. Catalysts 2017, 7, 169. https://doi.org/10.3390/catal7060169
Si Z, Zhang X, Wang C, Ma L, Dong R. An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds. Catalysts. 2017; 7(6):169. https://doi.org/10.3390/catal7060169
Chicago/Turabian StyleSi, Zhan, Xinghua Zhang, Chenguang Wang, Longlong Ma, and Renjie Dong. 2017. "An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds" Catalysts 7, no. 6: 169. https://doi.org/10.3390/catal7060169
APA StyleSi, Z., Zhang, X., Wang, C., Ma, L., & Dong, R. (2017). An Overview on Catalytic Hydrodeoxygenation of Pyrolysis Oil and Its Model Compounds. Catalysts, 7(6), 169. https://doi.org/10.3390/catal7060169