OcUGT1-Catalyzed Glucosylation of Sulfuretin Yields Ten Glucosides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Protein Expression and Purification
2.2. OcUGT1-Catalyzed Glycosylation towards Sulfuretin
2.3. Structural Identification of Sulfuretin Monoglucosides
2.4. Structural Identification of Sulfuretin Diglucosides
2.5. Structural Identification of Sulfuretin Triglucosides
3. Materials and Methods
3.1. Chemicals
3.2. Protein Expression and Purification
3.3. Glycosylation Assay
3.4. Structural Identification
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GT | glycosyltransferase |
HR-ESI-MS | high-resolution electrospray ionization mass spectrometry |
IPTG | isopropyl-β-d-thiogalactoside |
NMR | nuclear magnetic resonance |
OcUGT1 | Ornithogalum caudatum UDP-glycosyltransferase |
RP-HPLC | reverse phase high performance liquid chromatography |
SDS-PAGE | sodium dodecyl sulfate polyacrylamide gel electrophoresis |
UDP-Glc | UDP-d-glucose |
References
- Thibodeaux, C.J.; Melancon, C.E., 3rd; Liu, H.W. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew. Chem. Int. Ed. Engl. 2008, 47, 9814–9859. [Google Scholar] [CrossRef] [PubMed]
- Thibodeaux, C.J.; Melancon, C.E.; Liu, H.W. Unusual sugar biosynthesis and natural product glycodiversification. Nature 2007, 446, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Hofer, B. Recent developments in the enzymatic O-glycosylation of flavonoids. Appl. Microbiol. Biotechnol. 2016, 100, 4269–4281. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Muzashvili, T.S.; Georgiev, M.I. Advances in the biotechnological glycosylation of valuable flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J. 2015, 14, 59–63. [Google Scholar] [PubMed]
- Sharma, S.; Ali, A.; Ali, J.; Sahni, J.K.; Baboota, S. Rutin: Therapeutic potential and recent advances in drug delivery. Expert Opin. Investig. Drugs 2013, 22, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.S. A review on plant-based rutin extraction methods and its pharmacological activities. J. Ethnopharmacol. 2013, 150, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Luo, D.; Liang, Z.; Lao, L.; Rong, J. Plant natural product puerarin ameliorates depressive behaviors and chronic pain in mice with spared nerve injury (SNI). Mol. Neurobiol. 2017, 54, 2801–2812. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Fang, M.; Wu, C.Y.; Ling, E.A. Scutellarin as a potential therapeutic agent for microglia-mediated neuroinflammation in cerebral ischemia. Neuromol. Med. 2016, 18, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Chen, D.; Chen, R.; Xie, K.; Liu, J.; Yang, L.; Dai, J. Exploring the aglycon promiscuity of a new glycosyltransferase from Pueraria lobata. Tetrahedron Lett. 2016, 57, 1518–1521. [Google Scholar] [CrossRef]
- Chen, D.; Chen, R.; Wang, R.; Li, J.; Xie, K.; Bian, C.; Sun, L.; Zhang, X.; Liu, J.; Yang, L.; et al. Probing the catalytic promiscuity of a regio- and stereospecific c-glycosyltransferase from Mangifera indica. Angew. Chem. Int. Ed. Engl. 2015, 54, 12678–12682. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Chen, R.; Li, J.; Wang, R.; Chen, D.; Dou, X.; Dai, J. Exploring the catalytic promiscuity of a new glycosyltransferase from Carthamus tinctorius. Org. Lett. 2014, 16, 4874–4877. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Yin, S.; Liu, M.; Kong, J.-Q. Isolation and characterization of a multifunctional flavonoid glycosyltransferase from Ornithogalum caudatum with glycosidase activity. Sci. Rep. 2018, 8, 5886. [Google Scholar] [CrossRef] [PubMed]
