Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity
Abstract
:1. Introduction
2. Results
2.1. Textural Properties
2.2. Reducibility and Defective Sites
2.3. Catalytic Activity
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalytic Activity Test
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Trovarelli, A.; Fornasiero, P. Catalysis by Ceria and Related Materials, 2nd ed.; Imperial College Press: London, UK, 2013. [Google Scholar]
- Heck, R.M.; Farrauto, R.J.; Gulati, S.T. Catalytic Air Pollution Control: Commercial Technology, 3rd ed.; Wiley-VCH: Hoboken, NJ, USA, 2006. [Google Scholar]
- Ertl, G.; Knözinger, H.; Schüth, F.; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Bueno-López, A. Diesel soot combustion ceria catalysts. Appl. Catal. B Environ. 2014, 146, 1–11. [Google Scholar] [CrossRef]
- Burch, R. Knowledge and Know-How in Emission Control for Mobile Applications. Catal. Rev. 2004, 46, 271–334. [Google Scholar] [CrossRef]
- Russell, A.; Epling, W.S. Diesel Oxidation Catalysts. Catal. Rev. 2011, 53, 337–423. [Google Scholar] [CrossRef]
- Eastwood, P. Critical Topics in Exhaust Gas Aftertreatment; Research Studies Press Ltd.: Baldock, UK, 2000. [Google Scholar]
- Duprez, D.; Cavani, F. Handbook of Advanced Methods and Processes in Oxidation Catalysis; Imperial College Press: London, UK, 2014. [Google Scholar]
- Fino, D.; Bensaid, S.; Piumetti, M.; Russo, N. A review on the catalytic combustion of soot in Diesel particulate filters for automotive applications: From powder catalysts to structured reactors. Appl. Catal. A Gen. 2016, 509, 75–96. [Google Scholar] [CrossRef]
- Piumetti, M.; Bensaid, S.; Russo, N.; Fino, D. Nanostructured ceria-based catalysts for soot combustion: Investigations on the surface sensitivity. Appl. Catal. B Environ. 2015, 165, 742–751. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Tans, S.J.; Verschueren, A.R.M.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49–52. [Google Scholar]
- Fan, S.; Chapline, M.G.; Franklin, N.R.; Tombler, T.W.; Cassell, A.M.; Dai, H. Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties. Science 1999, 283, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Fedlheim, D.L.; Foss, C.A. Metal Nanoparticles: Synthesis, Characterization, and Applications; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- Thomas, J.M.; Raja, R. Mono-, Bi- and Multifunctional Single-Sites: Exploring the Interface between Heterogeneous and Homogeneous Catalysis. Top. Catal. 2010, 53, 848–858. [Google Scholar] [CrossRef]
- Agarwal, S.; Zhu, X.; Hensen, E.J.M.; Lefferts, L.; Mojet, B.L. Defect Chemistry of Ceria Nanorods. J. Phys. Chem. C 2014, 118, 4131–4142. [Google Scholar] [CrossRef]
- Agarwal, S.; Lefferts, L.; Mojet, B.L. Ceria Nanocatalysts: Shape Dependent Reactivity and Formation of OH. ChemCatChem 2013, 5, 479–489. [Google Scholar] [CrossRef]
- Piumetti, M.; van der Linden, B.; Makkee, M.; Miceli, P.; Fino, D.; Russo, N.; Bensaid, S. Contact dynamics for a solid–solid reaction mediated by gas-phase oxygen: Study on the soot oxidation over ceria-based catalysts. Appl. Catal. B Environ. 2016, 199, 96–107. [Google Scholar] [CrossRef]
- Baek, S.O.; Field, R.A.; Goldstone, M.E.; Kirk, P.W.; Lester, J.N.; Perry, R. A review of atmospheric polycyclic aromatic hydrocarbons: Sources, fate and behavior. Water Air Soil Pollut. 1991, 60, 279–300. [Google Scholar] [CrossRef]
