About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction
Abstract
:1. Introduction
2. Definitions
3. Recognized Homogeneous Catalysts
4. Solid Pre-Catalysts Providing Active Species in Solution
5. Putative Heterogeneous Catalysts
6. Guidelines to Try to Discriminate Homogeneous/Heterogeneous Systems
6.1. Concepts/Principles
Hot-Filtration
Reusability Test
Compartmented Reactor with Membrane
Continuous Compartmented Operation or Split-Flow Test
3-Phase-Test
Mercury-Drop-Test
Other Poisoning Methods
6.2. Measurements and Analyses
Pd Trace-Analysis
Microscopy
X-ray Absorption Spectroscopy (XAS)
6.3. Guidelines
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hussain, I.; Capricho, J.; Yawer, M.A. Synthesis of Biaryls via Ligand-Free Suzuki–Miyaura Cross-Coupling Reactions: A Review of Homogeneous and Heterogeneous Catalytic Developments. Adv. Synth. Catal. 2016, 358, 3320–3349. [Google Scholar] [CrossRef]
- Zotto, A.D.; Zuccaccia, D. Metallic palladium, PdO, and palladium supported on metal oxides for the Suzuki–Miyaura cross-coupling reaction: A unified view of the process of formation of the catalytically active species in solution. Catal. Sci. Technol. 2017, 7, 3934–3951. [Google Scholar] [CrossRef]
- Len, C.; Bruniaux, S.; Delbecq, F.; Parmar, V.S. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow. Catalysts 2017, 7, 146. [Google Scholar] [CrossRef] [Green Version]
- Mpungose, P.; Vundla, Z.; Maguire, G.; Friedrich, H.; Mpungose, P.P.; Vundla, Z.P.; Maguire, G.E.M.; Friedrich, H.B. The Current Status of Heterogeneous Palladium Catalysed Heck and Suzuki Cross-Coupling Reactions. Molecules 2018, 23, 1676. [Google Scholar] [CrossRef] [PubMed]
- Schneider, N.; Lowe, D.M.; Sayle, R.A.; Tarselli, M.A.; Landrum, G.A. Big Data from Pharmaceutical Patents: A Computational Analysis of Medicinal Chemists’ Bread and Butter. J. Med. Chem. 2016, 59, 4385–4402. [Google Scholar] [CrossRef] [PubMed]
- Baleizão, C.; Corma, A.; García, H.; Leyva, A. An Oxime–Carbapalladacycle Complex Covalently Anchored to Silica as an Active and Reusable Heterogeneous Catalyst for Suzuki Cross-Coupling in Water. Chem. Commun. 2003, 5, 606–607. [Google Scholar] [CrossRef]
- Artok, L.; Bulut, H. Heterogeneous Suzuki Reactions Catalyzed by Pd(0)–Y Zeolite. Tetrahedron Lett. 2004, 45, 3881–3884. [Google Scholar] [CrossRef]
- Yuan, B.; Pan, Y.; Li, Y.; Yin, B.; Jiang, H. A Highly Active Heterogeneous Palladium Catalyst for the Suzuki–Miyaura and Ullmann Coupling Reactions of Aryl Chlorides in Aqueous Media. Angew. Chem. Int. Ed. 2010, 49, 4054–4058. [Google Scholar] [CrossRef]
- Islam, S.M.; Mondal, P.; Roy, A.S.; Mondal, S.; Hossain, D. Heterogeneous Suzuki and Copper-Free Sonogashira Cross-Coupling Reactions Catalyzed by a Reusable Palladium(II) Complex in Water Medium. Tetrahedron Lett. 2010, 51, 2067–2070. [Google Scholar] [CrossRef]
- Siga, F.; Temel, H.; Aydemir, M.; Ocak, Y.S.; Pasa, S.; Baysal, A. Superb Efficient and Recycle Polymer-Anchored Systems for Palladium Catalyzed Suzuki Cross-Coupling Reactions in Water. Appl. Catal. A 2012, 449, 172–182. [Google Scholar] [CrossRef]
