Nb-Modified Ce/Ti Oxide Catalyst for the Selective Catalytic Reduction of NO with NH3 at Low Temperature
Abstract
:1. Introduction
2. Results
2.1. NH3-SCR Performance
2.2. Physicochemical Characterization
2.2.1. Structural and Textural Properties (ICP-OES, BET, XRD, and Raman)
2.2.2. Acid Properties (NH3-TPD and DRIFTS)
2.2.3. Redox Properties (XPS and H2-TPR)
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Activity Measurement
3.3. Catalyst Characterization
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Skalska, K.; S Miller, J.; Ledakowicz, S. Trends in NOx abatement: A review. Sci. Total Environ. 2010, 408, 3976–3989. [Google Scholar] [CrossRef] [PubMed]
- Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Appl. Catal. B Environ. 1998, 18, 1–36. [Google Scholar] [CrossRef]
- Lietti, L.; Nova, I.; Forzatti, P. Selective catalytic reduction (SCR) of NO by NH3 over TiO2-supported V2O5-WO3 and V2O5-MoO3 catalysts. Top. Catal. 2000, 11, 111–122. [Google Scholar] [CrossRef]
- Long, R.Q.; Yang, R.T. Fe-ZSM-5 for Selective Catalytic Reduction of NO with NH3: A Comparative Study of Different Preparation Techniques. Catal. Lett. 2001, 74, 201–205. [Google Scholar] [CrossRef]
- Delahay, G.; Valade, D.; Guzmán-Vargas, A.; Coq, B. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods. Appl. Catal. B Environ. 2005, 55, 149–155. [Google Scholar] [CrossRef]
- Ayari, F.; Mhamdi, M.; Álvarez-Rodríguez, J.; Ruiz, A.R.G.; Delahay, G.; Ghorbel, A. Selective catalytic reduction of NO with NH3 over Cr-ZSM-5 catalysts: General characterization and catalysts screening. Appl. Catal. B Environ. 2013, 134–135, 367–380. [Google Scholar] [CrossRef]
- Forzatti, P. Present status and perspectives in de-NOx SCR catalysis. Appl. Catal. A Gen. 2001, 222, 221–236. [Google Scholar] [CrossRef]
- Michalow-Mauke, K.A.; Lu, Y.; Kowalski, K.; Graule, T.; Nachtegaal, M.; Kröcher, O.; Ferri, D. Flame-Made WO3/CeOx-TiO2 Catalysts for Selective Catalytic Reduction of NOx by NH3. ACS Catal. 2015, 5, 5657–5672. [Google Scholar] [CrossRef]
- Ding, S.; Liu, F.; Shi, X.; Liu, K.; Lian, Z.; Xie, L.; He, H. Significant Promotion Effect of Mo Additive on a Novel Ce-Zr Mixed Oxide Catalyst for the Selective Catalytic Reduction of NOx with NH3. ACS Appl. Mater. Interfaces 2015, 7, 9497–9506. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, X.; Zhao, Q.; Ke, J.; Xiao, H.; Lv, X.; Liu, S.; Tadé, M.; Wang, S. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: In situ FTIR analysis for structure-activity correlation. Appl. Catal. B Environ. 2017, 200, 297–308. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Li, J.; Ma, L.; Arandiyan, H.; Du, Y.; Xu, J.; Hao, J. Enhancement of Activity and Sulfur Resistance of CeO2 Supported on TiO2–SiO2 for the Selective Catalytic Reduction of NO by NH3. Environ. Sci. Technol. 2012, 46, 6182–6189. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.; B F Seijger, G.; M van den Bleek, C.; Calis, H.P.A. Very active CeO2-zeolite catalysts for NOx reduction with NH3. Chem. Commun. 2002, 18, 2030–2031. [Google Scholar] [CrossRef]
