A Contribution to the Experimental Microkinetic Approach of Gas/Solid Heterogeneous Catalysis: Measurement of the Individual Heats of Adsorption of Coadsorbed Species by Using the AEIR Method
Abstract
:1. Introduction
2. Context of the Development of the AEIR Method
2.1. Classical Methods for the Measurement of the Heats of Adsorption
2.2. Precursor Works Using IR Spectroscopy for the Measurement of the Heats of Adsorption
3. The Adsorption Equilibrium InfraRed Spectroscopy Method
3.1. IR Cell Microreactor for the Application of the AEIR Method
3.2. Experimental Procedure of the AEIR Method
3.3. Exploitation of the IR Spectra According to the AEIR Method
3.4. Exploitation of the Experimental Curves θXex = f(Ta, Pa) According to the AEIR Method
3.5. Heats of Adsorption from the AEIR Method and Isosteric Heats of Adsorption
3.6. Development of the AEIR Method
3.7. Application of the AEIR Method to Different Topics Relevant of Heterogeneous Catalysis
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dumesic, J.A.; Rudd, D.F.; Aparicio, L.M.; Rekoske, J.E.; Treviño, A.A. The Microkinetics of Heterogeneous Catalysis; ACS Professional Reference Book; An American Chemical Society Publication: Washington, DC, USA, 1993. [Google Scholar]
- Stoltze, P. Microkinetic Simulation of Catalytic Reactions. Prog. Surf. Sci. 2000, 65, 65–150. [Google Scholar] [CrossRef]
- Lynggaard, H.; Andreasen, A.; Stegelmann, C.; Stoltze, P. Analysis of Simple Kinetic Models in Heterogeneous Catalysis. Prog. Surf. Sci. 2004, 77, 71–137. [Google Scholar] [CrossRef]
- Fishtik, I.; Callaghan, A.; Datta, R. Reaction Route Graphs. I. Theory and Algorithm. J. Phys. Chem. B 2004, 108, 5671–5682. [Google Scholar] [CrossRef]
- Thybaut, J.W.; Marin, G.B. Single-Event MicroKinetics: Catalyst Design for Complex Reaction Networks. J. Catal. 2013, 308, 352–362. [Google Scholar] [CrossRef]
- Van Helden, P.; van den Berg, J.A.; Coetzer, R.L.J.A. Statistical Approach to Microkinetic Analysis. Ind. Eng. Chem. Res. 2012, 51, 6631–6640. [Google Scholar] [CrossRef]
- Hinrichsen, O.; Rosowski, E.; Muhler, M.; Ertl, G. The Microkinetic of Ammonia Synthesis Catalyzed by Cesium-promoted Supported Ruthenium. Chem. Eng. Sci. 1996, 51, 1683–1690. [Google Scholar] [CrossRef]
- Dahl, S.; Sehested, J.; Jacobsen, C.J.H.; Törnqvist, E.; Chorkendorff, I. Surface Science Based Microkinetic Analysis of Ammonia Synthesis over Ruthenium Catalysts. J. Catal. 2000, 192, 391–399. [Google Scholar] [CrossRef]
- Mhadeshwar, A.B.; Kitchin, J.R.; Barteau, M.A.; Vlachos, D.G. The Role of Adsorbate–adsorbate Interactions in the Rate Controlling Step and the most Abundant Reaction Intermediate of NH3 Decomposition on Ru. Catal. Lett. 2004, 96, 13–22. [Google Scholar] [CrossRef]
- Xu, J.; Clayton, R.; Balakotaiah, V.; Harold, M.P. Experimental and Microkinetic Modeling of Steady-state NO Reduction by H2 on Pt/BaO/Al2O3 Monolith Catalysts. Appl. Catal. B Environ. 2008, 77, 395–408. [Google Scholar] [CrossRef]