- Laha, S.C.; Ryoo, R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates. Chem. Commun. 2003, 125, 2138–2139. [Google Scholar] [CrossRef]
- Taniguchi, T.; Watanabe, T.; Sugiyama, N.; Subramani, A.K.; Wagata, H.; Matsushita, N.; Yoshimura, M. Identifying defects in ceria-based nanocrystals by UV resonance Raman spectroscopy. J. Phys. Chem. C 2009, 113, 19789–19793. [Google Scholar] [CrossRef]
- Wu, Z.; Li, M.; Howe, J.; Meyer, H.M., III; Overbury, S.H. Probing defect sites on CeO2 nanocrystals with well-defined surface planes by Raman spectroscopy and O2 adsorption. Langmuir 2010, 26, 16595–16606. [Google Scholar] [CrossRef] [PubMed]
- Spanier, J.E.; Robinson, R.D.; Zhang, F.; Chan, S.W.; Herman, I.P. Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys. Rev. B 2001, 64, 245407. [Google Scholar] [CrossRef]
- Weber, W.H.; Hass, K.C.; McBride, J.R. Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 1993, 48, 178–185. [Google Scholar] [CrossRef]
- Filtschew, A.; Hofmann, K.; Hess, C. Ceria and Its Defect Structure: New Insights from a Combined Spectroscopic Approach. J. Phys. Chem. C 2016, 120, 6694–6703. [Google Scholar] [CrossRef]
- Su, Z.; Sha, J.; Pan, G.; Liu, J.; Yang, D.; Dickinson, C.; Zhou, W. Temperature-dependent raman scattering of silicon nanowires. J. Phys. Chem. B 2006, 110, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Elwood, J.; Carpenter, M.A. Phonon Anharmonicity of PdO Studied by Raman Spectrometry. J. Phys. Chem. C 2015, 119, 23094–23102. [Google Scholar] [CrossRef]
- Popović, Z.V.; Dohčević-Mitrović, Z.; Ŝćepanović, M.; Grujić-Brojčin, M.; Aŝkrabić, S. Raman scattering on nanomaterials and nanostructures. Ann. Phys. 2011, 523, 62–74. [Google Scholar] [CrossRef]
- Pandey, S.D.; Singh, J.; Samanta, K.; Sharma, N.D.; Bandyopadhyay, A.K. Temperature dependent variations of phonon interactions in nanocrystalline cerium oxide. J. Nanomater. 2015, 16, 154. [Google Scholar]
- Popović, Z.V.; Dohčević-Mitrović, Z.; Cros, A.; Cantarero, A. Raman scattering study of the anharmonic effects in CeO2−y nanocrystals. J. Phys. Condens. Matter 2007, 19, 496209. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Z.; Gao, F.; Kovarik, L.; Baylon, R.A.L.; Peden, C.H.F.; Wang, Y. Effect of Oxygen Defects on the Catalytic Performance of VOx/CeO2 Catalysts for Oxidative Dehydrogenation of Methanol. ACS Catal. 2015, 5, 3006–3012. [Google Scholar] [CrossRef]
- Bensaid, S.; Piumetti, M.; Novara, C.; Giorgis, F.; Chiodoni, A.; Russo, N.; Fino, D. Catalytic Oxidation of CO and Soot over Ce-Zr-Pr Mixed Oxides Synthesized in a Multi-Inlet Vortex Reactor: Effect of Structural Defects on the Catalytic Activity. Nanoscale Res. Lett. 2016, 11, 494. [Google Scholar] [CrossRef] [PubMed]
- Mamontov, E.; Egami, T.; Pennsyl, V.; Brezny, R.; Koranne, M.; Grace, W.R.; Grace, C.; Da, V.; Tyagi, S. Lattice Defects and Oxygen Storage Capacity of Nanocrystalline Ceria and Ceria-Zirconia. J. Phys. Chem. B 2000, 104, 11110–11116. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Mai, H.-X.; Sun, L.-D.; Zhang, Y.-W.; Si, R.; Feng, W.; Zhang, H.-P.; Liu, H.-C.L.; Yan, C.-H. Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. J. Phys. Chem. B 2005, 109, 24380–24385. [Google Scholar] [CrossRef] [PubMed]