- Jin, R.; Liu, Y.; Wu, Z.; Wang, H.; Gu, T. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn–Ce/TiO2 catalyst. Catal. Today 2010, 153, 84–89. [Google Scholar] [CrossRef]
- Xu, W.; He, H.; Yu, Y. Deactivation of a Ce/TiO2 Catalyst by SO2 in the Selective Catalytic Reduction of NO by NH3. J. Phys. Chem. C 2009, 113, 4426–4432. [Google Scholar] [CrossRef]
- Xu, W.; Yu, Y.; Zhang, C.; He, H. Selective catalytic reduction of NO by NH3 over a Ce/TiO2 catalyst. Catal. Commun. 2008, 9, 1453–1457. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Ge, M.; Zhu, R. Enhanced activity of tungsten modified CeO2/TiO2 for selective catalytic reduction of NOx with ammonia. Catal. Today 2010, 153, 77–83. [Google Scholar] [CrossRef]
- Peng, Y.; Li, K.; Li, J. Identification of the active sites on CeO2–WO3 catalysts for SCR of NOx with NH3: An in situ IR and Raman spectroscopy study. Appl. Catal. B Environ. 2013, 140–141, 483–492. [Google Scholar] [CrossRef]
- Ma, Z.; Weng, D.; Wu, X.; Si, Z. Effects of WOx modification on the activity, adsorption and redox properties of CeO2 catalyst for NOx reduction with ammonia. J. Environ. Sci. 2012, 24, 1305–1316. [Google Scholar] [CrossRef]
- Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Appl. Catal. B Environ. 2012, 115–116, 100–106. [Google Scholar] [CrossRef]
- Shan, W.; Liu, F.; He, H.; Shi, X.; Zhang, C. Novel Cerium-tungsten mixed oxide catalyst for the selective catalytic reduction of NOx with NH3. Chem. Commun. 2011, 47, 8046–8048. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, J.; Ge, M. DRIFT Study on Cerium-Tungsten/Titiania Catalyst for Selective Catalytic Reduction of NOx with NH3. Environ. Sci. Technol. 2010, 44, 9590–9596. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Liu, Z.; Niu, X.; Zhou, L.; Fu, C.; Zhang, H.; Li, J.; Han, W. Manganese doped CeO2-WO3 catalysts for the selective catalytic reduction of NOx with NH3: An experimental and theoretical study. Catal. Commun. 2012, 19, 127–131. [Google Scholar] [CrossRef]
- Gu, T.; Liu, Y.; Weng, X.; Wang, H.; Wu, Z. The enhanced performance of Ceria with surface sulfation for selective catalytic reduction of NO by NH3. Catal. Commun. 2010, 12, 310–313. [Google Scholar] [CrossRef]
- Si, Z.; Weng, D.; Wu, X.; Yang, J.; Wang, B. Modifications of CeO2–ZrO2 solid solutions by nickel and sulfate as catalysts for NO reduction with ammonia in excess O2. Catal. Commun. 2010, 11, 1045–1048. [Google Scholar] [CrossRef]
- Si, Z.; Weng, D.; Wu, X.; Ma, Z.; Ma, J.; Ran, R. Lattice oxygen mobility and acidity improvements of NiO–CeO2–ZrO2 catalyst by sulfation for NOx reduction by ammonia. Catal. Today 2013, 201, 122–130. [Google Scholar] [CrossRef]
- Casapu, M.; Kröcher, O.; Elsener, M. Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR. Appl. Catal. B Environ. 2009, 88, 413–419. [Google Scholar] [CrossRef]
