Conversion of Carbon Monoxide into Methanol on Alumina-Supported Cobalt Catalyst: Role of the Support and Reaction Mechanism—A Theoretical Study
Abstract
:1. Introduction
2. Model and Computational Methods
3. Results and Discussion
3.1. Electronic Properties of Co4 and Co4/Al2O3 Systems
3.2. Adsorption of CO and H2 on Co4, Al2O3 and Co4/Al2O3 Systems
3.2.1. Adsorption of CO on Co4 and Co4/Al2O3 Systems
3.2.2. Adsorption of H2 on Co4 and Co4/Al2O3 Systems
3.2.3. Adsorption of CO and H2 on Al2O3 System
3.3. Preliminary Investigation on the Process of CO Hydrogenation over Co4/Al2O3 Catalyst to Methanol
- (i)
- In one route (steps 3a-4a), attack of hydrogen molecule from the gas phase with H-C*-OH (I-4) produces H2C*-OH (I-5). This route is corresponding to the Eley–Rideal mechanism:H2 (gas) + H-C*-OH → H2C*-OH + H* (step 3a)
- (ii)
- In the other route (3b-4b), one adsorbed hydrogen atom on the catalyst surface comes to combine with H-C*-OH (I-4) forming H2C*-OH (I-5). The H2C*-OH fragment further reacts with another adsorbed hydrogen atom and followed by desorption to release CH3OH (step 4b). This route is corresponding to the Langmuir–Hinshelwood mechanism and also has been suggested and calculated by several researchers [15,22,30,32]:H* + H-C*-OH → H2C*-OH (step 3b)H* + H2C*-OH → H3C*-OH → CH3OHgas (step 4b)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Surisetty, V.R.; Dalai, A.K.; Kozinski, J. Alcohols as alternative fuels: An overview. Appl. Catal. A 2011, 404, 1–11. [Google Scholar] [CrossRef]
- Saeidi, S.; Amin, N.A.S.; Rahimpour, M.R. Hydrogenation of CO2 to value-added products—A review and potential future developments. J. CO2 Util. 2014, 5, 66–81. [Google Scholar] [CrossRef]
- Hu, B.; Yin, Y.; Liu, G.; Chen, S.; Tsang, S.C.E. Hydrogen spillover enabled active Cu sites for methanol synthesis from CO2 hydrogenation over Pd doped CuZn catalysts. J. Catal. 2018, 359, 17–26. [Google Scholar] [CrossRef]
- Abrol, S.; Hilton, C.M. Modeling, simulation and advanced control of methanol production from variable synthesis gas feed. Comput. Chem. Eng. 2012, 40, 117–131. [Google Scholar] [CrossRef]
- Su, X.; Xu, J.; Liang, B.; Duan, H.; Hou, B.; Huang, Y. Catalytic carbon dioxide hydrogenation, to methane: A review of recent studies. J. Energy Chem. 2016, 25, 553–565. [Google Scholar] [CrossRef]
- Weststrate, C.J.; van de Loosdrecht, J.; Niemantsverdriet, J.W. Spectroscopic insights into cobalt catalyzed Fischer-Tropsch synthesis: A review of the carbon monoxide interaction with single crystalline surfaces of cobalt. J. Catal. 2016, 342, 1–16. [Google Scholar] [CrossRef]
- Liu, Y.; Murata, K.; Inaba, M.; Takahara, I.; Okabe, K. Mixed alcohols synthesis from syngas over Cs- and Ni-modified Cu/CeO2 catalysts. Fuel 2013, 104, 62–69. [Google Scholar] [CrossRef]
- Park, N.; Park, M.J.; Lee, Y.J.; Ha, K.S.; Jun, K.W. Kinetic modeling of methanol synthesis over commercial catalysts based on three-site adsorption. Fuel Process. Technol. 2014, 125, 139–147. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, X.; Han, P.; Huang, W. CO hydrogenation to higher alcohols over CuZnAl catalysts without promoters: Effect of pH value in catalyst preparation. Fuel Process. Technol. 2017, 167, 575–581. [Google Scholar] [CrossRef]
- Bai, Y.; He, D.; Ge, S.; Liu, H.; Liu, J.; Huang, W. Influences of preparation methods of ZrO2 support and treatment conditions of Cu/ZrO2 catalysts on synthesis of methanol via CO hydrogenation. Catal. Today 2010, 149, 111–116. [Google Scholar] [CrossRef]