- Storsæter, S.; Chen, D.; Holmen, A. Microkinetic Modelling of the Formation of C1 and C2 Products in the Fischer–Tropsch Synthesis over Cobalt Catalysts. Surf. Sci. 2006, 600, 2051–2063. [Google Scholar] [CrossRef]
- Stegelmann, C.; Stoltze, P. Microkinetic Analysis of Transient Ethylene Oxidation Experiments on Silver. J. Catal. 2004, 226, 129–137. [Google Scholar] [CrossRef]
- Bourane, A.; Bianchi, D. Oxidation of CO on a Pt/Al2O3 Catalyst: From the Surface Elementary Steps to Light-Off Tests. 1. Kinetic Study of the Oxidation of the Linear CO Species. J. Catal. 2001, 202, 34–44. [Google Scholar] [CrossRef]
- Bourane, A.; Bianchi, D. Oxidation of CO on a Pt/Al2O3 Catalyst: Form the Elementary Steps to Light-off Tests. 5—Experimental and Kinetic Modeling of Light-off Tests in Excess of O2. J. Catal. 2004, 222, 499–510. [Google Scholar] [CrossRef]
- Couble, J.; Bianchi, D. Experimental Microkinetic Approach of the CO/H2 Reaction on Pt/Al2O3 using the Temkin Formalism. 1. Competitive Chemisorption between Adsorbed CO and Hydrogen Species in the Absence of Reaction. J. Catal. 2017, 352, 672–685. [Google Scholar] [CrossRef]
- Couble, J.; Bianchi, D. Experimental Microkinetic Approach of the CO/H2 Reaction on Pt/Al2O3 using the Temkin Formalism. 2. Coverages of the Adsorbed CO and Hydrogen species during the Reaction and Rate of the CH4 Production. J. Catal. 2017, 352, 686–698. [Google Scholar] [CrossRef]
- Haaland, D. Infrared Sudies of CO adsorbed on Pt/Al2O3: Evidence for CO Bonded in 3-Fold Coordination. Surf. Sci. 1987, 185, 1–14. [Google Scholar] [CrossRef]
- Giraud, F.; Geantet, C.; Guilhaume, N.; Gros, S.; Porcheron, L.; Kanniche, M.; Bianchi, D. Experimental Microkinetic Approach of De-NOx by NH3 on V2O5/WO2/TiO2 Catalysts: Part 1—Individual Heats of Adsorption of Adsorbed NH3 species on a Sulfate-free TiO2 Support using adsorption isobars. J. Phys. Chem. C 2014, 118, 15664–15676. [Google Scholar] [CrossRef]
- Tompkins, F.C. Chemisorption of Gases on Metal; Academic Press: London, UK, 1978. [Google Scholar]
- Cardona-Martinez, N.; Dumesic, J.A. Application of Adsorption Microcalorimetry to the Study of heterogeneous catalysis. Adv. Catal. 1992, 38, 149–237. [Google Scholar]
- Spiewak, B.E.; Dumesic, J.A. Microcalorimetric measurements of differential heats of adsorption on reactive catalyst surfaces. Thermochim. Acta 1996, 290, 43–53. [Google Scholar] [CrossRef]
- Podkolzin, S.G.; Shen, J.; de Pablo, J.J.; Dumesic, J.A. Equilibrated Adsorption of CO on Silica-Supported Pt Catalysts. J. Phys. Chem. B 2000, 104, 4169–4180. [Google Scholar] [CrossRef]
- Watwe, R.M.; Spiewak, B.E.; Cortright, R.D.; Dumesic, J.A. Density Functional Theory (DFT) and Microcalorimetric Investigations of CO adsorption on Pt clusters. Catal. Lett. 1998, 51, 139–147. [Google Scholar] [CrossRef]
- Falconer, J.L.; Schwarz, J.A. Temperature-Programmed Desorption and Reaction: Applications to supported Catalysts. Catal. Rev. Sci. Eng. 1983, 25, 141–227. [Google Scholar] [CrossRef]
