Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Setup
2.2. Molar Ratio (Thiols:Vinyl Esters) Effect
2.3. Reaction Temperature Effect
2.4. Reaction Time/Flow Rate Effect
2.5. Benzyl Mercaptan Donor Structure Effect
2.6. Vinyl Ester Acceptor Structure Effect
3. Materials and Methods
3.1. Materials
3.2. Thioester Synthesis Operating Conditions
3.2.1. General Procedure for Thioesters Synthesis under Shaker Conditions
3.2.2. General Procedure for Thioester Synthesis in Continuous Flow Microreactors
3.3. Analytical Methods
3.3.1. Thin-Layer Chromatography
3.3.2. High-Performance Liquid Chromatography (HPLC)
3.3.3. Nuclear Magnetic Resonance (NMR) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fuse, S.; Mifune, Y.; Takahashi, T. Efficient amide bond formation through a rapid and strong activation of carboxylic acids in a microflow reactor. Angew. Chem. Int. Ed. 2014, 53, 851–855. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, A.S.; Anand, R.V. 1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor. Org. Biomol. Chem. 2017, 15, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Cambie, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noel, T. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem. Rev. 2016, 116, 10276–10341. [Google Scholar] [CrossRef] [PubMed]
- Atodiresei, I.; Vila, C.; Rueping, M. Asymmetric organocatalysis in continuous flow: Opportunities for impacting industrial catalysis. ACS Catal. 2015, 5, 1972–1985. [Google Scholar] [CrossRef]
- Haven, J.J.; Vandenbergh, J.; Junkers, T. Watching polymers grow: Real time monitoring of polymerizations via an on-line ESI-MS/microreactor coupling. Chem. Commun. 2015, 51, 4611–4614. [Google Scholar] [CrossRef] [PubMed]
- Trombettoni, V.; Bianchi, L.; Zupanic, A.; Porciello, A.; Cuomo, M.; Piermatti, O.; Marrocchi, A.; Vaccaro, L. Efficient catalytic upgrading of levulinic acid into alkyl levulinates by resin-supported acids and flow reactors. Catalysts 2017, 7, 235–248. [Google Scholar] [CrossRef]
- Nagaki, A.; Takahashi, Y.; Yoshida, J. Extremely fast gas/liquid reactions in flow microreactors: Carboxylation of short-lived organolithiums. Chem. Eur. J. 2014, 20, 7931–7934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Z.; Jamison, T.F. Continuous-Flow Synthesis of Functionalized Phenols by Aerobic Oxidation of Grignard Reagents. Angew. Chem. Int. Ed. 2014, 53, 3353–3357. [Google Scholar] [CrossRef] [PubMed]
- Iemhoff, A.; Sherwood, J.; McElroya, C.R.; Hunt, A.J. Towards sustainable kinetic resolution, a combination of bio-catalysis, flow chemistry and bio-based solvents. Green Chem. 2018, 20, 136–140. [Google Scholar] [CrossRef]
- Du, L.H.; Shen, J.H.; Dong, Z.; Zhou, N.N.; Cheng, B.Z.; Ou, Z.M.; Luo, X.P. Enzymatic synthesis of nucleoside analogues from uridines and vinyl esters in a continuous-flow microreactor. RSC Adv. 2018, 8, 12614–12618. [Google Scholar] [CrossRef] [Green Version]
- Du, L.H.; Jiang, Z.P.; Xu, L.L.; Zhou, N.N.; Shen, J.H.; Dong, Z.; Shen, L.; Wang, H.; Luo, X.P. Microfluidic reactor for lipase-catalyzed regioselective synthesis of neohesperidin ester derivatives and their antimicrobial activity research. Carbohydr. Res. 2018, 455, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Zhou, H.; Jia, H.; Wei, P. Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester. RSC Adv. 2017, 7, 12283–12291. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Bhangale, A.S.; Wallace, W.E.; Flynn, K.M.; Guttman, C.M.; Gross, R.A.; Beers, K.L. Continuous Flow Enzyme-Catalyzed Polymerization in a Microreactor. J. Am. Chem. Soc. 2011, 133, 6006–6011. [Google Scholar] [CrossRef] [PubMed]