- Casapu, M.; Kröcher, O.; Mehring, M.; Nachtegaal, M.; Borca, C.; Harfouche, M.; Grolimund, D. Characterization of Nb-Containing MnOx-CeO2 Catalyst for Low-Temperature Selective Catalytic Reduction of NO with NH3. J. Phys. Chem. C 2010, 114, 9791–9801. [Google Scholar] [CrossRef]
- Casapu, M.; Bernhard, A.; Peitz, D.; Mehring, M.; Elsener, M.; Kröcher, O. A Niobia-Ceria based multi-purpose catalyst for selective catalytic reduction of NOx, urea hydrolysis and soot oxidation in diesel exhaust. Appl. Catal. B Environ. 2011, 103, 79–84. [Google Scholar] [CrossRef]
- Qu, R.; Gao, X.; Cen, K.; Li, J. Relationship between structure and performance of a novel Cerium-Niobium binary oxide catalyst for selective catalytic reduction of NO with NH3. Appl. Catal. B Environ. 2013, 142–143, 290–297. [Google Scholar] [CrossRef]
- Ma, Z.; Weng, D.; Wu, X.; Si, Z.; Wang, B. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability. Catal. Commun. 2012, 27, 97–100. [Google Scholar] [CrossRef]
- Si, Z.; Weng, D.; Wu, X.; Ran, R.; Ma, Z. NH3-SCR activity, hydrothermal stability, sulfur resistance and regeneration of Ce0.75Zr0.25O2-PO43-catalyst. Catal. Commun. 2012, 17, 146–149. [Google Scholar] [CrossRef]
- Yu, J.; Si, Z.; Chen, L.; Wu, X.; Weng, D. Selective catalytic reduction of NOx by ammonia over phosphate-containing Ce0.75Zr0.25O2 solids. Appl. Catal. B Environ. 2015, 163, 223–232. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Li, J.; Ma, L. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS. Appl. Catal. B Environ. 2014, 144, 90–95. [Google Scholar] [CrossRef]
- Gao, X.; Jiang, Y.; Fu, Y.; Zhong, Y.; Luo, Z.; Cen, K. Preparation and characterization of CeO2/TiO2 catalysts for selective catalytic reduction of NO with NH3. Catal. Commun. 2010, 11, 465–469. [Google Scholar] [CrossRef]
- Brayner, R.; Ciuparu, D.; da Cruz, G.M.; Fiévet-Vincent, F.; Bozon-Verduraz, F. Preparation and characterization of high surface area Niobia, Ceria–Niobia and Ceria–Zirconia. Catal. Today 2000, 57, 261–266. [Google Scholar] [CrossRef]
- Yashiro, K.; Suzuki, T.; Kaimai, A.; Matsumoto, H.; Nigara, Y.; Kawada, T.; Mizusaki, J.; Sfeir, J.; Van herle, J. Electrical properties and defect structure of Niobia-doped Ceria. Solid State Ion. 2004, 175, 341–344. [Google Scholar] [CrossRef]
- Zhao, B.; Ran, R.; Guo, X.; Cao, L.; Xu, T.; Chen, Z.; Wu, X.; Si, Z.; Weng, D. Nb-modified Mn/Ce/Ti catalyst for the selective catalytic reduction of NO with NH3 at low temperature. Appl. Catal. A Gen. 2017, 545, 64–71. [Google Scholar] [CrossRef]
- Qi, G.; Yang, R.T. A superior catalyst for low-temperature NO reduction with NH3. Chem. Commun. 2003, 7, 848–849. [Google Scholar] [CrossRef]
- Shen, Q.; Zhang, L.; Sun, N.; Wang, H.; Zhong, L.; He, C.; Wei, W.; Sun, Y. Hollow MnOx-CeO2 mixed oxides as highly efficient catalysts in NO oxidation. Chem. Eng. J. 2017, 322, 46–55. [Google Scholar] [CrossRef]