- Lemaitre, J.C. Temperature Programmed methods. In Characterization of Heterogeneous Catalysts; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Gorte, R.J. Design Parameters for Temperature Programmed Desorption from Porous Catalysts. J. Catal. 1982, 75, 164–174. [Google Scholar] [CrossRef]
- Demmin, R.A.; Gorte, R.J. Design Parameters for Temperature-Programmed Desorption from a Packed Bed. J. Catal. 1984, 90, 32–39. [Google Scholar] [CrossRef]
- Rieck, J.S.; Bell, A.T. Influence of Adsorption and Mass Transfer Effects on Temperature-Programmed Desorption from Porous Catalysts. J. Catal. 1984, 85, 143–153. [Google Scholar] [CrossRef]
- Efsthathiou, A.; Bennett, C.O. Enthalpy and Entropy of H2 Adsorption on Rh/Al2O3 Measured by Temperature-Programmed Desorption. J. Catal. 1990, 124, 116–126. [Google Scholar] [CrossRef]
- Derrouiche, S.; Bianchi, D. Heats of Adsorption Using Temperature Programmed Adsorption Equilibrium: Application to the Adsorption of CO on Cu/Al2O3 and H2 on Pt/Al2O3. Langmuir 2004, 20, 4489–4497. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Strunk, J.; Litvinov, S.; Muhler, M. Influence of Re-adsorption and Surface Heterogeneity on the Microkinetic Analysis of Temperature-Programmed Desorption Experiments. J. Phys. Chem. C 2007, 111, 6000–6008. [Google Scholar] [CrossRef]
- Kottke, M.L.; Greenler, R.G.; Tompkins, H.G. An Infrared Spectroscopy Study of Carbon Monoxide adsorbed on polycristalline gold using the reflection-Absorption Technique. Surf. Sci. 1972, 32, 231–243. [Google Scholar] [CrossRef]
- Richardson, H.H.; Baumann, C.; Ewing, G.E. Infrared Spectroscopy and Thermodynamic Measurement of CO on NaCl Films. Surf. Sci. 1987, 185, 15–35. [Google Scholar] [CrossRef]
- Truong, C.M.; Rodriguez, J.A.; Goodman, D.W. CO Adsorption Isotherms on Cu(100) at Elevated Pressures and Temperatures using Infrared Reflection Absorption Spectroscopy. Surf. Sci. Lett. 1992, 271, L385–L391. [Google Scholar] [CrossRef]
- Kuhn, W.K.; Szanyi, J.; Goodman, D.W. Adsorption Isobars for CO on Pd/Ta(110) at Elevated Pressures and Temperatures using Infrared Reflection-Absorption Spectroscopy. Surf. Sci. 1994, 303, 377–385. [Google Scholar] [CrossRef]
- Szanyi, J.; Goodman, D.W. CO Oxidation on Palladium. 1. A Combined Kinetic-Infrared Reflection Absorption Spectroscopic Study of Pd(100). J. Phys. Chem. 1994, 98, 2972–2977. [Google Scholar] [CrossRef] [Green Version]
- Szanyi, J.; Kuhn, W.K.; Goodman, D.W. CO Oxidation on Palladium. 2. A Combined Kinetic-Infrared Reflection Absorption Spectroscopic Study of Pd(111). J. Phys. Chem. 1994, 98, 2978–2981. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, W.K.; Szanyi, J.; Goodman, D.W. CO Adsorption on Pd(111): The Effects of Temperature and Pressure. Surf. Sci. Lett. 1992, 274, L611–L618. [Google Scholar] [CrossRef]
- Paukshtis, E.A.; Soltanov, R.I.; Yurchenko, E.N. Determination of the Strength of Aprotic Acidic Centers on Catalyst Surfaces from the IR Spectra of Adsorbed Carbon Monoxide. React. Kinet. Catal. Lett. 1981, 16, 93–96. [Google Scholar] [CrossRef]