- Yamada, Y.M.A.; Sarkar, S.M.; Uozumi, Y. Self-Assembled Poly(Imidazole-Palladium): Highly Active, Reusable Catalyst at Parts per Million to Parts per Billion Levels. J. Am. Chem. Soc. 2012, 134, 3190–3198. [Google Scholar] [CrossRef]
- Corma, A.; Das, D.; García, H.; Leyva, A. A Periodic Mesoporous Organosilica Containing a Carbapalladacycle Complex as Heterogeneous Catalyst for Suzuki Cross-Coupling. J. Catal. 2005, 229, 322–331. [Google Scholar] [CrossRef]
- Tran, T.P.N.; Thakur, A.; Trinh, D.X.; Dao, A.T.N.; Taniike, T. Design of Pd@Graphene Oxide Framework Nanocatalyst with Improved Activity and Recyclability in Suzuki-Miyaura Cross-Coupling Reaction. Appl. Catal. A 2018, 549, 60–67. [Google Scholar] [CrossRef]
- Pérez-Lorenzo, M. Palladium Nanoparticles as Efficient Catalysts for Suzuki Cross-Coupling Reactions. J. Phys. Chem. Lett. 2012, 3, 167–174. [Google Scholar] [CrossRef]
- Hübner, S.; de Vries, J.G.; Farina, V. Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts? Adv. Synth. Catal. 2016, 358, 3–25. [Google Scholar] [CrossRef]
- Joshi, H.; Prakash, O.; Sharma, A.K.; Sharma, K.N.; Singh, A.K. Suzuki Coupling Reactions Catalyzed with Palladacycles and Palladium(II) Complexes of 2-Thiophenemethylamine-Based Schiff Bases: Examples of Divergent Pathways for the Same Ligand. Eur. J. Inorg. Chem. 2015, 2015, 1542–1551. [Google Scholar] [CrossRef]
- Deng, Q.; Shen, Y.; Zhu, H.; Tu, T. A Magnetic Nanoparticle-Supported N-Heterocyclic Carbene-Palladacycle: An Efficient and Recyclable Solid Molecular Catalyst for Suzuki–Miyaura Cross-Coupling of 9-Chloroacridine. Chem. Commun. 2017, 53, 13063–13066. [Google Scholar] [CrossRef]
- Baran, T.; Sargin, I.; Menteş, A.; Kaya, M. Exceptionally high turnover frequencies recorded for a new chitosan-based palladium(II) catalyst. Appl. Catal. A Gen. 2016, 523, 12–20. [Google Scholar] [CrossRef]
- Arvela, R.K.; Leadbeater, N.E.; Collins, M.J. Automated Batch Scale-up of Microwave-Promoted Suzuki and Heck Coupling Reactions in Water Using Ultra-Low Metal Catalyst Concentrations. Tetrahedron 2005, 61, 9349–9355. [Google Scholar] [CrossRef]
- Bej, A.; Ghosh, K.; Sarkar, A.; Knight, D.W. Palladium nanoparticles in the catalysis of coupling reactions. RSC Adv. 2016, 6, 11446–11453. [Google Scholar] [CrossRef]
- Deraedt, C.; Salmon, L.; Etienne, L.; Ruiz, J.; Astruc, D. “Click” Dendrimers as Efficient Nanoreactors in Aqueous Solvent: Pd Nanoparticle Stabilization for Sub-Ppm Pd Catalysis of Suzuki–Miyaura Reactions of Aryl Bromides. Chem. Commun. 2013, 49, 8169–8171. [Google Scholar] [CrossRef]
- Mandali, P.K.; Chand, D.K. Palladium Nanoparticles Catalyzed Suzuki Cross-Coupling Reactions in Ambient Conditions. Catal. Commun. 2013, 31, 16–20. [Google Scholar] [CrossRef]
- Reetz, M.T.; Westermann, E. Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. Angew. Chem. Int. Ed. 2000, 39, 165–168. [Google Scholar] [CrossRef]