- Lian, Z.; Liu, F.; He, H.; Liu, K. Nb-doped VOx/CeO2 catalyst for NH3-SCR of NOx at low temperatures. RSC Adv. 2015, 5, 37675–37681. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Wan, Y.; Zhan, S.; Guan, Q.; Tian, Y. Structure-performance relationships of MnO2 nanocatalyst for the low-temperature SCR removal of NOx under ammonia. RSC Adv. 2016, 6, 54926–54937. [Google Scholar] [CrossRef]
- Ma, Z.; Wu, X.; Si, Z.; Weng, D.; Ma, J.; Xu, T. Impacts of Niobia loading on active sites and surface acidity in NbOx/CeO2–ZrO2 NH3–SCR catalysts. Appl. Catal. B Environ. 2015, 179, 380–394. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, L.; Li, L.; Liu, L.; Cao, Y.; Dong, X.; Gao, F.; Deng, Y.; Tang, C.; Chen, Z.; et al. Investigation of the structure, acidity, and catalytic performance of CuO/Ti0.95Ce0.05O2 catalyst for the selective catalytic reduction of NO by NH3 at low temperature. Appl. Catal. B Environ. 2014, 150–151, 315–329. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, H.; Andino, J.M.; Li, Y. Photocatalytic CO2 Reduction with H2O on TiO2 Nanocrystals: Comparison of Anatase, Rutile, and Brookite Polymorphs and Exploration of Surface Chemistry. ACS Catal. 2012, 2, 1817–1828. [Google Scholar] [CrossRef]
- Balachandran, U.; Eror, N.G. Raman spectra of Titanium dioxide. J. Solid State Chem. 1982, 42, 276–282. [Google Scholar] [CrossRef]
- Kong, L.; Gregg, D.J.; Karatchevtseva, I.; Zhang, Z.; Blackford, M.G.; Middleburgh, S.C.; Lumpkin, G.R.; Triani, G. Novel Chemical Synthesis and Characterization of CeTi2O6 Brannerite. Inorg. Chem. 2014, 53, 6761–6768. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Wei, L.; Li, Y.; Zhou, X.; Hao, S.; Li, Y. Surface charge tuning of Ceria particles by Titanium doping: Towards significantly improved polishing performance. Solid State Sci. 2009, 11, 2133–2137. [Google Scholar] [CrossRef]
- Fang, C.; Zhang, D.; Cai, S.; Zhang, L.; Huang, L.; Li, H.; Maitarad, P.; Shi, L.; Gao, R.; Zhang, J. Low-temperature selective catalytic reduction of NO with NH3 over nanoflaky MnOx on carbon nanotubes in situ prepared via a chemical bath deposition route. Nanoscale 2013, 5, 9199–9207. [Google Scholar] [CrossRef] [PubMed]
- Dines, T.J.; Rochester, C.H.; Ward, A.M. Infrared and Raman study of the adsorption of NH3, pyridine, NO and NO2 on anatase. J. Chem. Soci. Faraday Trans. 1991, 87, 643–651. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I. Identification of Neutral and Charged NxOy Surface Species by IR Spectroscopy. Catal. Rev. 2000, 42, 71–144. [Google Scholar] [CrossRef]
- Davydov, A. The Nature of Oxide Surface Centers. In Molecular Spectroscopy of Oxide Catalyst Surfaces; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Mullins, D.R. The surface chemistry of Cerium oxide. Surf. Sci. Rep. 2015, 70, 42–85. [Google Scholar] [CrossRef]
- Reddy, B.M.; Khan, A. Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 Mixed Oxides: Influence of Supporting Oxide on Thermal Stability and Oxygen Storage Properties of Ceria. Catal. Surv. Asia 2005, 9, 155–171. [Google Scholar] [CrossRef]
- Li, P.; Xin, Y.; Li, Q.; Wang, Z.; Zhang, Z.; Zheng, L. Ce-Ti Amorphous Oxides for Selective Catalytic Reduction of NO with NH3: Confirmation of Ce-O-Ti Active Sites. Environ. Sci. Technol. 2012, 46, 9600–9605. [Google Scholar] [CrossRef] [PubMed]