- Miceli, P.; Bensaid, S.; Russo, N.; Fino, D. CeO2-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact. Nanoscale Res. Lett. 2014, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Bensaid, S.; Russo, N.; Fino, D. CeO2 catalysts with fibrous morphology for soot oxidation: The importance of the soot-catalyst contact conditions. Catal. Today 2013, 216, 57–63. [Google Scholar] [CrossRef]
Catalyst | SBET 1 (m2 g−1) | Vp 2 (cm3 g−1) | (200)/(111) 3 | (220)/(111) 3 |
---|---|---|---|---|
180 °C-10 M | 9 | 0.02 | 0.30 | 0.51 |
180 °C-8 M | 10 | 0.03 | 0.30 | 0.51 |
180 °C-4 M | 14 | 0.08 | 0.27 | 0.52 |
170 °C-10 M | 8 | 0.02 | 0.29 | 0.54 |
170 °C-8 M | 11 | 0.04 | 0.28 | 0.49 |
170 °C-4 M | 28 | 0.11 | 0.28 | 0.53 |
150 °C-10 M | 11 | 0.03 | 0.30 | 0.47 |
150 °C-8 M | 17 | 0.05 | 0.26 | 0.46 |
150 °C-4 M | 52 | 0.17 | 0.26 | 0.51 |
Catalyst | Estimated Quantity of Surface Oxygen (Mmol) | Specific Reaction Rate (mmolCO g cat−1 h−1) |
---|---|---|
180 °C-10 M | 0.023 | 164 |
180 °C-8 M | 0.029 | 42.6 |
180 °C-4 M | 0.013 | 142 |
170 °C-10 M | 0.021 | 207 |
170 °C-8 M | 0.025 | 309 |
170 °C-4 M | 0.024 | 402 |
150 °C-10 M | 0.018 | 393 |
150 °C-8 M | 0.019 | 220 |
150 °C-4 M | 0.022 | 473 |
Catalysts | Ov/F2g 300 °C | Ov/F2g 400 °C | Ov/F2g 500 °C |
---|---|---|---|
150 °C-10 M | 0.038 | 0.041 | 0.039 |
170 °C-10 M | 0.031 | 0.035 | 0.036 |
180 °C-10 M | 0.029 | 0.035 | 0.040 |
150 °C-8 M | 0.040 | 0.044 | 0.048 |
170 °C-8 M | 0.036 | 0.037 | 0.037 |
180 °C-8 M | 0.031 | 0.031 | 0.032 |
150 °C-4 M | 0.080 | 0.093 | 0.100 |
170 °C-4 M | 0.052 | 0.052 | 0.063 |
180 °C-4 M | 0.035 | 0.036 | 0.038 |
In the Absence of NOx (10%-v O2 in N2) | |||
Catalyst | Tconversion (°C) | ||
T10% | T50% | T90% | |
180 °C-10 M | 499 | 576 | 618 |
180 °C-8 M | 476 | 564 | 614 |
180 °C-4 M | 500 | 590 | 639 |
170 °C-10 M | 512 | 599 | 640 |
170 °C-8 M | 526 | 593 | 631 |
170 °C-4 M | 504 | 583 | 629 |
150 °C-10 M | 512 | 591 | 637 |
150 °C-8 M | 474 | 535 | 618 |
150 °C-4 M | 490 | 588 | 635 |
No catalyst | 526 | 615 | 656 |
In the Presence of NOx (550 ppmv-NO + 10%-v O2 in N2) | |||
Catalyst | Tconversion (°C) | ||
T10% | T50% | T90% | |
180 °C-10 M | 480 | 576 | 624 |
180 °C-8 M | 442 | 530 | 598 |
180 °C-4 M | 468 | 558 | 610 |
170 °C-10 M | 471 | 570 | 622 |
170 °C-8 M | 469 | 554 | 602 |
170 °C-4 M | 461 | 546 | 597 |
150 °C-10 M | 468 | 554 | 609 |
150 °C-8 M | 412 | 490 | 552 |
150 °C-4 M | 440 | 517 | 565 |
No catalyst | 526 | 615 | 656 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piumetti, M.; Bensaid, S.; Andana, T.; Dosa, M.; Novara, C.; Giorgis, F.; Russo, N.; Fino, D. Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity. Catalysts 2017, 7, 174. https://doi.org/10.3390/catal7060174
Piumetti M, Bensaid S, Andana T, Dosa M, Novara C, Giorgis F, Russo N, Fino D. Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity. Catalysts. 2017; 7(6):174. https://doi.org/10.3390/catal7060174
Chicago/Turabian StylePiumetti, Marco, Samir Bensaid, Tahrizi Andana, Melodj Dosa, Chiara Novara, Fabrizio Giorgis, Nunzio Russo, and Debora Fino. 2017. "Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity" Catalysts 7, no. 6: 174. https://doi.org/10.3390/catal7060174
APA StylePiumetti, M., Bensaid, S., Andana, T., Dosa, M., Novara, C., Giorgis, F., Russo, N., & Fino, D. (2017). Nanostructured Ceria-Based Materials: Effect of the Hydrothermal Synthesis Conditions on the Structural Properties and Catalytic Activity. Catalysts, 7(6), 174. https://doi.org/10.3390/catal7060174