- De Bellefon, C. Catalytic engineering aspects of flow chemistry. In Flow Chemistry: Fundamentals, 1st ed.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2014; pp. 31–61. [Google Scholar]
- Zhou, C.; Wang, J.; Li, L.; Wang, R.; Hong, M. A Palladium Chelating Complex of Ionic Water-Soluble Nitrogen-Containing Ligand: The Efficient Precatalyst for Suzuki–Miyaura Reaction in Water. Green Chem. 2011, 13, 2100–2106. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.; Luo, H.; Zheng, X.; Fu, H.; Chen, H.; Li, R. An Easily Prepared Tetraphosphine and Its Use in the Palladium-Catalyzed Suzuki–Miyaura Coupling of Aryl Chlorides. Catal. Lett. 2013, 143, 1214–1219. [Google Scholar] [CrossRef]
- Bedford, R.B.; Hazelwood, S.L.; Limmert, M.E. Extremely High Activity Catalysts for the Suzuki Coupling of Aryl Chlorides: The Importance of Catalyst Longevity. Chem. Commun. 2002, 22, 2610–2611. [Google Scholar] [CrossRef]
- Feuerstein, M.; Doucet, H.; Santelli, M. Palladium Catalysed Cross-Coupling of Aryl Chlorides with Arylboronic Acids in the Presence of a New Tetraphosphine Ligand. Synlett 2001, 2001, 1458–1460. [Google Scholar] [CrossRef]
- Deraedt, C.; Astruc, D. “Homeopathic” Palladium Nanoparticle Catalysis of Cross Carbon-Carbon Coupling Reactions. Acc. Chem. Res. 2014, 47, 494–503. [Google Scholar] [CrossRef]
- Ho, C.C.; Olding, A.; Smith, J.A.; Bissember, A.C. Nuances in Fundamental Suzuki–Miyaura Cross-Couplings Employing [Pd(PPh3)4]: Poor Reactivity of Aryl Iodides at Lower Temperatures. Organometallics 2018, 37, 1745–1750. [Google Scholar] [CrossRef]
- Diallo, A.K.; Ornelas, C.; Salmon, L.; Ruiz Aranzaes, J.; Astruc, D. “Homeopathic” Catalytic Activity and Atom-Leaching Mechanism in Miyaura–Suzuki Reactions under Ambient Conditions with Precise Dendrimer-Stabilized Pd Nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 8644–8648. [Google Scholar] [CrossRef]
- Li, S.; Lin, Y.; Cao, J.; Zhang, S. Guanidine/Pd(OAc)2-Catalyzed Room Temperature Suzuki Cross-Coupling Reaction in Aqueous Media under Aerobic Conditions. J. Org. Chem. 2007, 72, 4067–4072. [Google Scholar] [CrossRef]
- Puls, F.; Richter, N.; Kataeva, O.; Knölker, H.J. Synthesis of Tetranuclear Palladium(II) Complexes and Their Catalytic Activity for Cross-Coupling Reactions. Chem. A Eur. J. 2017, 23, 17576–17583. [Google Scholar] [CrossRef]
- Wolfe John, P.; Buchwald Stephen, L. A Highly Active Catalyst for the Room-Temperature Amination and Suzuki Coupling of Aryl Chlorides. Angew. Chem. Int. Ed. 1999, 38, 2413–2416. [Google Scholar] [CrossRef]
- Monnereau, L.; Sémeril, D.; Matt, D.; Toupet, L. Cavity-Shaped Ligands: Calix[4]arene-Based Monophosphanes for Fast Suzuki–Miyaura Cross-Coupling. Chem. A Eur. J. 2010, 16, 9237–9247. [Google Scholar] [CrossRef]
- Feuerstein, M.; Laurenti, D.; Doucet, H.; Santelli, M. Palladium-Tetraphosphine Complex: An Efficient Catalyst for Allylic Substitution and Suzuki Cross-Coupling. Synthesis 2001, 2001, 2320–2326. [Google Scholar] [CrossRef]
