Palladium Nanoparticles Supported on Triphenylphosphine-Functionalized Porous Polymer as an Active and Recyclable Catalyst for the Carbonylation of Chloroacetates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalyst
2.2. Alkoxycarbonylation Reactions
3. Materials and Methods
3.1. Materials
3.2. Preparation of the Porous Polymer (POP-Ph3P)
3.3. Preparation of Catalysts
3.4. Alkoxycarbonylation of Chloroacetates and Chloracetone
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peng, J.B.; Qi, X.; Wu, X.-F. Recent achievements in carbonylation reactions: A personal account. Synlett 2017, 28, 175–194. [Google Scholar]
- Friis, S.D.; Lindhardt, A.T.; Skrydstrup, T. The development and application of two-chamber reactors and carbon monoxide precursors for safe carbonylation reactions. Acc. Chem. Res. 2016, 49, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev. 2012, 113, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.-F.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylative coupling reactions between Ar–X and carbon nucleophiles. Chem. Soc. Rev. 2011, 40, 4986–5009. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.B.; Wu, F.P.; Xu, C.; Qi, X.; Ying, J.; Wu, X.-F. Direct synthesis of benzylic amines by palladium-catalyzed carbonylative aminohomologation of aryl halides. Commun. Chem. 2018, 1, 29. [Google Scholar] [CrossRef]
- Lagueux-Tremblay, P.L.; Fabrikant, A.; Arndtsen, B.A. Palladium-catalyzed carbonylation of aryl chlorides to electrophilic aroyl-DMAP salts. ACS Catal. 2018, 8, 5350–5354. [Google Scholar] [CrossRef]
- Shen, C.; Fink, C.; Laurenczy, G.; Dyson, P.J.; Wu, X.-F. Versatile palladium-catalyzed double carbonylation of aryl bromides. Chem. Commun. 2017, 53, 12422–12425. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Xiao, S.; Li, G.; Gu, Y.; Wu, H.; Shi, K. Mild and efficient Pd (PtBu3)2-catalyzed aminocarbonylation of aryl halides to aryl amides with high selectivity. Appl. Organometal. Chem. 2017, 31, e3637. [Google Scholar] [CrossRef]
- Li, Y.; Wu, X.-F. Copper/iron co-catalyzed alkoxycarbonylation of unactivated alkyl bromides. Commun. Chem. 2018, 1, 39. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wu, X.F. A sustainable procedure toward alkyl arylacetates: Palladium-catalysed direct carbonylation of benzyl alcohols in organic carbonates. Green Chem. 2018, 20, 969–972. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Wu, X.F. Palladium-catalyzed carbonylative direct transformation of benzyl amines under additive-free conditions. ACS Catal. 2017, 8, 738–741. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, F.; Wang, Z.; Rabeah, J.; Brückner, A.; Wu, X.F. Practical and general manganese-catalyzed carbonylative coupling of alkyl iodides with amides. ChemCatChem 2017, 9, 915–919. [Google Scholar] [CrossRef]
- Fagnou, K.; Lautens, M. Halide effects in transition metal catalysis. Angew. Chem. Int. Ed. 2002, 41, 26–47. [Google Scholar] [CrossRef]
- Sargent, B.T.; Alexanian, E.J. Palladium-catalyzed alkoxycarbonylation of unactivated secondary alkyl bromides at low pressure. J. Am. Chem. Soc. 2016, 138, 7520–7523. [Google Scholar] [CrossRef] [PubMed]
- Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B.M. KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki–Miyaura cross-coupling. Green Chem. 2016, 18, 5890–5899. [Google Scholar] [CrossRef]
