A Facile Synthesis of Visible-Light Driven Rod-on-Rod like α-FeOOH/α-AgVO3 Nanocomposite as Greatly Enhanced Photocatalyst for Degradation of Rhodamine B
Abstract
:1. Introduction
2. Results and Discussion
2.1. Schematic Representation of the Synthesis Process
2.2. Structural, Optical and Morphological Studies
2.3. Photocatalytic Performance
2.4. Photocatalytic Degradation Mechanism
3. Materials and Methods
3.1. Materials
3.2. Synthesis of α-FeOOH Nanorods
3.3. Synthesis of α-FeOOH/α-AgVO3 Nanocomposites
3.4. Characterization Techniques
3.5. Photocatalytic Degradation Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ameta, R.; Benjamin, S.; Ameta, A.; Ameta, S.C. Photocatalytic Degradation of Organic Pollutants: A Review. Mater. Sci. Forum 2013, 734, 247–272. [Google Scholar] [CrossRef]
- Delsouz Khaki, M.R.; Shafeeyan, M.S.; Abdul Raman, A.A.; Wan Daud, W.M.A. Application of doped photocatalysts for organic pollutant degradation: A review. J. Environ. Manag. 2017, 198, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Theerthagiri, J.; Murthy, A.P.; Elakkiya, V.; Chandrasekaran, S.; Nithyadharseni, P.; Khan, Z.; Senthil, R.A.; Shanker, R.; Raghavender, M.; Kuppusami, P.; et al. Recent development on carbon based heterostructures for their applications in energy and environment: A review. J. Ind. Eng. Chem. 2018, 64, 16–59. [Google Scholar]
- Bora, L.V.; Mewada, R.K. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew. Sustain. Energy. Rev. 2017, 76, 1393–1421. [Google Scholar] [CrossRef]
- Nadraha, P.; Gaberscek, M.; SeverSkapin, A. Selective degradation of model pollutants in the presence of core@shell TiO2@SiO2 photocatalyst. Appl. Surf. Sci. 2017, 405, 389–394. [Google Scholar] [CrossRef]
- Teh, C.M.; Mohamed, A.R. Roles of titanium dioxide and ion-doped titanium dioxide on photocatalytic degradation of organic pollutants (phenolic compounds and dyes) in aqueous solutions: A review. J. Alloys Compd. 2011, 509, 1648–1660. [Google Scholar] [CrossRef]
- Vinoth Kumar, J.; Karthik, R.; Chen, S.M.; Muthuraj, V.; Karuppiah, C. Fabrication of potato-like silver molybdate microstructures for photocatalytic degradation of chronic toxicity ciprofloxacin and highly selective electrochemical detection of H2O2. Sci. Rep. 2015, 6, 34149. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.Y.; Guo, Y.; Gu, X.Y.; Gu, C. Effects of metal cations and fulvic acid on the adsorption of ciprofloxacin onto goethite. Environ. Sci. Pollut. Res. 2015, 22, 609–617. [Google Scholar] [CrossRef] [PubMed]
- De Bel, E.; Dewulf, J.; Van Lagenhove, H.; Janssen, C. Influence of pH on the sonolysis of ciprofloxacin: Biodegradability, ecotoxicity and antibiotic activity of its degradation products. Chemosphere 2009, 77, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; He, Y.L.; Huang, C.H. Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation. Water Res. 2010, 44, 5989–5998. [Google Scholar] [CrossRef] [PubMed]
- De Lima Perini, J.A.; Perez-Moya, M.; Nogueira, R.F.P. Photo-Fenton degradation kinetics of low ciprofloxacin concentration using different iron sources and pH. J. Photochem. Photobiol. A 2013, 259, 53–58. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Priya, A.; Madhavan, J.; Michael, R.J.V.; Ashok kumar, M. Photocatalytic and photoelectrochemical studies of visible-light active α-Fe2O3-g-C3N4 nanocomposites. RSC Adv. 2014, 4, 38222–38229. [Google Scholar] [CrossRef]