- Doucet, H.; Santelli, M. Cis,Cis,Cis-1,2,3,4-Tetrakis(Diphenylphosphinomethyl)Cyclopentane: Tedicyp, an Efficient Ligand in Palladium-Catalysed Reactions. Synlett 2006, 2006, 2001–2015. [Google Scholar] [CrossRef]
- Zaborova, E.; Deschamp, J.; Guieu, S.; Blériot, Y.; Poli, G.; Ménand, M.; Madec, D.; Prestat, G.; Sollogoub, M. Cavitand Supported Tetraphosphine: Cyclodextrin Offers a Useful Platform for Suzuki-Miyaura Cross-Coupling. Chem. Commun. 2011, 47, 9206–9208. [Google Scholar] [CrossRef]
- Luzyanin, K.V.; Tskhovrebov, A.G.; Carias, M.C.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L.; Kukushkin, V.Y. Novel Metal-Mediated (M = Pd, Pt) Coupling between Isonitriles and Benzophenone Hydrazone as a Route to Aminocarbene Complexes Exhibiting High Catalytic Activity (M = Pd) in the Suzuki-Miyaura Reaction. Organometallics 2009, 28, 6559–6566. [Google Scholar] [CrossRef]
- Górna, M.; Szulmanowicz, M.S.; Gniewek, A.; Tylus, W.; Trzeciak, A.M. Recyclable Pd(0)-Pd(II) Composites Formed from Pd(II) Dimers with NHC Ligands under Suzuki–Miyaura Conditions. J. Organomet. Chem. 2015, 785, 92–99. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, L.; Lei, L.; Zheng, X.L.; Fu, H.Y.; Yuan, M.L.; Chen, H.; Li, R.X. PdCl2-2,6-Bis(1,5-Diphenyl-1H-Pyrazol-3-Yl)Pyridine Catalyzed Suzuki–Miyaura Cross-Coupling. Catal. Commun. 2012, 29, 194–197. [Google Scholar] [CrossRef]
- Eremin, D.B.; Ananikov, V.P. Understanding Active Species in Catalytic Transformations: From Molecular Catalysis to Nanoparticles, Leaching, “Cocktails” of Catalysts and Dynamic Systems. Coord. Chem. Rev. 2017, 346, 2–19. [Google Scholar] [CrossRef]
- Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd Metal Catalysts for Cross-Couplings and Related Reactions in the 21st Century: A Critical Review. Chem. Rev. 2018, 118, 2249–2295. [Google Scholar] [CrossRef]
- Köhler, K.; Heidenreich, R.G.; Soomro, S.S.; Pröckl, S.S. Supported Palladium Catalysts for Suzuki Reactions: Structure-Property Relationships, Optimized Reaction Protocol and Control of Palladium Leaching. Adv. Synth. Catal. 2008, 350, 2930–2936. [Google Scholar] [CrossRef]
- Soomro, S.S.; Ansari, F.L.; Chatziapostolou, K.; Köhler, K. Palladium Leaching Dependent on Reaction Parameters in Suzuki–Miyaura Coupling Reactions Catalyzed by Palladium Supported on Alumina under Mild Reaction Conditions. J. Catal. 2010, 273, 138–146. [Google Scholar] [CrossRef]
- Vaerenbergh, B.V.; Vlieger, K.D.; Claeys, K.; Vanhoutte, G.; Clercq, J.D.; Vermeir, P.; Verberckmoes, A. The Effect of the Hydrotalcite Structure and Nanoparticle Size on the Catalytic Performance of Supported Palladium Nanoparticle Catalysts in Suzuki Cross-Coupling. Appl. Catal. A Gen. 2018, 550, 236–244. [Google Scholar] [CrossRef]
- Collins, G.; Schmidt, M.; O’Dwyer, C.; Holmes, J.D.; McGlacken, G.P. The Origin of Shape Sensitivity in Palladium-Catalyzed Suzuki–Miyaura Cross Coupling Reactions. Angew. Chem. Int. Ed. 2014, 53, 4142–4145. [Google Scholar] [CrossRef]