- Studt, F.; Abild-Pedersen, F.; Wu, Q.; Jensen, A.D.; Temel, B.; Grunwaldt, J.D.; Nørskov, J.K. CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment. J. Catal. 2012, 293, 51–60. [Google Scholar] [CrossRef]
- Chai, S.H.; Schwartz, V.; Howe, J.Y.; Wang, X.; Kidder, M.; Overbury, S.H.; Dai, S.; Jiang, D.E. Graphitic mesoporous carbon-supported molybdenum carbides for catalytic hydrogenation of carbon monoxide to mixed alcohols. Microporous Mesoporous Mater. 2013, 170, 141–149. [Google Scholar] [CrossRef]
- Surisetty, V.R.; Eswaramoorthi, I.; Dalai, A.K. Comparative study of higher alcohols synthesis over alumina and activated carbon-supported alkali-modified MoS2 catalysts promoted with group VIII metals. Fuel 2012, 96, 77–84. [Google Scholar] [CrossRef]
- Wu, Q.; Christensen, J.M.; Chiarello, G.L.; Duchstein, L.D.; Wagner, J.B.; Temel, B.; Grunwaldt, J.D.; Jensen, A.D. Supported molybdenum carbide for higher alcohol synthesis from syngas. Catal. Today 2013, 215, 162–168. [Google Scholar] [CrossRef]
- Andersen, A.; Kathmann, S.M.; Lilga, M.A.; Albrecht, K.O.; Hallen, R.T.; Mei, D. Effects of potassium doping on CO hydrogenation over MoS2 catalysts: A first-principles investigation. Catal. Commun. 2014, 52, 92–97. [Google Scholar] [CrossRef]
- Gnanamani, M.K.; Jacobs, G.; Keogh, R.A.; Shafer, W.D.; Sparks, D.E.; Hopps, S.D.; Thomas, G.A.; Davis, B.H. Fischer-Tropsch synthesis: Effect of pretreatment conditions of cobalt on activity and selectivity for hydrogenation of carbon dioxide. Appl. Catal. A 2015, 499, 39–46. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Bai, Y.; Xiao, H.; Tian, S.; Xie, H.; Yang, G.; Tsubaki, N.; Han, Y.; Tan, Y. Ternary copper–cobalt–cerium catalyst for the production of ethanol and higher alcohols through CO hydrogenation. Appl. Catal. A 2016, 514, 14–23. [Google Scholar] [CrossRef]
- Du, H.; Zhu, H.; Liu, T.; Zhao, Z.; Chen, X.; Dong, W.; Lu, W.; Luo, W.; Ding, Y. Higher alcohols synthesis via CO hydrogenation on Fe-promoted Co/AC catalysts. Catal. Today 2017, 281, 549–558. [Google Scholar] [CrossRef]
- Nikparsaa, P.; Mirzaeia, A.A.; Atashib, H. Effect of reaction conditions and Kinetic study on the Fischer-Tropsch synthesis over fused Co Ni/Al2O3 catalyst. J. Fuel Chem. Technol. 2014, 42, 710–718. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Q.; Deng, J.; Wu, D.; Chen, S. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis: Preparation and catalytic properties. Appl. Catal. A 1997, 158, 105–120. [Google Scholar] [CrossRef]
- Li, D.; Yang, C.; Li, W.; Sun, Y.; Zhong, B. Ni/ADM: A high activity and selectivity to C2+OH catalyst for catalytic conversion of synthesis gas to C1-C5 mixed alcohols. Top. Catal. 2005, 32, 233–239. [Google Scholar] [CrossRef]
- Shi, X.R.; Jiao, H.; Hermann, K.; Wang, J. CO hydrogenation reaction on sulfided molybdenum catalysts. J. Mol. Catal. A Chem. 2009, 312, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Díez-Ramírez, J.; Sánchez, P.; Kyriakou, V.; Zafeiratos, S.; Marnellos, G.E.; Konsolakis, M.; Dorado, F. Effect of support nature on the cobalt-catalyzed CO2 hydrogenation. J. CO2 Util. 2017, 21, 562–571. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Han, P.D.; Li, Z.; Hu, J.S.; Huang, W. Can methanol be synthesized from CO by direct hydrogenation over Cu/ZnO catalysts? Appl. Surf. Sci. 2012, 261, 640–646. [Google Scholar] [CrossRef]