- Chang, Y.; Yu, K.; Zhang, C.; Li, R.; Zhao, P.; Lou, L.L.; Liu, S. Three-dimensionally ordered macroporous WO3 supported Ag3PO4 with enhanced photocatalytic activity and durability. Appl. Catal. B Environ. 2015, 176–177, 363–373. [Google Scholar] [CrossRef]
- Sui, M.; Xing, S.; Sheng, L.; Huang, S.; Guo, H. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. J. Hazard. Mater. 2012, 227–228, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Behl, K.; Nigam, S.; Joshi, M. TiO2-GO nanocomposite for photocatalysis and environmental applications: A green synthesis approach. Vacuum 2018, 156, 434–439. [Google Scholar] [CrossRef]
- Pica, M.; Nocchetti, M.; Ridolfi, B.; Donnadio, A.; Costantino, F.; Gentili, P.L.; Casciola, M. Nanosized zirconium phosphate/AgCl composite materials: A new synergy for an efficient photocatalytic degradation of organic dye pollutants. J. Mater. Chem. A 2015, 3, 5525–5534. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Senthil, R.A.; Priya, A.; Madhavan, J.; Ashokkumar, M. Synthesis of a visible-light active V2O5-g-C3N4 heterojunction as an efficient photocatalytic and photoelectrochemical material. New J. Chem. 2015, 39, 1367–1374. [Google Scholar]
- Yosefi, L.; Haghighi, M.; Allahyari, S. Solvothermal synthesis of flowerlike p-BiOI/n-ZnFe2O4 with enhanced visible light driven nanophotocatalyst used in removal of acid orange 7 from wastewater. Sep. Purif. Technol. 2017, 178, 18–28. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, S.; Xu, J.; Zhang, H.; Yang, S.; Duan, X.; Sun, H.; Wang, S. Preparation of a p-n heterojunction BiFeO3@TiO2 photocatalyst with a core-shell structure for visible-light photocatalytic degradation. Chin. J. Catal. 2017, 38, 1052–1062. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, P.; Guo, R.; Wang, Y.; Zhan, H.; Yuan, Y. Synthesis of rectorite/Fe3O4/ZnO composites and their application for the removal of methylene blue dye. Catalysts 2018, 8, 107. [Google Scholar] [CrossRef]
- Ren, H.-T.; Yang, Q. Fabrication of Ag2O/TiO2 with enhanced photocatalytic performances for dye pollutants degradation by a pH-induced method. Appl. Surf. Sci. 2017, 396, 530–538. [Google Scholar] [CrossRef]
- Wang, X.; Ni, Q.; Zeng, D.; Liao, G.; Wen, Y.; Shan, B.; Xie, C. BiOCl/TiO2 heterojunction network with high energy facet exposed for highly efficient photocatalytic degradation of benzene. Appl. Surf. Sci. 2017, 396, 590–598. [Google Scholar] [CrossRef]
- Senthil, R.A.; Theerthagiri, J.; Selvi, A.; Madhavan, J. Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performanceunder visible-light irradiation. Opt. Mater. 2017, 64, 533–539. [Google Scholar] [CrossRef]
- Xu, D.; Cheng, B.; Zhang, J.; Wang, W.; Yu, J.; Ho, W. Photocatalytic activity of Ag2MO4 (M=Cr, Mo, W) photocatalysts. J. Mater. Chem. A 2015, 3, 20153–20166. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Ma, S.; Wang, P.; Hou, Q.; Han, J.; Zhan, S. Efficient water disinfection with Ag2WO4-doped mesoporous g-C3N4 under visible light. J. Hazard. Mater. 2017, 338, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Song, L.; Zhang, S. Synthesis of AgCl/Ag3PO4 composite photocatalysts and study on photodegradation activity based on a continuous reactor. Photochem. Photobiol. 2018, 94, 484–490. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, W.; Zhang, Z.; Fang, X. High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. J. Phys. Chem. C 2013, 117, 19346–19352. [Google Scholar] [CrossRef]