- Ohtaka, A.; Sakaguchi, E.; Yamaguchi, T.; Hamasaka, G.; Uozumi, Y.; Shimomura, O.; Nomura, R. A Recyclable “Boomerang” Linear Polystyrene-Stabilized Pd Nanoparticles for the Suzuki Coupling Reaction of Aryl Chlorides in Water. ChemCatChem 2013, 5, 2167–2169. [Google Scholar] [CrossRef]
- MacQuarrie, S.; Horton, J.H.; Barnes, J.; McEleney, K.; Loock, H.P.; Crudden, C.M. Visual Observation of Redistribution and Dissolution of Palladium during the Suzuki–Miyaura Reaction. Angew. Chem. Int. Ed. 2008, 47, 3279–3282. [Google Scholar] [CrossRef]
- Ananikov, V.P.; Beletskaya, I.P. Toward the Ideal Catalyst: From Atomic Centers to a “Cocktail” of Catalysts. Organometallics 2012, 31, 1595–1604. [Google Scholar] [CrossRef]
- Kashin, A.S.; Ananikov, V.P. Catalytic C–C and C–Heteroatom Bond Formation Reactions: In Situ Generated or Preformed Catalysts? Complicated Mechanistic Picture Behind Well-Known Experimental Procedures. J. Org. Chem. 2013, 78, 11117–11125. [Google Scholar] [CrossRef]
- Mieczyńska, E.; Borkowski, T.; Cypryk, M.; Pospiech, P.; Trzeciak, A.M. Palladium Supported on Triazolyl-Functionalized Polysiloxane as Recyclable Catalyst for Suzuki–Miyaura Cross-Coupling. Appl. Catal. A Gen. 2014, 470, 24–30. [Google Scholar] [CrossRef]
- Niu, Z.; Peng, Q.; Zhuang, Z.; He, W.; Li, Y. Evidence of an Oxidative-Addition-Promoted Pd-Leaching Mechanism in the Suzuki Reaction by Using a Pd-Nanostructure Design. Chem. A Eur. J. 2012, 18, 9813–9817. [Google Scholar] [CrossRef]
- Sullivan, J.A.; Flanagan, K.A.; Hain, H. Suzuki Coupling Activity of an Aqueous Phase Pd Nanoparticle Dispersion and a Carbon Nanotube/Pd Nanoparticle Composite. Catal. Today 2009, 145, 108–113. [Google Scholar] [CrossRef]
- Lichtenegger, G.J.; Maier, M.; Hackl, M.; Khinast, J.G.; Gössler, W.; Griesser, T.; Kumar, V.S.P.; Gruber-Woelfler, H.; Deshpande, P.A. Suzuki-Miyaura Coupling Reactions Using Novel Metal Oxide Supported Ionic Palladium Catalysts. J. Mol. Catal. A Chem. 2017, 426, 39–51. [Google Scholar] [CrossRef]
- Hiebler, K.; Lichtenegger, G.J.; Maier, M.C.; Park, E.S.; Gonzales-Groom, R.; Binks, B.P.; Gruber-Woelfler, H. Heterogeneous Pd Catalysts as Emulsifiers in Pickering Emulsions for Integrated Multistep Synthesis in Flow Chemistry. Beilstein J. Org. Chem. 2018, 14, 648–658. [Google Scholar] [CrossRef]
- Gaikwad, A.V.; Holuigue, A.; Thathagar, M.B.; ten Elshof, J.E.; Rothenberg, G. Ion- and Atom-Leaching Mechanisms from Palladium Nanoparticles in Cross-Coupling Reactions. Chem. Eur. J. 2007, 13, 6908–6913. [Google Scholar] [CrossRef]
- Fang, P.P.; Jutand, A.; Tian, Z.Q.; Amatore, C. Au–Pd Core–Shell Nanoparticles Catalyze Suzuki–Miyaura Reactions in Water through Pd Leaching. Angew. Chem. Int. Ed. 2011, 50, 12184–12188. [Google Scholar] [CrossRef]
- Al-Amin, M.; Akimoto, M.; Tameno, T.; Ohki, Y.; Takahashi, N.; Hoshiya, N.; Shuto, S.; Arisawa, M. Suzuki–Miyaura Cross-Coupling Reactions Using a Low-Leaching and Highly Recyclable Gold-Supported Palladium Material and Two Types of Microwave Equipments. Green Chem. 2013, 15, 1142–1145. [Google Scholar] [CrossRef]