- Lee, J.H.; Reddy, K.H.; Jung, J.S.; Yang, E.H.; Moon, D.J. Role of support on higher alcohol synthesis from syngas. Appl. Catal. A 2014, 480, 128–133. [Google Scholar] [CrossRef]
- Medford, A.J.; Sehested, J.; Rossmeisl, J.; Chorkendorff, I.; Studt, F.; Nørskov, J.K.; Moses, P.G. Thermochemistry and micro-kinetic analysis of methanol synthesis on ZnO (0001). J. Catal. 2014, 309, 397–407. [Google Scholar] [CrossRef]
- Prasad, P.S.; Bae, J.; Jun, K.-W.; Lee, K.-W. Fischer–Tropsch Synthesis by Carbon Dioxide Hydrogenation on Fe-Based Catalysts. Catal. Surv. Asia 2008, 12, 170–183. [Google Scholar] [CrossRef]
- Reuel, R.C.; Bartholomew, C.H. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt. J. Catal. 1984, 85, 78–88. [Google Scholar] [CrossRef]
- Zhao, Y.; Rousseau, R.; Li, J.; Mei, D. Theoretical study of syngas hydrogenation to methanol on the polar Zn-terminated ZnO (0001) surface. J. Phys. Chem. C 2012, 116, 15952–15961. [Google Scholar] [CrossRef]
- Reimers, W.; Zubieta, C.; Baltan’as, M.A.; Branda, M.M. A DFT Approach for Methanol Synthesis via Hydrogenation of CO on Gallia, Ceria and ZnO surfaces. Appl. Surf. Sci. 2018, 436, 1003–1017. [Google Scholar] [CrossRef]
- Liuan, P.; Yang, Y.; White, M.G. Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation. Surf. Sci. Rep. 2013, 68, 233–272. [Google Scholar] [CrossRef]
- Dou, M.; Zhang, M.; Chen, Y.; Yu, Y. Theoretical Study of Methanol Synthesis from CO2 and CO Hydrogenation on the surface of ZrO2 supported In2O3 catalyst. Surf. Sci. 2018, 672–673, 7–12. [Google Scholar] [CrossRef]
- Zha, H.; Dong, X.; Yu, Y.; Zhang, M. Hydrogen-assisted versus Hydroxyl-assisted CO Dissociation over Co-doped Cu(111): A DFT Study. Surf. Sci. 2018, 669, 114–120. [Google Scholar] [CrossRef]
- Pan, Y.X.; Liu, C.J.; Ge, Q. Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/γ-Al2O3: A density functional theory study. J. Catal. 2010, 272, 227–234. [Google Scholar] [CrossRef]
- Zhang, R.G.; Wang, B.J.; Liu, H.Y.; Ling, L.X. Effect of surface hydroxyls on CO2 hydrogenation over Cu/γ –Al2O3 catalyst: A theoretical study. J. Phys. Chem. C 2011, 115, 19811–19818. [Google Scholar] [CrossRef]
- Zuo, Z.J.; Wang, L.; Han, P.D.; Huang, W. Methanol synthesis by CO and CO2 hydrogenation on Cu/γ-Al2O3 surface in liquid paraffin solution. Appl. Surf. Sci. 2014, 290, 398–404. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, J.; Li, C.; Zhong, Y.; Xuan, W.; Ren, Z.; Wang, Q.; Dai, Y.; Wang, H. Preparation of textured porous Al2O3 ceramics by slip casting in a strong magnetic field and its mechanical properties. Cryst. Res. Technol. 2015, 50, 645–653. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002, 14, 2745–2779. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. A DFT study of the chain growth probability in Fischer-Tropsch synthesis. J. Catal. 2008, 257, 221–228. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C.M. Chain growth mechanism in Fischer-Tropsch synthesis: A DFT study of C-C coupling over Ru, Fe, Rh, and Re surfaces. J. Phys. Chem. C 2008, 112, 6082–6086. [Google Scholar] [CrossRef]
- Cheng, J.; Gong, X.Q.; Hu, P.; Lok, C.M.; Ellis, P.; French, S. A quantitative determination of reaction mechanisms from density functional theory calculations: Fischer–Tropsch synthesis on flat and stepped cobalt surfaces. J. Catal. 2008, 254, 285–295. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Hamann, D.R.; Schlüter, M.; Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497. [Google Scholar] [CrossRef]