- Roh, K.; Kim, S.; Kang, H.; Ku, J.M.; Park, K.W.; Lee, S. Sulfuretin has therapeutic activity against acquired lymphedema by reducing adipogenesis. Pharmacol. Res. 2017, 121, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Pariyar, R.; Lamichhane, R.; Jung, H.J.; Kim, S.Y.; Seo, J. Sulfuretin attenuates MPP (+)-induced neurotoxicity through Akt/GSK3beta and ERK signaling pathways. Int. J. Mol. Sci. 2017, 18, 2753. [Google Scholar] [CrossRef] [PubMed]
- Chand, K.; Hiremathad, A.; Singh, M.; Santos, M.A.; Keri, R.S. A review on antioxidant potential of bioactive heterocycle benzofuran: Natural and synthetic derivatives. Pharmacol. Rep. 2017, 69, 281–295. [Google Scholar] [CrossRef] [PubMed]
- Auh, Q.S.; Park, K.R.; Yun, H.M.; Lim, H.C.; Kim, G.H.; Lee, D.S.; Kim, Y.C.; Oh, H.; Kim, E.C. Sulfuretin promotes osteoblastic differentiation in primary cultured osteoblasts and in vivo bone healing. Oncotarget 2016, 7, 78320–78330. [Google Scholar] [CrossRef] [PubMed]
- Song, N.J.; Kwon, S.M.; Kim, S.; Yoon, H.J.; Seo, C.R.; Jang, B.; Chang, S.H.; Ku, J.M.; Lee, J.S.; Park, K.M.; et al. Sulfuretin induces osteoblast differentiation through activation of TGF-beta signaling. Mol. Cell Biochem. 2015, 410, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.-H.; Ma, S.-X.; Lee, S.-Y.; Jang, C.-G. Sulfuretin inhibits 6-hydroxydopamine-induced neuronal cell death via reactive oxygen species-dependent mechanisms in human neuroblastoma SH-SY5Y cells. Neurochem. Int. 2014, 74, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Shin, M.C.; Yun, Y.D.; Shin, S.Y.; Kim, J.M.; Seo, J.M.; Kim, N.-J.; Ryu, J.H.; Lee, Y.S. Synthesis of aminoalkyl-substituted aurone derivatives as acetylcholinesterase inhibitors. Bioorgan. Med. Chem. 2015, 23, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Rullah, K.; Mohd Aluwi, M.F.F.; Yamin, B.M.; Abdul Bahari, M.N.; Wei, L.S.; Ahmad, S.; Abas, F.; Ismail, N.H.; Jantan, I.; Wai, L.K. Inhibition of prostaglandin E2 production by synthetic minor prenylated chalcones and flavonoids: Synthesis, biological activity, crystal structure, and in silico evaluation. Bioorg. Med. Chem. Lett. 2014, 24, 3826–3834. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.Y.; Shin, M.C.; Shin, J.-S.; Lee, K.-T.; Lee, Y.S. Synthesis of aurones and their inhibitory effects on nitric oxide and PGE2 productions in LPS-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett. 2011, 21, 4520–4523. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zhang, M.; Xie, L.G.; Li, Y.H.; Xu, X. Synthesis, crystal structure and herbicidal activity of aurone derivatives. Chem. J. Chin. Univ. 2011, 32, 2335–2340. [Google Scholar]
- Oberoi, S.; Lalita, L. Isolation and characterization of new plant pigment along with three known compounds from Butea monosperma petals. Arch. Appl. Sci. Res. 2010, 2, 68–71. [Google Scholar]
- Ahmed, F.A.; Kim, S.Y.; Kurimoto, S.I. Biflavonoids from flowers of Butea monosperma (Lam.) Taub. Heterocycles. 2011, 83, 2079–2089. [Google Scholar]
- Zhu, N.; Li, X.-W.; Liu, G.-Y.; Shi, X.-L.; Gui, M.-Y.; Sun, C.-Q.; Jin, Y.-R. Constituents from aerial parts of Bidens ceruna L. and their DPPH radical scavenging activity. Chem. Res. Chin. Univ. 2009, 25, 328–331. [Google Scholar]
- Puri, B.; Seshadri, T.R. Survey of anthoxanthins. Part IX. Isolation and constitution of palasitrin. J. Chem. Soc. 1955, 1589–1592. [Google Scholar] [CrossRef]