- Nagaki, A.; Ichinari, D.; Yoshida, J. Reactions of organolithiums with dialkyl oxalates. A flow microreactor approach to synthesis of functionalized a-keto esters. Chem. Commun. 2013, 49, 3242–3244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, L.M.C.; Costa, E.T.D.; Lago, C.L.D.; Angnes, L. Miniaturized flow system based on enzyme modified PMMA microreactor for amperometric determination of glucose. Biosens. Bioelectron. 2013, 47, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Du, L.H.; Ling, H.M.; Luo, X.P. Michael addition of pyrimidine derivatives with acrylates catalyzed by lipase TL IM from Thermomyces lanuginosus in a continuous-flow microreactor. RSC Adv. 2014, 4, 7770–7773. [Google Scholar] [CrossRef]
- Du, L.H.; Cheng, B.Z.; Yang, W.J.; Xu, L.L.; Luo, X.P. Markovnikov addition of imidazole derivatives with vinyl esters catalyzed by lipase TL IM from Thermomyces lanuginosus/K2CO3 in a continuous-flow microreactor. RSC Adv. 2016, 6, 59100–59103. [Google Scholar] [CrossRef]
- Du, L.H.; Luo, X.P. Lipase-catalyzed regioselective acylation of sugar in microreactors. RSC Adv. 2012, 2, 2663–2665. [Google Scholar] [CrossRef]
- Luo, X.P.; Du, L.H.; He, F.; Zhou, C.H. Controllable regioselective acylation of flavonoids catalyzed by lipase in microreactors. J. Carbohyd. Chem. 2013, 32, 450–462. [Google Scholar] [CrossRef]
- Carvalho, F.; Marques, M.P.C.; Fernandes, P. Sucrose hydrolysis in a bespoke capillary wall-coated microreactor. Catalysts 2017, 7, 42–59. [Google Scholar] [CrossRef]
- Yan, K.L.; Yang, D.S.; Wei, W.; Zhao, J.; Shuai, Y.Y.; Tian, L.J.; Wang, H. Catalyst-free direct decarboxylative coupling of α-keto acids with thiols: A facile access to thioesters. Org. Biomol. Chem. 2015, 13, 7323–7330. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Peddinti, R.K. Harnessing the catalytic behaviour of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP): An expeditious synthesis of thioesters. Tetrahedron Lett. 2017, 58, 1875–1878. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, G.; Hu, S.; Jin, K.J.; Wu, Y.; Chen, F. Enantioselective β-hydroxy thioesters formation via decarboxylative aldol reactions of malonic acid half thioesters with aldehydes promoted by chloramphenicol derived sulfonamides. Tetrahedron 2017, 73, 5055–5062. [Google Scholar] [CrossRef]
- Qiao, Z.J.; Jiang, X.F. Ligand-controlled divergent cross-coupling involving organosilicon compounds for thioether and thioester synthesis. Org. Lett. 2016, 18, 1550–1553. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, M.; Kohzadi, H.; Noori, Z. Potassium carbonate: A highly efficient catalyst for the acylation of alcohols, phenols and thiols under mild conditions. Iran. Chem. Commun. 2014, 2, 39–47. [Google Scholar]
- Asahina, Y.; Kawakami, T.; Hojo, H. One-pot native chemical ligation by combination of two orthogonal thioester precursors. Chem. Commun. 2017, 53, 2114–2117. [Google Scholar] [CrossRef] [PubMed]
- Eto, M.; Naruse, N.; Morimoto, K.; Yamaoka, K. Development of an Anilide-Type Scaffold for the Thioester Precursor N-Sulfanylethylcoumarinyl Amide. Org. Lett. 2016, 18, 4416–4419. [Google Scholar] [CrossRef] [PubMed]
- Elashal, H.E.; Sim, Y.E.; Raj, M. Serine promoted synthesis of peptide thioesterprecursor on solid support for native chemical ligation. Chem. Sci. 2017, 8, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Konieczynska, M.D.; Villa-Camacho, J.C.; Ghobril, C. On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction. Angew. Chem. Int. Ed. 2016, 55, 9984–9987. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.L.; Jhong, Y.; Swain, S.P.; Hou, D.R. Application of enzyme-immobilization technique for microflow reactor. J. Org. Chem. 2017, 82, 10201–10208. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.A.; Yuan, P.F.; Wang, L.M.; Huang, Y. Enantioselective β-protonation of enals via a shuttling strategy. J. Am. Chem. Soc. 2017, 139, 7045–7051. [Google Scholar] [CrossRef] [PubMed]