- Henkelman, G.; Uberuaga, B.P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 133, 9901–9904. [Google Scholar] [CrossRef]
- Fonseca Guerra, C.; Handgraaf, J.-W.; Baerends, E.J.; Bickelhaupt, F.M. Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis. J. Comput. Chem. 2004, 25, 189–210. [Google Scholar] [CrossRef]
- Slater, J.C. Atomic Radii in Crystals. J. Chem. Phys. 1964, 41, 3199–3205. [Google Scholar] [CrossRef]
- Fielicke, A.; Gruene, P.; Meijer, G.; Rayner, D.M. The adsorption of CO on transition metal clusters: A case study of cluster surface chemistry. Surf. Sci. 2009, 603, 1427–1433. [Google Scholar] [CrossRef] [Green Version]
- Huber, K.P.; Herzberg, G. Molecular Spectra and Molecular Structure, IV. Constants of Diatomic Molecules; Van Nostrand Reinhold Company: New York, NY, USA, 1979. [Google Scholar]
- Cottrell, T.L. The Strengths of Chemical Bonds, 2nd ed.; Butterworths: London, UK, 1958. [Google Scholar]
- Nordlander, P.; Holloway, S.; Nørskov, J.K. Hydrogen adsorption on metal surfaces. Surf. Sci. 1984, 136, 59–81. [Google Scholar] [CrossRef]
- Ferrin, P.; Kandoi, S.; Nilekar, A.U.; Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf. Sci. 2012, 606, 679–689. [Google Scholar] [CrossRef]
- Ding, M.; Qiu, M.; Liu, J.; Li, Y.; Wang, T.; Ma, L.; Wu, C. Influence of manganese promoter on co-precipitated Fe–Cu based catalysts for higher alcohols synthesis. Fuel 2013, 109, 21–27. [Google Scholar] [CrossRef]
- Ladera, R.; Pérez-Alonso, F.J.; González-Carballo, J.M.; Ojeda, M.; Rojas, S.; Fierro, J.L.G. Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts. Appl. Catal. B Environ. 2013, 142–143, 241–248. [Google Scholar] [CrossRef]
Structure | Eb | Nue |
---|---|---|
Tetrahedral | 3.86 | 12 |
Rhombus | 3.41 | 12 |
Structures | d-1 Configuration | d-2 Configuration | ||||
---|---|---|---|---|---|---|
Eads | dC-O | BDEC-O | Eads | dC-O | BDEC-O | |
Co4 | −186.9 | 1.172 | 960.6 | −201.4 | 1.203 | 928.0 |
Co4/Al2O3 | −231.9 | 1.161 | 1004.3 | −237.3 | 1.179 | 1023.5 |
CO | 1.145 | 1190.3 | 1.145 | 1190.3 | ||
Exp. | 1.128 [48] | 1072 [49] |
Steps | ΔE (kJ mol−1) | Ea (kJ mol−1) |
---|---|---|
1a | 149.10 | 144.6 |
1b | 212.2 | 175.3 |
2 | −5.2 | 83.0 |
3a | −97.8 | 2.1 |
3b | 18.6 | 114.8 |
4a | −22.4 | 173.5 |
4b | 47.8 | 221.2 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoc Ha, N.; Thi Thu Ha, N.; Binh Long, N.; Minh Cam, L. Conversion of Carbon Monoxide into Methanol on Alumina-Supported Cobalt Catalyst: Role of the Support and Reaction Mechanism—A Theoretical Study. Catalysts 2019, 9, 6. https://doi.org/10.3390/catal9010006
Ngoc Ha N, Thi Thu Ha N, Binh Long N, Minh Cam L. Conversion of Carbon Monoxide into Methanol on Alumina-Supported Cobalt Catalyst: Role of the Support and Reaction Mechanism—A Theoretical Study. Catalysts. 2019; 9(1):6. https://doi.org/10.3390/catal9010006
Chicago/Turabian StyleNgoc Ha, Nguyen, Nguyen Thi Thu Ha, Nguyen Binh Long, and Le Minh Cam. 2019. "Conversion of Carbon Monoxide into Methanol on Alumina-Supported Cobalt Catalyst: Role of the Support and Reaction Mechanism—A Theoretical Study" Catalysts 9, no. 1: 6. https://doi.org/10.3390/catal9010006
APA StyleNgoc Ha, N., Thi Thu Ha, N., Binh Long, N., & Minh Cam, L. (2019). Conversion of Carbon Monoxide into Methanol on Alumina-Supported Cobalt Catalyst: Role of the Support and Reaction Mechanism—A Theoretical Study. Catalysts, 9(1), 6. https://doi.org/10.3390/catal9010006