- Westenburg, H.E.; Lee, K.J.; Lee, S.K.; Fong, H.H.; van Breemen, R.B.; Pezzuto, J.M.; Kinghorn, A.D. Activity-guided isolation of antioxidative constituents of Cotinus coggygria. J. Nat. Prod. 2000, 63, 1696–1698. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Liu, M.; Yang, Y.; He, J.-M.; Wang, Y.-N.; Kong, J.-Q. Transcriptome-wide identification of an aurone glycosyltransferase with glycosidase activity from Ornithogalum saundersiae. Genes 2018, 9, 327. [Google Scholar] [CrossRef] [PubMed]
- Halbwirth, H.; Wimmer, G.; Wurst, F.; Forkmann, G.; Stich, K. Enzymatic glucosylation of 4-deoxyaurones and 6′-deoxychalcones with enzyme extracts of Coreopsis grandiflora, Nutt. I. Plant Sci. 1997, 122, 125–131. [Google Scholar] [CrossRef]
- Yuan, S.; Yin, S.; Liu, M.; He, J.-M.; Kong, J.-Q. OcUGT1-catalyzed glycosylation of testosterone with alternative donor substrates. Process Biochem. 2018, in press. [Google Scholar] [CrossRef]
- Yuan, S.; Yang, Y.; Kong, J.-Q. Biosynthesis of 7,8-dihydroxyflavone glycosides via OcUGT1-catalyzed glycosylation and transglycosylation. J. Asian Nat. Prod. Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Liu, M.; Kong, J.-Q. Functional analyses of OcRhS1 and OcUER1 involved in UDP-L-rhamnose biosynthesis in Ornithogalum caudatum. Plant Physiol. Biochem. 2016, 109, 536–548. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kong, J.Q. Steroids hydroxylation catalyzed by the monooxygenase mutant 139-3 from Bacillus megaterium BM3. Acta Pharm. Sin. B 2017, 7, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Kong, J.-Q. Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-d-apiose/UDP-d-xylose synthase families from Ornithogalum caudatum Ait. Plant Cell Rep. 2016, 35, 2403–2421. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Chen, X.; Li, L.-N.; Tang, W.; Pan, Y.-T.; Kong, J.-Q. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering. Microb. Cell Fact. 2016, 15, 27. [Google Scholar] [CrossRef] [PubMed]
Position | 13C | 1H |
---|---|---|
2 | 146.2,C | |
3 | 181.7,C | |
4 | 125.4,CH | 7.71, d (8.5) |
5 | 113.7,CH | 6.92, dd (8.5, 2.0) |
6 | 164.9,C | |
7 | 99.4,CH | 7.21, d (2.0) |
8 | 167.4,C | |
9 | 115.1,C | |
10 | 111.9,CH | 6.77, s |
1′ | 126.3,C | |
2′ | 118.2,CH | 7.49, d (2.1) |
3′ | 147.2,C | |
4′ | 146.7,C | |
5′ | 116.0,CH | 7.21, d (8.6) |
6′ | 124.0,CH | 7.41, dd (8.6,2.1) |
Glc | Glc | |
1″ | 101.4,CH | 5.18, d (7.3) |
2″ | 73.3,CH | |
3″ | 76.4,CH | |
4″ | 69.9,CH | 3.0–3.8, m (overlapped) |
5″ | 77.3,CH | |
6″ | 60.8,CH2 | |
Glc | ||
1′″ | 99.7,CH | 4.84, d (7.3) |
2′″ | 73.1,CH | 3.0–3.8, m (overlapped) |
3′″ | 75.8,CH | |
4′″ | 69.6,CH | |
5′″ | 77.1,CH | |
6′″ | 60.7,CH2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, S.; Xu, Y.-L.; Yang, Y.; Kong, J.-Q. OcUGT1-Catalyzed Glucosylation of Sulfuretin Yields Ten Glucosides. Catalysts 2018, 8, 416. https://doi.org/10.3390/catal8100416
Yuan S, Xu Y-L, Yang Y, Kong J-Q. OcUGT1-Catalyzed Glucosylation of Sulfuretin Yields Ten Glucosides. Catalysts. 2018; 8(10):416. https://doi.org/10.3390/catal8100416
Chicago/Turabian StyleYuan, Shuai, Yan-Li Xu, Yan Yang, and Jian-Qiang Kong. 2018. "OcUGT1-Catalyzed Glucosylation of Sulfuretin Yields Ten Glucosides" Catalysts 8, no. 10: 416. https://doi.org/10.3390/catal8100416
APA StyleYuan, S., Xu, Y. -L., Yang, Y., & Kong, J. -Q. (2018). OcUGT1-Catalyzed Glucosylation of Sulfuretin Yields Ten Glucosides. Catalysts, 8(10), 416. https://doi.org/10.3390/catal8100416