- Downey, C.W.; Ingersoll, J.A.; Glist, H.M. One-pot silyl ketene acetal-formation Mukaiyama-mannich additions to imines mediated by trimethylsilyl trifluoromethanesulfonate. Eur. J. Org. Chem. 2015, 1015, 7287–7291. [Google Scholar] [CrossRef]
- Bello, D.; O’Hagan, D. Lewis acid-promoted hydrofluorination of alkynyl sulfides to generate α-fluorovinyl thioethers. Beilstein J. Org. Chem. 2015, 11, 1902–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, M.; Shiri, L. Thioesters synthesis: Recent adventures in the esterification of thiols. J. Sulfur. Chem. 2015, 36, 613–623. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, Z.; Wang, Z.; Guo, C.; Wang, C.; Zhao, R.; Wang, L. Lipase-catalyzed synthesis of indolyl 4H-chromenes via a multicomponent reaction in ionic liquid. Catalysts 2017, 7, 185–194. [Google Scholar] [CrossRef]
- Guo, F.; Berglund, P. Transaminase biocatalysis: Optimization and application. Green Chem. 2017, 19, 333–360. [Google Scholar] [CrossRef]
- Gonzalo, G.D.; Fürst, M.J.L.J.; Fraaije, M.W. Polycyclic ketone monooxygenase (Pockemo): A robust biocatalyst for the synthesis of optically active sulfoxides. Catalysts 2017, 7, 288–297. [Google Scholar] [CrossRef]
- Patel, V.; Gajera, H.; Gupta, A.; Manocha, L.; Madamwar, D. Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem. Eng. J. 2015, 95, 62–70. [Google Scholar] [CrossRef]
- Choi, J.M.; Han, S.S.; Kim, H.S. Industrial applications of enzyme biocatalysis: Current status and future aspects. Biotechnol. Adv. 2015, 33, 1443–1454. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; Pelt, S.V. Enzyme immobilisation in biocatalysis: Why, what and how. Chem. Soc. Rev. 2013, 42, 6223–6235. [Google Scholar] [CrossRef] [PubMed]
- Nestl, B.M.; Hammer, S.C.; Nebel, B.A.; Hauer, B. New generation of biocatalysts for organic synthesis. Angew. Chem. Int. Ed. 2014, 53, 3070–3095. [Google Scholar] [CrossRef] [PubMed]
- Lou, F.W.; Liu, B.K.; Wang, J.L.; Pan, Q.; Lin, X.F. Controllable enzymatic Markovnikov addition and acylation of thiols to vinyl esters. J. Mol. Catal. B-Enzym. 2009, 60, 64–68. [Google Scholar] [CrossRef]
Entry | Product a | Method b | Time | Yield c (%) |
---|---|---|---|---|
1 | B | 30 min | 65 | |
A | 24 h | 60 | ||
2 | B | 30 min | 88 | |
A | 24 h | 78 | ||
3 | B | 30 min | 81 | |
A | 24 h | 76 | ||
4 | B | 30 min | 91 | |
A | 24 h | 85 | ||
5 | B | 30 min | 80 | |
A | 24 h | 75 | ||
6 | B | 30 min | 94 | |
A | 24 h | 90 | ||
7 | B | 30 min | 88 | |
A | 24 h | 86 | ||
8 | B | 30 min | 96 | |
A | 24 h | 95 | ||
9 | B | 30 min | 62 | |
A | 24 h | 58 | ||
10 | B | 30 min | 75 | |
A | 24 h | 67 | ||
11 | B | 30 min | 67 | |
A | 24 h | 62 | ||
12 | B | 30 min | 82 | |
A | 24 h | 79 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, N.; Shen, L.; Dong, Z.; Shen, J.; Du, L.; Luo, X. Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor. Catalysts 2018, 8, 249. https://doi.org/10.3390/catal8060249
Zhou N, Shen L, Dong Z, Shen J, Du L, Luo X. Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor. Catalysts. 2018; 8(6):249. https://doi.org/10.3390/catal8060249
Chicago/Turabian StyleZhou, Nani, Le Shen, Zhen Dong, Jiahong Shen, Lihua Du, and Xiping Luo. 2018. "Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor" Catalysts 8, no. 6: 249. https://doi.org/10.3390/catal8060249
APA StyleZhou, N., Shen, L., Dong, Z., Shen, J., Du, L., & Luo, X. (2018). Enzymatic Synthesis of Thioesters from Thiols and Vinyl Esters in a Continuous-Flow Microreactor. Catalysts, 8(6), 249. https://doi.org/10.3390/catal8060249