- Paukshtis, E.A.; Soltanov, R.I.; Yurchenko, E.N. Determination of the Strength of Lewis Acid Centers via IR Spectroscopic Measurement of Adsorbed Pyridine. React. Kinet. Catal. Lett. 1982, 19, 105–108. [Google Scholar] [CrossRef]
- Beebe, T.P.; Gelin, P.; Yates, J.T., Jr. Infrared Spectroscopic Observation of Surface Bonding in Physical Adsorption: The Physical Adsorption of CO on SiO2 Surfaces. Surf. Sci. 1984, 148, 526–550. [Google Scholar] [CrossRef]
- Ballinger, T.H.; Yates, J.T., Jr. IR Spectroscopic Detection of Lewis Acid Sites on A12O3 Using Adsorbed CO. Correlation with Al-OH Group Removal. Langmuir 1991, 7, 3041–3045. [Google Scholar] [CrossRef]
- Garrone, E.; Bolis, V.; Fubini, B.; Morterra, C. Thermodynamic and Spectroscopic Characterization of Heterogeneity among Adsorption Sites: CO on Anatase at Ambient Temperature. Langmuir 1989, 5, 892–899. [Google Scholar] [CrossRef]
- Bolis, V.; Morterra, C.; Fubini, B.; Ugliengo, P.; Garrone, E. Temkin-Type Model for the Description of Induced Heterogeneity: CO Adsorption on Group 4 Transition Metal Dioxides. Langmuir 1993, 9, 1521–1528. [Google Scholar] [CrossRef]
- Garrone, E.; Fubini, B.; Bonelli, B.; Onida, B.; Otero Areán, C. Thermodynamics of CO Adsorption on the Zeolite Na-ZSM-5 A Combined Microcalorimetric and FTIR Spectroscopic Study. Phys. Chem. Chem. Phys. 1999, 1, 513–518. [Google Scholar] [CrossRef]
- Chafik, T.; Dulaurent, O.; Gass, J.L.; Bianchi, D. Heat of Adsorption of Carbon Monoxide on a Pt/Rh/CeO2/Al2O3 Three-Way Catalyst Using in-Situ Infrared Spectroscopy at High Temperatures. J. Catal. 1998, 179, 503–514. [Google Scholar] [CrossRef]
- Soma-Noto, Y.; Sachtler, W.M.H. Infrared Spectra of Carbon Monoxide Adsorbed on Supported Palladium and Palladium-Silver Alloys. J. Catal. 1974, 32, 315–324. [Google Scholar] [CrossRef]
- Barth, R.; Pitchai, R.; Anderson, R.L.; Verykios, X.E. Thermal Desorption-Infrared Study of Carbon Monoxide Adsorption by Alumina-Supported Platinum. J. Catal. 1989, 116, 61–70. [Google Scholar] [CrossRef]
- Bourane, A.; Dulaurent, O.; Chandes, K.; Bianchi, D. Heats of Adsorption of the Linear CO Species on a Pt/Al2O3 Catalyst using FTIR Spectroscopy: Comparison between TPD and Adsorption Equilibrium Procedures. Appl. Catal. A Gen. 2001, 214, 193–202. [Google Scholar] [CrossRef]
- Kellner, C.S.; Bell, A.T. Studies of Carbon Monoxide Hydrogenation over Alumina Supported Ruthenium. J. Catal. 1981, 71, 296–307. [Google Scholar] [CrossRef]
- Kohler, M.A.; Cant, N.W.; Wainwright, M.S.; Trim, D.L. Infrared Spectroscopic Studies of Carbon Monoxide Adsorbed on a Series of Silica-Supported Copper Catalysts in Different Oxidation States. J. Catal. 1989, 117, 188–201. [Google Scholar] [CrossRef]
- Clarke, D.B.; Suzuki, I.; Bell, A.T. An Infrared Study of the Interaction of CO and CO2 with Cu/SiO2. J. Catal. 1993, 142, 27–36. [Google Scholar] [CrossRef]
- Dulaurent, O.; Bianchi, D. Adsorption Isobars for CO on a Pt/Al2O3 Catalyst at High Temperatures using FTIR Spectroscopy: Isosteric Heat of Adsorption and Adsorption Model. Appl. Catal. A Gen. 2000, 196, 271–280. [Google Scholar] [CrossRef]