- Mei, H.; Hu, J.; Xiao, S.; Lei, Y.; Li, G. Palladium-1, 10-phenanthroline complex encaged in Y zeolite: An efficient and highly recyclable heterogeneous catalyst for aminocarbonylation. Appl. Catal. A Gen. 2014, 475, 40–47. [Google Scholar] [CrossRef]
- Martinelli, J.R.; Clark, T.P.; Watson, D.A.; Munday, R.H.; Buchwald, S.L. Palladium-catalyzed aminocarbonylation of aryl chlorides at atmospheric pressure: The dual role of sodium phenoxide. Angew. Chem. 2007, 119, 8612–8615. [Google Scholar] [CrossRef]
- Veige, A.S. Carbon monoxide as a reagent: A report on the role of N-heterocyclic carbene (NHC) ligands in metal-catalyzed carbonylation reactions. Polyhedron 2008, 27, 3177–3189. [Google Scholar] [CrossRef]
- Johansson Seechurn, C.C.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed. 2012, 51, 5062–5085. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, Y.; Wu, X.-F. Non-noble metal-catalysed carbonylative transformations. Chem. Soc. Rev. 2018, 47, 172–194. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, B.; Qiu, Y.; Bäckvall, J.E. Highly selective construction of seven-membered carbocycles by olefin-assisted palladium-catalyzed oxidative carbocyclization-alkoxycarbonylation of bisallenes. Angew. Chem. Int. Ed. 2016, 55, 14405–14408. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, B.; Backvall, J.E. Highly selective cascade C–C bond formation via palladium-catalyzed oxidative carbonylation-Carbocyclization-Carbonylation-Alkynylation of enallenes. J. Am. Chem. Soc. 2015, 137, 11868–11871. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, E.; Hajilou, Z.; Movassagh, B. Multiwalled carbon nanotubes supported Pd (II)-salen complex: An effective, phosphorous-free, and reusable heterogeneous precatalyst for the synthesis of diaryl ketones. Helv. Chim. Acta 2016, 99, 747–752. [Google Scholar] [CrossRef]
- Wang, D.; Astruc, D. Fast-growing field of magnetically recyclable nanocatalysts. Chem. Rev. 2014, 114, 6949–6985. [Google Scholar] [CrossRef] [PubMed]
- Molnar, A. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem. Rev. 2011, 111, 2251–2320. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Dai, Z.; Meng, X.; Xiao, F.-S. Porous polymer catalysts with hierarchical structures. Chem. Soc. Rev. 2015, 44, 6018–6034. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.A.; Zhang, Z.K.; Yue, T.; Sun, Y.L.; Wang, L.; Wang, W.D.; Zhang, Y.; Liu, C.; Wang, W. “Bottom-up” embedding of the jørgensen-hayashi catalyst into a chiral porous polymer for highly efficient heterogeneous asymmetric organocatalysis. Chem. Eur. J. 2012, 18, 6718–6723. [Google Scholar] [CrossRef] [PubMed]
- Dong, K.; Sun, Q.; Meng, X.; Xiao, F.-S. Strategies for the design of porous polymers as efficient heterogeneous catalysts: From co-polymerization to self-polymerization. Catal. Sci. Technol. 2017, 7, 1028–1039. [Google Scholar] [CrossRef]
- Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: Design, synthesis, and applications. Chem. Soc. Rev. 2017, 46, 3322–3356. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Guan, Z.; Wang, W.; Yang, X.; Hu, J.; Tan, B.; Li, T. Highly dispersed Pd catalyst locked in knitting aryl network polymers for Suzuki-Miyaura coupling reactions of aryl chlorides in aqueous media. Adv. Mater. 2012, 24, 3390–3395. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Jiang, M.; Shen, Z.; Jin, Y.; Pan, S.; Wang, L.; Meng, X.; Chen, W.; Ding, Y.; Li, J.; et al. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chem. Commun. 2014, 50, 11844–11847. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wang, T.; He, Z.; Zhou, M.; Yu, W.; Shi, B.; Huang, K. Honeycomb-like bicontinuous P-doped porous polymers from hyper-cross-linking of diblock copolymers for heterogeneous catalysis. Macromolecules 2017, 50, 9626–9635. [Google Scholar] [CrossRef]
- Ding, Z.C.; Li, C.Y.; Chen, J.J.; Zeng, J.H.; Tang, H.T.; Ding, Y.J.; Zhan, Z.P. Palladium/phosphorus-doped porous organic polymer as recyclable chemoselective and efficient hydrogenation catalyst under ambient conditions. Adv. Synth. Catal. 2017, 359, 2280–2287. [Google Scholar] [CrossRef]
- Iwai, T.; Harada, T.; Shimada, H.; Asano, K.; Sawamura, M. A polystyrene-cross-linking bisphosphine: Controlled metal monochelation and ligand-enabled first-row transition metal catalysis. ACS Catal. 2017, 7, 1681–1692. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, Z.; Liu, X.; Sheng, N.; Deng, F.; Meng, X.; Xiao, F.-S. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 2015, 137, 5204–5209. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.B.; Li, C.Y.; Lin, M.; Ding, Y.J.; Zhan, Z.P. A polymer-bound monodentate-P-ligated palladium complex as a recyclable catalyst for the Suzuki-Miyaura coupling reaction of aryl chlorides. Adv. Synth. Catal. 2015, 357, 2503–2508. [Google Scholar] [CrossRef]
- Wang, X.; Min, S.; Das, S.K.; Fan, W.; Huang, K.W.; Lai, Z. Spatially isolated palladium in porous organic polymers by direct knitting for versatile organic transformations. J. Catal. 2017, 355, 101–109. [Google Scholar] [CrossRef]
- Lei, Y.; Wu, L.; Zhang, X.; Mei, H.; Gu, Y.; Li, G. Palladium supported on triphenylphosphine functionalized porous organic polymer: A highly active and recyclable catalyst for alkoxycarbonylation of aryl iodides. J. Mol. Catal. A Chem. 2015, 398, 164–169. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, Q.; Guan, Z.; Gu, Y.; Mo, W.; Li, T.; Li, G. Palladium-catalyzed carbonylation of chloroacetates to afford malonates: Controlling the selectivity of the product in a buffer. ChemCatChem 2012, 4, 1776–1782. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, R.; Wu, L.; Ou, Q.; Mei, H.; Li, G. PdCl2/Bu4NI: An efficient and ligand-free catalyst for the alkoxycarbonylation of organic chlorides. J. Mol. Catal. A Chem. 2014, 392, 105–111. [Google Scholar] [CrossRef]
- Cai, R.; Ye, X.; Sun, Q.; He, Q.; He, Y.; Ma, S.; Shi, X. Anchoring triazole-gold (I) complex into porous organic polymer to boost the stability and reactivity of gold (I) catalyst. ACS Catal. 2017, 7, 1087–1092. [Google Scholar] [CrossRef]
- Guo, M.; Li, H.; Ren, Y.; Ren, X.; Yang, Q.; Li, C. Improving catalytic hydrogenation performance of Pd nanoparticles by electronic modulation using phosphine ligands. ACS Catal. 2018, 8, 6476–6485. [Google Scholar] [CrossRef]
- Wahl, B.; Bonin, H.; Mortreux, A.; Giboulot, S.; Liron, F.; Poli, G.; Sauthier, M. A general and efficient method for the alkoxycarbonylation of α-chloro ketones. Adv. Synth. Catal. 2012, 354, 3105–3114. [Google Scholar] [CrossRef]
Entry | Catalysts | SBET (m2·g−1) | Pore Volume (cm3/g) 1 | Average Pore Radius (nm) 2 |