- Xu, Y.; Jing, L.; Chen, X.; Ji, H.; Xu, H.; Li, H.; Li, H.; Zhang, Q. Novel visible-light-driven Fe2O3/Ag3VO4 composite with enhanced photocatalytic activity toward organic pollutants degradation. RSC Adv. 2016, 6, 3600–3607. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, J.; Yu, J.; Zhang, Y.; Cui, Z.; Sun, Y.; Hou, B. Fabrication of InVO4/AgVO3 heterojunctions with enhanced photocatalytic antifouling efficiency under visible-light. Appl. Catal. B Environ. 2018, 220, 57–66. [Google Scholar] [CrossRef]
- Jin, J.; Liang, Q.; Song, Y.; Xu, S.; Li, Z.; Yao, C. Hydrothermal synthesis of g-C3N4/Ag2MoO4 nanocomposites for improved visible light photocatalytic performance. J. Alloys Compd. 2017, 726, 221–229. [Google Scholar] [CrossRef]
- Li, W.; Chen, J.; Guo, R.; Wu, J.; Zhou, X.; Luo, J. Facile fabrication of a direct Z-scheme MoO3/Ag2CrO4 composite photocatalyst with improved visible light photocatalytic performance. J. Mater. Sci. Mater. Electron. 2017, 28, 15967–15979. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X.; Ning, X.; Zhan, L.; Ma, L.; Xu, X.; Huang, Z.; Liang, J. Synthesis and characterization of Z-scheme In2S3/Ag2CrO4 composites with an enhanced visible-light photocatalytic performance. New J. Chem. 2017, 41, 845–856. [Google Scholar] [CrossRef]
- Ju, P.; Fan, H.; Zhang, B.; Shang, K.; Liu, T.; Ai, S.; Zhang, D. Enhanced photocatalytic activity of β-AgVO3 nanowires loaded with Ag nanoparticles under visible light irradiation. Sep. Purif. Technol. 2013, 109, 107–110. [Google Scholar] [CrossRef]
- Zhao, W.; Guo, Y.; Faiz, Y.; Yuan, W.T.; Sun, C.; Wang, S.M.; Deng, Y.H.; Zhuang, Y.; Li, Y.; Wang, X.M.; et al. Facile in-suit synthesis of Ag/AgVO3 one-dimensional hybrid nanoribbons with enhanced performance of plasmonic visible-light photocatalysis. Appl. Catal. B Environ. 2015, 163, 288–297. [Google Scholar] [CrossRef]
- Sivakumar, V.; Suresh, R.; Giribabu, K.; Narayanan, V. AgVO3 nanorods: Synthesis, characterization and visible light photocatalytic activity. Solid State Sci. 2015, 39, 34–39. [Google Scholar] [CrossRef]
- Singh, A.; Dutta, D.P.; Ballal, A.; Tyagi, A.K.; Fulekar, M.H. Visible light driven photocatalysis and antibacterial activity of AgVO3 and Ag/AgVO3 nanowires. Mater. Res. Bull. 2014, 51, 447–454. [Google Scholar] [CrossRef]
- Lu, H.; Wang, J.; Du, Z.; Liu, Y.; Li, M.; Chen, P.; Zhang, L. In-situ anion-exchange synthesis AgCl/AgVO3 hybrid nanoribbons with highly photocatalytic activity. Mater. Lett. 2015, 157, 231–234. [Google Scholar] [CrossRef]
- Lin, X.; Guo, X.; Shi, W.; Guo, F.; Zhai, H.; Yan, Y.; Wang, Q. Ag3PO4 quantum dots sensitized AgVO3 nanowires: A novel Ag3PO4/AgVO3 nanojunction with enhanced visible-light photocatalytic activity. Catal. Commun. 2015, 66, 67–72. [Google Scholar] [CrossRef]
- Wang, R.; Cao, L. Facile synthesis of a novel visible-light-driven AgVO3/BiVO4 heterojunction photocatalyst and mechanism insight. J. Alloys Compd. 2017, 722, 445–451. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Huang, B.; Zhang, R.; Dai, Y.; Qin, X.; Zhang, X. Enhanced visible photocatalytic activity of a BiVO4@β-AgVO3 composite synthesized by an in situ growth method. RSC Adv. 2014, 4, 20058–20061. [Google Scholar] [CrossRef]