- Costantino, F.; Vivani, R.; Bastianini, M.; Ortolani, L.; Piermatti, O.; Nocchetti, M.; Vaccaro, L. Accessing stable zirconium carboxy-aminophosphonate nanosheets as support for highly active Pd nanoparticles. Chem. Commun. 2015, 51, 15990–15993. [Google Scholar] [CrossRef]
- Kozell, V.; Giannoni, T.; Nocchetti, M.; Vivani, R.; Piermatti, O.; Vaccaro, L. Immobilized Palladium Nanoparticles on Zirconium Carboxy-Aminophosphonates Nanosheets as an Efficient Recoverable Heterogeneous Catalyst for Suzuki–Miyaura and Heck Coupling. Catalysts 2017, 7, 186. [Google Scholar] [CrossRef] [Green Version]
- Pavia, C.; Ballerini, E.; Bivona, L.A.; Giacalone, F.; Aprile, C.; Vaccaro, L.; Gruttadauria, M. Palladium Supported on Cross-Linked Imidazolium Network on Silica as Highly Sustainable Catalysts for the Suzuki Reaction under Flow Conditions. Adv. Synth. Catal. 2013, 355, 2007–2018. [Google Scholar] [CrossRef]
- Monguchi, Y.; Ichikawa, T.; Netsu, M.; Hattori, T.; Mizusaki, T.; Sawama, Y.; Sajiki, H. Tertiary-Amino-Functionalized Resin-Supported Palladium Catalyst for the Heterogeneous Suzuki–Miyaura Reaction of Aryl Chlorides. Synlett 2015, 26, 2014–2018. [Google Scholar] [CrossRef]
- Ichikawa, T.; Netsu, M.; Mizuno, M.; Mizusaki, T.; Takagi, Y.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Development of a Unique Heterogeneous Palladium Catalyst for the Suzuki–Miyaura Reaction Using (Hetero)Aryl Chlorides and Chemoselective Hydrogenation. Adv. Synth. Catal. 2017, 359, 2269–2279. [Google Scholar] [CrossRef]
- Pascanu, V.; Yao, Q.; Gómez, A.B.; Gustafsson, M.; Yun, Y.; Wan, W.; Samain, L.; Zou, X.; Martín-Matute, B. Sustainable Catalysis: Rational Pd Loading on MIL-101Cr-NH2 for More Efficient and Recyclable Suzuki–Miyaura Reactions. Chem. A Eur. J. 2013, 19, 17483–17493. [Google Scholar] [CrossRef]
- Pascanu, V.; Hansen, P.R.; Bermejo Gómez, A.; Ayats, C.; Platero-Prats, A.E.; Johansson, M.J.; Pericàs, M.A.; Martín-Matute, B. Highly Functionalized Biaryls via Suzuki–Miyaura Cross-Coupling Catalyzed by Pd@MOF under Batch and Continuous Flow Regimes. ChemSusChem 2015, 8, 123–130. [Google Scholar] [CrossRef]
- Carson, F.; Pascanu, V.; Bermejo Gómez, A.; Zhang, Y.; Platero-Prats, A.E.; Zou, X.; Martín-Matute, B. Influence of the Base on Pd@MIL-101-NH2(Cr) as Catalyst for the Suzuki–Miyaura Cross-Coupling Reaction. Chem. A Eur. J. 2015, 21, 10896–10902. [Google Scholar] [CrossRef]
- Slavík, P.; Kurka, D.W.; Smith, D.K. Palladium-scavenging self-assembled hybrid hydrogels – reusable highly-active green catalysts for Suzuki–Miyaura cross-coupling reactions. Chem. Sci. 2018, 9, 8673–8681. [Google Scholar] [CrossRef]
- Huang, Y.; Wei, Q.; Wang, Y.; Dai, L. Three-Dimensional Amine-Terminated Ionic Liquid Functionalized Graphene/Pd Composite Aerogel as Highly Efficient and Recyclable Catalyst for the Suzuki Cross-Coupling Reactions. Carbon 2018, 136, 150–159. [Google Scholar] [CrossRef]
- Veisi, H.; Najafi, S.; Hemmati, S. Pd(II)/Pd(0) Anchored to Magnetic Nanoparticles (Fe3O4) Modified with Biguanidine-Chitosan Polymer as a Novel Nanocatalyst for Suzuki-Miyaura Coupling Reactions. Int. J. Biol. Macromol. 2018, 113, 186–194. [Google Scholar] [CrossRef]