- Bourane, A.; Dulaurent, O.; Bianchi, D. Heats of Adsorption of Linear and Multibound Adsorbed CO Species on a Pt/Al2O3 Catalyst Using in Situ Infrared Spectroscopy under Adsorption Equilibrium. J. Catal. 2000, 196, 115–125. [Google Scholar] [CrossRef]
- Bourane, A.; Bianchi, D. Heats of Adsorption of the Linear CO species on Pt/Al2O3 using Infrared Spectroscopy: Impact of the Pt Dispersion. J. Catal. 2003, 218, 447–452. [Google Scholar] [CrossRef]
- Couble, J.; Gravejat, P.; Gaillard, F.; Bianchi, D. Quantitative Analysis of Infrared Spectra of Adsorbed Species using Transmission and Diffuse Reflectance Modes. Case Study: Heats of Adsorption of CO on TiO2 and CuO/Al2O3. Appl. Catal. A Gen. 2009, 371, 99–107. [Google Scholar] [CrossRef]
- Couble, J.; Bianchi, D. Heats of Adsorption of Linearly Adsorbed CO Species on Co2+ and Co° Sites of Reduced Co/Al2O3 Catalysts in Relationship with the CO/H2 Reaction. Appl. Catal. A 2012, 445–446, 1–13. [Google Scholar] [CrossRef]
- Gravejat, P.; Derrouiche, S.; Farrussengn, D.; Lombaert, K.; Mirodatos, C.; Bianchi, D. Heats of Adsorption of Linear and Bridged CO Species Adsorbed on a 3% Ag/Al2O3 Catalyst Using in situ FTIR Spectroscopy under Adsorption Equilibrium. J. Phys. Chem. C 2007, 111, 9496–9503. [Google Scholar] [CrossRef]
- Müslehiddinoglu, J.; Vannice, M.A. CO Adsorption on Supported and Promoted Ag Epoxidation Catalysts. J. Catal. 2003, 213, 305–320. [Google Scholar] [CrossRef]
- Dulaurent, O.; Bianchi, D. Adsorption Model and Heats of Adsorption for Linear CO Species Adsorbed on ZrO2 and Pt/ZrO2 using FTIR Spectroscopy. Appl. Catal. A Gen. 2001, 207, 211–219. [Google Scholar] [CrossRef]
- Derrouiche, S.; Gravejat, P.; Bianchi, D. Heats of Adsorption of Linear CO Species Adsorbed on the Au° and Ti+ Sites of a 1% Au/TiO2 Catalyst Using in Situ FTIR Spectroscopy under Adsorption Equilibrium. J. Am. Chem. Soc. 2004, 126, 13010–13015. [Google Scholar] [CrossRef] [PubMed]
- Derrouiche, S.; Courtois, X.; Perrichon, V.; Bianchi, D. Heats of Adsorption of CO on a Cu/Al2O3 Catalyst Using FTIR Spectroscopy at High Temperatures and under Adsorption Equilibrium Conditions. J. Phys. Chem. B 2000, 104, 6001–6011. [Google Scholar]
- Zeradine, S.; Bourane, A.; Bianchi, D. Comparison of the Coverage of the Linear CO Species on Cu/Al2O3 Measured under Adsorption Equilibrium Conditions by Using FTIR and Mass Spectroscopy. J Phys. Chem. B 2001, 105, 7254–7267. [Google Scholar] [CrossRef]
- Bourane, A.; Nawdali, M.; Bianchi, D. Heats of Adsorption of the Linear CO Species Adsorbed on a Ir/Al2O3 Catalyst Using in Situ FTIR Spectroscopy under Adsorption Equilibrium. J. Phys. Chem. B 2002, 106, 2665–2671. [Google Scholar] [CrossRef]
- Bourane, A.; Dulaurent, O.; Bianchi, D. Comparison of the Coverage of the Linear CO Species on Pt/Al2O3 Measured under Adsorption Equilibrium Conditions by Using FTIR and Mass Spectroscopy. J. Catal. 2000, 195, 406–411. [Google Scholar] [CrossRef]
- Temkin, M.I. The Kinetics of some Industrial Heterogeneous Catalytic Reactions. Adv. Catal. 1979, 28, 173–291. [Google Scholar]