- Cao, L. Novel MoS2-modified AgVO3 composites with remarkably enhanced photocatalytic activity under visible-light irradiation. Mater. Lett. 2017, 188, 252–256. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, J.; Wang, L.; Yang, X.; Xu, G.; Tang, L. Efficient photocatalytic degradation of ibuprofen in aqueous solution using novel visible-light responsive graphene quantum dot/AgVO3 nanoribbons. J. Hazard. Mater. 2016, 312, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Guo, Y.; Wang, S.; He, H.; Sun, C.; Yang, S. A novel ternary plasmonic photocatalyst: Ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visible-light photocatalytic performance. Appl. Catal. B Environ. 2015, 165, 335–343. [Google Scholar] [CrossRef]
- Zhao, W.; Wei, Z.; Hea, H.; Xu, J.; Li, J.; Yang, S.; Sun, C. Supporting 1-D AgVO3 nanoribbons on single layer 2-D graphitic carbon nitride ultrathin nanosheets and their excellent photocatalytic activities. Appl. Catal. A Gen. 2015, 501, 74–82. [Google Scholar] [CrossRef]
- Ouyang, Q.; Li, Z.; Liu, J. Synthesis of β-AgVO3 nanowires decorated with Ag2CrO4 with improved visible light photocatalytic performance. Semicond. Sci. Technol. 2018, 33, 055010. [Google Scholar] [CrossRef]
- Wang, K.; Wu, X.; Zhang, G.; Li, J.; Li, Y. Ba5Ta4O15 nanosheet/AgVO3 nanoribbon heterojunctions with enhanced photocatalytic oxidation performance: Hole dominated charge transfer path and plasmonic effect insight. ACS Sustain. Chem. Eng. 2018, 6, 6682–6692. [Google Scholar] [CrossRef]
- Padhi, D.K.; Parida, K. Facile fabrication of α-FeOOH nanorod/RGO composite: A robust photocatalyst for reduction of Cr (VI) under visible light irradiation. J. Mater. Chem. A 2014, 2, 10300–10312. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Q.; Zhang, W.; Li, T.; Yuan, Y.; Wang, P. Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH). Photochem. Photobiol. Sci. 2016, 15, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Ghadim, A.R.A.; Alizadeh, S.; Khodam, F.; Rezvani, Z. Synthesis of rod-like α-FeOOH nanoparticles and its photocatalytic activity in degradation of an azo dye: Empirical kinetic model development. J. Mol. Catal. A Chem. 2015, 408, 60–68. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.S. Catalytic oxidation of methyl orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash. Chem. Eng. J. 2010, 158, 148–153. [Google Scholar] [CrossRef]
- Malathi, A.; Arunachalam, P.; Madhavan, J.; Al-Mayouf, A.M.; Ghanem, M.A. Rod-on-flake α-FeOOH/BiOI nanocomposite: Facile synthesis, characterization and enhanced photocatalytic performance. Coll. Surf. A Physicochem. Eng. Asp. 2018, 537, 435–445. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, C.; Tan, J.; Fan, Z.; Sun, Y.; Ran, S.; Chi, F.; Liu, X.; Lv, Y. Novel α-FeOOH nanorods/Ag3PO4 semiconductor composites with enhanced photocatalytic activity and stability. Nano 2016, 11, 1650071. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Cao, R.; Deng, X.; Li, Z.; Xu, X. Constructing the novel ultrafne amorphous iron oxyhydroxide/g-C3N4 nanosheets heterojunctions for highly improved photocatalytic performance. Sci. Rep. 2017, 7, 8686. [Google Scholar] [CrossRef] [PubMed]