- Samarasimhareddy, M.; Prabhu, G.; Vishwanatha, T.M.; Sureshbabu, V.V. PVC-Supported Palladium Nanoparticles: An Efficient Catalyst for Suzuki Cross-Coupling Reactions at Room Temperature. Synthesis 2013, 45, 1201–1206. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, J.H.; Jun, B.H.; Kang, H.; Park, J.; Lee, Y.S. Macroporous Polystyrene-Supported Palladium Catalyst Containing a Bulky N-Heterocyclic Carbene Ligand for Suzuki Reaction of Aryl Chlorides. Org. Lett. 2008, 10, 1609–1612. [Google Scholar] [CrossRef]
- Li, J.; Huo, P.; Zheng, J.; Zhou, X.; Liu, W. Highly Efficient and Recyclable Water-Soluble Fullerene-Supported PdCl2 Nanocatalyst in Suzuki–Miyaura Cross-Coupling Reaction. RSC Adv. 2018, 8, 24231–24235. [Google Scholar] [CrossRef]
- Sahu, D.; Silva, A.R.; Das, P. Facile synthesis of palladium nanoparticles supported on silica: An efficient phosphine-free heterogeneous catalyst for Suzuki coupling in aqueous media. Catal. Commun. 2016, 86, 32–35. [Google Scholar] [CrossRef]
- Lati, M.P.; Naeem, M.I.; Alinia-Asli, M.; Shirini, F.; Rezvani, M.A.; Åkermark, B.; Johnston, E.V.; Verho, O. Palladium Nanoparticles Immobilized on an Aminopropyl-Functionalized Silica-Magnetite Composite as a Recyclable Catalyst for Suzuki-Miyaura Reactions. ChemistrySelect 2018, 3, 7970–7975. [Google Scholar] [CrossRef]
- Pourjavadi, A.; Habibi, Z. Palladium Nanoparticle-Decorated Magnetic Pomegranate Peel-Derived Porous Carbon Nanocomposite as an Excellent Catalyst for Suzuki–Miyaura and Sonogashira Cross-Coupling Reactions. Appl. Organomet. Chem. 2018, 32, e4480. [Google Scholar] [CrossRef]
- Goksu, H.; Zengin, N.; Karaosman, A.; Sen, F. Highly Active and Reusable Pd/AlO(OH) Nanoparticles for the Suzuki Cross-Coupling Reaction. Curr. Organocatal. 2017, 5, 34–41. [Google Scholar] [CrossRef]
- Rohani, S.; Ziarani, G.M.; Badiei, A.; Ziarati, A.; Jafari, M.; Shayesteh, A. Palladium-Anchored Multidentate SBA-15/Di-Urea Nanoreactor: A Highly Active Catalyst for Suzuki Coupling Reaction. Appl. Organomet. Chem. 2018, 32, e4397. [Google Scholar] [CrossRef]
- Monopoli, A.; Nacci, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Mangone, A.; Giannossa, L.C.; Azzone, P.; Cioffi, N.; Monopoli, A.; et al. Palladium/Zirconium Oxide Nanocomposite as a Highly Recyclable Catalyst for C-C Coupling Reactions in Water. Molecules 2010, 15, 4511–4525. [Google Scholar] [CrossRef] [Green Version]
- Mateos, C.; Rincón, J.A.; Martín-Hidalgo, B.; Villanueva, J. Green and Scalable Procedure for Extremely Fast Ligandless Suzuki–Miyaura Cross-Coupling Reactions in Aqueous IPA Using Solid-Supported Pd in Continuous Flow. Tetrahedron Lett. 2014, 55, 3701–3705. [Google Scholar] [CrossRef]
- Pagliaro, M.; Pandarus, V.; Beland, F.; Ciriminna, R.; Palmisano, G.; Cara, P.D. A new class of heterogeneous Pd catalysts for synthetic organic chemistry. Catal. Sci. Technol. 2011, 1, 736–739. [Google Scholar] [CrossRef]