- Glasstone, S.; Laidler, K.J.; Eyring, F. The Theory of Rate Processes; McGraw-Hill Inc.: New York, NY, USA; London, UK, 1941. [Google Scholar]
- Laidler, K.J. Chap 5: The Absolute Rates of Surface Reactions. In Catalysis; Hemmett, P.H., Ed.; Reinhold Publishing Corporation: New York, NY, USA, 1954; Volume 1. [Google Scholar]
- Hill, T.L. An Introduction to Statistical Thermodynamics; Addison-Wesley Publishing Company, Inc.: Boston, MA, USA, 1962. [Google Scholar]
- Hachimi, A.; Chafik, T.; Bianchi, D. Adsorption Models and Heat of Adsorption of Adsorbed Ortho Di-methyl Benzene species on Silica by using Temperature Programmed Adsorption Equilibrium methods. Appl. Catal. A Gen. 2008, 335, 220–229. [Google Scholar] [CrossRef]
- Dulaurent, O.; Chandes, K.; Bouly, C.; Bianchi, D. Heat of Adsorption of Carbon Monoxide on a Pd/Al2O3 Solid Using in Situ Infrared Spectroscopy at High Temperatures. J. Catal. 1999, 188, 237–251. [Google Scholar] [CrossRef]
- Dulaurent, O.; Chandes, K.; Bouly, C.; Bianchi, D. Heat of Adsorption of Carbon Monoxide on a Pd/Rh Three-Way Catalyst and on a Rh/Al2O3 Solid. J. Catal. 2000, 192, 262–272. [Google Scholar] [CrossRef]
- Dulaurent, O.; Nawdali, M.; Bourane, A.; Bianchi, D. Heat of Adsorption of Carbon Monoxide on a Ru/Al2O3 Catalyst using Adsorption Equilibrium Conditions at High Temperatures. Appl. Catal. A Gen. 2000, 201, 271–279. [Google Scholar] [CrossRef]
- Derrouiche, S.; Bianchi, D. Heats of Adsorption of the Linear and Bridged CO species on a Ni/Al2O3 Catalyst by Using the AEIR Method. Appl. Catal. A Gen. 2006, 313, 208–217. [Google Scholar] [CrossRef]
- Couble, J.; Bianchi, D. Heat of adsorption of the linear CO species adsorbed on reduced Fe/Al2O3 catalysts using the AEIR method in diffuse reflectance mode. Appl. Catal. A Gen. 2011, 409, 28–38. [Google Scholar] [CrossRef]
- Lombardo, S.J.; Bell, A.T. A Review of Theoretical Models of Adsorption, Diffusion, Desorption, and Reaction of Gases on Metal Surfaces. Surf. Sci. Rep. 1991, 13, 1–72. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hammed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Murzin, D.Y. Modeling of Adsorption and Kinetics in Catalysis over Induced Nonuniform Surfaces: Surface Electronic Gas Model. Ind. Eng. Chem. Res. 1995, 34, 1208–1218. [Google Scholar] [CrossRef]
- Yang, C.H. Statistical Mechanical Aspects of Adsorption Systems Obeying the Temkin Isotherm. J. Phys. Chem. 1993, 97, 7097–7101. [Google Scholar] [CrossRef]
- Ritter, J.A.; Kapoor, A.; Yang, R.T. Localized Adsorption with Lateral Interaction on Random and Patchwise Heterogeneous Surfaces. J. Phys. Chem. 1990, 94, 6785–6791. [Google Scholar] [CrossRef]
- Ritter, J.A.; Al-Muhtaseb, S.A. New Model That Describes Adsorption of Laterally Interacting Gas Mixtures on Random Heterogeneous Surfaces. 1. Parametric Study and Correlation with Binary Data. Langmuir 1998, 14, 6528–6538. [Google Scholar] [CrossRef]