- McNulty, D.; Ramasse, Q.; ODwyer, C. The structural conversion from α-AgVO3 to β-AgVO3: Ag nanoparticle decorated nanowires with application as cathode materials for Li-ion batteries. Nanoscale 2016, 8, 16266–16275. [Google Scholar] [CrossRef] [PubMed]
- De Castro, D.T.; Valente, M.L.C.; Da Silva, C.H.L.; Watanabea, E.; Siqueira, R.L.; Schiavon, M.A.; Alves, O.L.; Dos Reis, A.C. Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Arch. Oral Biol. 2016, 67, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yu, C.; Fang, W.; Zhu, L.; Zhou, W.; Fan, Q. Preparation, characterization and photocatalytic performance of heterostructured AgCl/Bi2WO6 microspheres. Chin. J. Catal. 2015, 36, 987–993. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, L.; Shi, J.; Deng, H. Synthesis of Ag3PO4/G-C3N4 composite with enhanced photocatalytic performance for the photodegradation of diclofenac under visible light irradiation. Catalyst 2018, 8, 45. [Google Scholar] [CrossRef]
- Kiantazh, F.; Yangjeh, A.H. Ag3VO4/ZnO nanocomposites with an n-n heterojunction as novel visible-light-driven photocatalysts with highly enhanced activity. Mater. Sci. Semicond. Proc. 2015, 39, 671–679. [Google Scholar] [CrossRef]
- Qiu, F.; Zhu, X.; Guo, Q.; Dai, Y.; Xu, J.; Zhang, T. Fabrication of a novel hierarchical flower-like hollow structure Ag2WO4/WO3 photocatalyst and its enhanced visible-light photocatalytic activity. Powder Technol. 2017, 317, 287–292. [Google Scholar] [CrossRef]
- Senthil, R.A.; Priya, A.; Theerthagiri, J.; Selvi, A.; Nithyadharseni, P.; Madhavan, J. Facile synthesis of α-Fe2O3/WO3 composite with an enhanced photocatalytic and photo-electrochemical performance. Ionics 2018. [Google Scholar] [CrossRef]
Material | Pollutant | Light Source | Irradiation Time | Degradation Efficiency (%) | Reference |
---|---|---|---|---|---|
InVO4/AgVO3 | RhB | Visible | 200 min | 99.8 | [30] |
g-C3N4/Ag2MoO4 | RhB | Visible | 120 min | 85.0 | [31] |
BiVO4/AgVO3 | RhB | Visible | 240 min | 65.7 | [41] |
α-FeOOH/Ag3PO4 | RhB | Visible | 120 min | 76.0 | [53] |
Ag3VO4/ZnO | RhB | Visible | 450 min | 100 | [59] |
Ag2WO4/WO3 | RhB | Visible | 120 min | 94.0 | [60] |
P25 TiO2 | RhB | Visible | 90 min | 28.2 | This work |
α-FeOOH/α-AgVO3 | RhB | Visible | 90 min | 88.0 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Senthil, R.A.; Pan, J.; Osman, S.; Khan, A. A Facile Synthesis of Visible-Light Driven Rod-on-Rod like α-FeOOH/α-AgVO3 Nanocomposite as Greatly Enhanced Photocatalyst for Degradation of Rhodamine B. Catalysts 2018, 8, 392. https://doi.org/10.3390/catal8090392
Sun M, Senthil RA, Pan J, Osman S, Khan A. A Facile Synthesis of Visible-Light Driven Rod-on-Rod like α-FeOOH/α-AgVO3 Nanocomposite as Greatly Enhanced Photocatalyst for Degradation of Rhodamine B. Catalysts. 2018; 8(9):392. https://doi.org/10.3390/catal8090392
Chicago/Turabian StyleSun, Meng, Raja Arumugam Senthil, Junqing Pan, Sedahmed Osman, and Abrar Khan. 2018. "A Facile Synthesis of Visible-Light Driven Rod-on-Rod like α-FeOOH/α-AgVO3 Nanocomposite as Greatly Enhanced Photocatalyst for Degradation of Rhodamine B" Catalysts 8, no. 9: 392. https://doi.org/10.3390/catal8090392
APA StyleSun, M., Senthil, R. A., Pan, J., Osman, S., & Khan, A. (2018). A Facile Synthesis of Visible-Light Driven Rod-on-Rod like α-FeOOH/α-AgVO3 Nanocomposite as Greatly Enhanced Photocatalyst for Degradation of Rhodamine B. Catalysts, 8(9), 392. https://doi.org/10.3390/catal8090392