- Neri, G.; Pistone, A.; Milone, C.; Galvagno, S. Wet air oxidation of p-coumaric acid over promoted Ceria catalysts. Appl. Catal. B Environ. 2002, 38, 321–329. [Google Scholar] [CrossRef]
- Scofield, J.H. Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 1976, 8, 129–137. [Google Scholar] [CrossRef]
Catalyst | Element Composition (wt %) | SBET (m2·g−1) | Pore Volume (cm3·g−1) | Average Pore Diameter (nm) | ||
---|---|---|---|---|---|---|
Nb | Ce | Ti | ||||
TiO2 | - | - | - | 141 | 0.26 | 5.4 |
Nb5/Ti100 (WI) | 4.3 | - | 49.1 | 121 | 0.26 | 7.3 |
Ce40/Ti100 (SG) | - | 35.7 | 28.2 | 90 | 0.22 | 6.9 |
Nb5/Ce40/Ti100 (SG) | 4.1 | 35.0 | 26.7 | 94 | 0.32 | 9.8 |
Nb5/Ce40/Ti100 (WI) | 4.6 | 34.4 | 26.8 | 56 | 0.17 | 7.1 |
Catalysts | Crystallite Size (nm) | ||
---|---|---|---|
CeTi2O6 | TiO2 | CeO2 | |
Ce40/Ti100 | 23.5 | - | 5.6 |
Nb5/Ce40/Ti100 (SG) | 12.6 | 6.2 | 4.3 |
Nb5/Ce40/Ti100 (WI) | 18.8 | - | 7.4 |
Catalysts | Amount of NH3 Desorbed (µmol/g) |
---|---|
TiO2 | 605.7 |
Nb5/Ti100 | 556.7 |
Ce40/Ti100 | 213.4 |
Nb5/Ce40/Ti100 (SG) | 146.2 |
Nb5/Ce40/Ti100 (WI) | 212.7 |
Catalysts | Concentration (atom%) | Atomic Ratio (%) | |||||
---|---|---|---|---|---|---|---|
Ce | Nb | Ti | O | Nb/(Ce + Ti) | Ce/(Ce + Ti) | Oα/(Oα + Oβ) | |
Nb5/Ce40/Ti100 (WI) | 5.2 | 3.5 | 16.7 | 74.7 | 15.9 | 23.6 | 24.6 |
Nb5/Ce40/Ti100 (SG) | 7.7 | 3.2 | 17.1 | 72.0 | 12.7 | 31.2 | 19.6 |
Ce40/Ti100 (SG) | 9.8 | - | 21.1 | 69.1 | - | 31.6 | - |
Catalysts | H2 Consumption (mmol·g−1) | |
---|---|---|
Experimental | Theoretical | |
Ce40/Ti100 | 1548 | 1401 |
Nb5/Ce40/Ti100 (SG) | 1509 | 1343 |
Nb5/Ce40/Ti100 (WI) | 1455 | 1319 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosrati, J.; Atia, H.; Eckelt, R.; Lund, H.; Agostini, G.; Bentrup, U.; Rockstroh, N.; Keller, S.; Armbruster, U.; Mhamdi, M. Nb-Modified Ce/Ti Oxide Catalyst for the Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catalysts 2018, 8, 175. https://doi.org/10.3390/catal8050175
Mosrati J, Atia H, Eckelt R, Lund H, Agostini G, Bentrup U, Rockstroh N, Keller S, Armbruster U, Mhamdi M. Nb-Modified Ce/Ti Oxide Catalyst for the Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catalysts. 2018; 8(5):175. https://doi.org/10.3390/catal8050175
Chicago/Turabian StyleMosrati, Jawaher, Hanan Atia, Reinhard Eckelt, Henrik Lund, Giovanni Agostini, Ursula Bentrup, Nils Rockstroh, Sonja Keller, Udo Armbruster, and Mourad Mhamdi. 2018. "Nb-Modified Ce/Ti Oxide Catalyst for the Selective Catalytic Reduction of NO with NH3 at Low Temperature" Catalysts 8, no. 5: 175. https://doi.org/10.3390/catal8050175
APA StyleMosrati, J., Atia, H., Eckelt, R., Lund, H., Agostini, G., Bentrup, U., Rockstroh, N., Keller, S., Armbruster, U., & Mhamdi, M. (2018). Nb-Modified Ce/Ti Oxide Catalyst for the Selective Catalytic Reduction of NO with NH3 at Low Temperature. Catalysts, 8(5), 175. https://doi.org/10.3390/catal8050175