---|---|---|---|---|
1 | POP-PPh3 | 1146 | 2.41 | 8.42 |
2 | PdNPs@POP-PPh3 | 987 | 1.92 | 6.50 |
Entry | Catalyst | Solvent | Base | Conv. (mol%) 2 | Sel. (mol%) | Yield (mol%) 3 |
---|---|---|---|---|---|---|
1 | PdNPs@POP-Ph3P | ethanol | Na2HPO4 | 99.8 | 40.7 | 40.6 |
2 | PdNPs@POP-Ph3P | anisole | Na2HPO4 | 67.5 | 95.2 | 64.3 |
3 | PdNPs@POP-Ph3P | 1,4-dioxane | Na2HPO4 | 82.6 | 85.6 | 70.7 |
4 | PdNPs@POP-Ph3P. | toluene | Na2HPO4 | 37.9 | 92.4 | 35.0 |
5 | PdNPs@POP-Ph3P | DGDE | Na2HPO4 | 75.1 | 95.7 | 71.9 |
6 | PdNPs@POP-Ph3P | 1,2-DEE | Na2HPO4 | 83.9 | 97.0 | 81.4 |
7 | PdNPs@POP-Ph3P | 1,2-DME | Na2HPO4 | 81.0 | 95.4 | 77.3 |
8 | PdNPs@POP-Ph3P | TEOF | Na2HPO4 | 82.4 | 96.5 | 79.5 |
9 | PdNPs@POP-Ph3P | THF | Na2HPO4 | 94.1 | 85.0 | 80.0 |
10 | PdNPs@POP-Ph3P | 1,2-DEE | K2CO3 | 95.6 | 88.2 | 84.3 |
11 | PdNPs@POP-Ph3P | 1,2-DEE | K3PO4 | 99.9 | 90.5 | 90.4 |
12 | PdNPs@POP-Ph3P | 1,2-DEE | K2HPO4 | 64.7 | 94.8 | 61.3 |
13 | PdNPs@POP-Ph3P | 1,2-DEE | NaHCO3 | 51.4 | 79.1 | 40.7 |
14 4 | Pd/C | 1,2-DEE | Na2HPO4 | 21.3 | 96.1 | 20.5 |
15 5 | Pd(PPh3)2Cl2 | 1,2-DEE | Na2HPO4 | 91.6 | 96.7 | 88.6 |
Entry | Promoter | Amount (mol%) 2 | Conv. (mol%) 3 | Sel. (mol%) | Yield (mol%) 4 |
---|---|---|---|---|---|
1 | - | - | 17.5 | 94.4 | 16.5 |
2 | Bu4NI | 10 | 83.9 | 97.0 | 81.4 |
3 | Bu4NBr | 10 | 29.7 | 95.9 | 28.5 |
4 | Bu4NCl | 10 | 14.8 | 96.1 | 14.2 |
5 | Et4NI | 10 | 87.5 | 97.1 | 85.0 |
6 | Me4NI | 10 | 89.6 | 97.2 | 87.1 |
7 | NaI | 10 | 47.1 | 96.9 | 45.6 |
8 | KI | 10 | 50.3 | 96.9 | 48.7 |
9 | Me4NI | 5 | 59.2 | 96.8 | 57.3 |
10 | Me4NI | 15 | 93.8 | 97.2 | 91.2 |
11 | Me4NI | 20 | 94.0 | 96.4 | 90.6 |
12 5 | Me4NI | 15 | 97.7 | 97.1 | 94.9 |
13 5,6 | Me4NI | 15 | 93.2 | 96.6 | 90.0 |
Entry | Organic Chloride | ROH | t (h) | Product | Con. (mol%) 2 | Sel. (mol%) | Yield (mol%) 3 |
---|---|---|---|---|---|---|---|
1 | MeOH | 9 | 98.5 | 97.3 | 95.8 | ||
2 | MeOH | 9 | 98.2 | 95.3 | 93.6 | ||
3 | EtOH | 9 | 97.6 | 94.8 | 92.5 | ||
4 | i-PrOH | 12 | 97.0 | 96.0 | 93.1 | ||
5 | MeOH | 2 | 99.5 | 99.0 | 98.5 | ||
6 | EtOH | 2 | 99.2 | 99.2 | 98.4 | ||
7 | i-PrOH | 2 | 93.8 | 97.8 | 91.7 | ||
8 | EtOH | 4 | 99.4 | 93.6 | 93.0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, Y.; Chen, Z.; Liu, D.; Lei, Y. Palladium Nanoparticles Supported on Triphenylphosphine-Functionalized Porous Polymer as an Active and Recyclable Catalyst for the Carbonylation of Chloroacetates. Catalysts 2018, 8, 586. https://doi.org/10.3390/catal8120586
Wan Y, Chen Z, Liu D, Lei Y. Palladium Nanoparticles Supported on Triphenylphosphine-Functionalized Porous Polymer as an Active and Recyclable Catalyst for the Carbonylation of Chloroacetates. Catalysts. 2018; 8(12):586. https://doi.org/10.3390/catal8120586
Chicago/Turabian StyleWan, Yali, Zaifei Chen, Dingfu Liu, and Yizhu Lei. 2018. "Palladium Nanoparticles Supported on Triphenylphosphine-Functionalized Porous Polymer as an Active and Recyclable Catalyst for the Carbonylation of Chloroacetates" Catalysts 8, no. 12: 586. https://doi.org/10.3390/catal8120586
APA StyleWan, Y., Chen, Z., Liu, D., & Lei, Y. (2018). Palladium Nanoparticles Supported on Triphenylphosphine-Functionalized Porous Polymer as an Active and Recyclable Catalyst for the Carbonylation of Chloroacetates. Catalysts, 8(12), 586. https://doi.org/10.3390/catal8120586