- Bourane, A.; Dulaurent, O.; Salasc, S.; Sarda, C.; Bouly, C.; Bianchi, D. Heats of Adsorption of Linear NO Species on a Pt/Al2O3 Catalyst Using in Situ Infrared Spectroscopy under Adsorption Equilibrium. J. Catal. 2001, 204, 77–88. [Google Scholar] [CrossRef]
- Giraud, F.; Geantet, C.; Guilhaume, N.; Loridant, S.; Gros, S.; Porcheron, L.; Kanniche, M.; Bianchi, D. Experimental Microkinetic Approach of De-NOx by NH3 on V2O5/WO2/TiO2 Catalysts. 2: Impact of Superficial Sulfate and/or VxOy groups on the Heats of Adsorption of Adsorbed NH3 species. J. Phys. Chem. C 2014, 118, 15677–15692. [Google Scholar] [CrossRef]
- Giraud, F.; Geantet, C.; Guilhaume, N.; Loridant, S.; Gros, S.; Porcheron, L.; Kanniche, M.; Bianchi, D. Experimental Microkinetic Approach of De-NOx by NH3 on V2O5/WO2/TiO2 Catalysts. 3: Impact of Superficial WOz and VxOy/WOz Groups on the Heats of Adsorption of Adsorbed NH3 species. J. Phys. Chem. C 2015, 119, 15401–15413. [Google Scholar] [CrossRef]
- Giraud, F.; Couble, J.; Geantet, C.; Guilhaume, N.; Puzenat, E.; Gros, S.; Porcheron, L.; Kanniche, M.; Bianchi, D. Experimental Microkinetic Approach of De-NOx by NH3 on V2O5/WO2/TiO2 Catalysts. 4. Individual Heats of Adsorption of Adsorbed H2O Species on Sulfate-Free and Sulfated TiO2 Supports. J. Phys. Chem. C 2015, 119, 16089–16105. [Google Scholar] [CrossRef]
- Nawdali, M.; Bianchi, D. The impact of the Ru precursor on the adsorption of CO on Ru/Al2O3: Amount and reactivity of the adsorbed species. Appl. Catal. A Gen. 2002, 231, 45–54. [Google Scholar] [CrossRef]
- Derrouiche, S.; Perrichon, V.; Bianchi, D. Impact of the Residual Chlorine on the Heat of Adsorption of the Linear CO Species on Cu/Al2O3 Catalysts. J. Phys. Chem. B 2003, 107, 8588–8591. [Google Scholar] [CrossRef]
- Dulaurent, O.; Chandes, K.; Bouly, C.; Bianchi, D. Heat of Adsorption of Carbon Monoxide on Various Pd-Containing Solids Using in Situ Infrared Spectroscopy at High Temperatures. J. Catal. 2000, 192, 273–285. [Google Scholar] [CrossRef]
- Pillonel, P.; Derrouiche, S.; Bourane, A.; Gaillard, F.; Vernoux, P.; Bianchi, D. Impact of the support on the heat of adsorption of the linear CO species on Pt-containing catalysts. Appl. Catal. A Gen. 2005, 278, 223–231. [Google Scholar] [CrossRef]
- Derrouiche, S.; Gravejat, P.; Bassou, B.; Bianchi, D. Impact of Potassium on the Heats of Adsorption of Adsorbed CO species on Supported Pt Particles by Using the AEIR Method. Appl. Surf. Sci. 2007, 253, 5894–5898. [Google Scholar] [CrossRef]
- Jbir, I.; Couble, J.; Khaddar-Zine, S.; Ksibi, Z.; Meunier, F.; Bianchi, D. Individual Heat of Adsorption of Adsorbed CO Species on Palladium and Pd−Sn Nanoparticles Supported on Al2O3 by Using Temperature-Programmed Adsorption Equilibrium Methods. ACS Catal. 2016, 6, 2545–2558. [Google Scholar] [CrossRef]
- Meunier, F.; Maffre, M.; Schuurmann, Y.; Colussi, S.; Trovarelli, A. Acetylene semi-hydrogenation over Pd-Zn/CeO2: Relevance of CO adsorption and methanation as descriptors of selectivity. Catal. Commun. 2018, 105, 52–55. [Google Scholar] [CrossRef]
- Moscu, A.; Schuurman, Y.; Veyre, L.; Thieuleux, C.; Meunier, F. Direct evidence by in situ IR CO monitoring of the formation and the surface segregation of a Pt–Sn alloy. Chem. Commun. 2014, 50, 8590–8592. [Google Scholar] [CrossRef] [PubMed]
- Collins, S.E.; Baltanas, M.A.; Bonivardi, A.L. Heats of adsorption and activation energies of surface processes measured by infrared spectroscopy. J. Mol. Catal. A 2008, 281, 73–78. [Google Scholar] [CrossRef]
- Chen, C.-S.; Lai, T.-W.; Chen, C.-C. Effect of Active Sites for a Water–Gas Shift Reaction on Cu Nanoparticles. J. Catal. 2010, 273, 18–28. [Google Scholar] [CrossRef]
- Rioux, R.M.; Hoefelmeyer, J.D.; Grass, M.; Song, H.; Niesz, K.; Yang, P.; Somorjai, G.A. Adsorption and Co-adsorption of Ethylene and Carbon Monoxide on Silica-Supported Monodisperse Pt Nanoparticles: Volumetric Adsorption and Infrared Spectroscopy Studies. Langmuir 2008, 24, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Diemant, T.; Hartmann, H.; Bansmann, J.; Behm, R.J. CO adsorption energy on planar Au/TiO2 model catalysts under catalytically relevant conditions. J. Catal. 2007, 252, 171–177. [Google Scholar] [CrossRef]
- Bourane, A.; Dulaurent, O.; Bianchi, D. Heats of Adsorption of the Linear CO Species Adsorbed on a Pt/Al2O3 Catalyst in the Presence of Coadsorbed Species Using FTIR Spectroscopy. Langmuir 2001, 17, 5496–5502. [Google Scholar] [CrossRef]
Metal Particles on Alumina | Heat of Adsorption of Adsorbed CO Species in kJ/mol | ||||
---|---|---|---|---|---|
Linear CO Species | Bridged CO Species | Ref. | |||
E1 | E0 | E1 | E0 | ||
Pt° | 115 | 206 | 45 | 94 | [53,54,55] |
Pd° | 54 | 92 | 92 | 168 | [71] |
Rh° | 103 | 195 | 75 | 125 | [72] |
Ir° | 115 | 225 | [64] | ||
Ru° | 115 | 175 | [73] | ||
Cu° | 57 | 82 | 78 | 125 | [62] |
Au° | 47 | 74 | [61] | ||
Ag° | 58 | 76 | 84 | 88 | [58] |
Ni° | 100 | 153 | 106 | 147 | [74] |
Fe° | 79 | 105 | [75] | ||
Co°-C * | 93 | 165 | [57] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianchi, D. A Contribution to the Experimental Microkinetic Approach of Gas/Solid Heterogeneous Catalysis: Measurement of the Individual Heats of Adsorption of Coadsorbed Species by Using the AEIR Method. Catalysts 2018, 8, 265. https://doi.org/10.3390/catal8070265
Bianchi D. A Contribution to the Experimental Microkinetic Approach of Gas/Solid Heterogeneous Catalysis: Measurement of the Individual Heats of Adsorption of Coadsorbed Species by Using the AEIR Method. Catalysts. 2018; 8(7):265. https://doi.org/10.3390/catal8070265
Chicago/Turabian StyleBianchi, Daniel. 2018. "A Contribution to the Experimental Microkinetic Approach of Gas/Solid Heterogeneous Catalysis: Measurement of the Individual Heats of Adsorption of Coadsorbed Species by Using the AEIR Method" Catalysts 8, no. 7: 265. https://doi.org/10.3390/catal8070265
APA StyleBianchi, D. (2018). A Contribution to the Experimental Microkinetic Approach of Gas/Solid Heterogeneous Catalysis: Measurement of the Individual Heats of Adsorption of Coadsorbed Species by Using the AEIR Method. Catalysts, 8(7), 265. https://doi.org/10.3390/catal8070265