- Pandarus, V.; Gingras, G.; Béland, F.; Ciriminna, R.; Pagliaro, M. Process Intensification of the Suzuki–Miyaura Reaction over Sol–Gel Entrapped Catalyst SiliaCat DPP-Pd Under Conditions of Continuous Flow. Org. Process Res. Dev. 2014, 18, 1550–1555. [Google Scholar] [CrossRef]
- Greco, R.; Goessler, W.; Cantillo, D.; Kappe, C.O. Benchmarking Immobilized Di- and Triarylphosphine Palladium Catalysts for Continuous-Flow Cross-Coupling Reactions: Efficiency, Durability, and Metal Leaching Studies. ACS Catal. 2015, 5, 1303–1312. [Google Scholar] [CrossRef]
- Crudden, C.M.; Sateesh, M.; Lewis, R. Mercaptopropyl-Modified Mesoporous Silica: A Remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions. J. Am. Chem. Soc. 2005, 127, 10045–10050. [Google Scholar] [CrossRef]
- Dong, D.; Li, Z.; Liu, D.; Yu, N.; Zhao, H.; Chen, H.; Liu, J.; Liu, D. Postsynthetic Modification of Single Pd Sites into Uncoordinated Polypyridine Groups of a MOF as the Highly Efficient Catalyst for Heck and Suzuki Reactions. New J. Chem. 2018, 42, 9317–9323. [Google Scholar] [CrossRef]
- Zhong, L.; Chokkalingam, A.; Cha, W.S.; Lakhi, K.S.; Su, X.; Lawrence, G.; Vinu, A. Pd nanoparticles embedded in mesoporous carbon: A highly efficient catalyst for Suzuki-Miyaura reaction. Catal. Today 2015, 243, 195–198. [Google Scholar] [CrossRef]
- Durand, J.; Teuma, E.; Malbosc, F.; Kihn, Y.; Gómez, M. Palladium Nanoparticles Immobilized in Ionic Liquid: An Outstanding Catalyst for the Suzuki C–C Coupling. Catal. Commun. 2008, 9, 273–275. [Google Scholar] [CrossRef]
- Fareghi-Alamdari, R.; Saeedi, M.S.; Panahi, F. New Bis(N-Heterocyclic Carbene) Palladium Complex Immobilized on Magnetic Nanoparticles: As a Magnetic Reusable Catalyst in Suzuki-Miyaura Cross Coupling Reaction. Appl. Organomet. Chem. 2017, 31. [Google Scholar] [CrossRef]
- Indra, A.; Gopinath, C.S.; Bhaduri, S.; Lahiri, G.K. Hydroxyapatite Supported Palladium Catalysts for Suzuki–Miyaura Cross-Coupling Reaction in Aqueous Medium. Catal. Sci. Technol. 2013, 3, 1625–1633. [Google Scholar] [CrossRef]
- Lee, D.H.; Choi, M.; Yu, B.W.; Ryoo, R.; Taher, A.; Hossain, S.; Jin, M.J. Expanded Heterogeneous Suzuki–Miyaura Coupling Reactions of Aryl and Heteroaryl Chlorides under Mild Conditions. Adv. Synth. Catal. 2009, 351, 2912–2920. [Google Scholar] [CrossRef]
- Baran, T. Solvent-Free, Microwave-Assisted Highly Efficient, Rapid and Simple Synthesis of Biphenyl Compounds by Using Silica Based Pd(II) Catalyst. J. Macromol. Sci. Part A 2018, 55, 280–287. [Google Scholar] [CrossRef]
- Davies, I.W.; Matty, L.; Hughes, D.L.; Reider, P.J. Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts? J. Am. Chem. Soc. 2001, 123, 10139–10140. [Google Scholar] [CrossRef]
- Chtchigrovsky, M.; Lin, Y.; Ouchaou, K.; Chaumontet, M.; Robitzer, M.; Quignard, F.; Taran, F. Dramatic Effect of the Gelling Cation on the Catalytic Performances of Alginate-Supported Palladium Nanoparticles for the Suzuki–Miyaura Reaction. Chem. Mater. 2012, 24, 1505–1510. [Google Scholar] [CrossRef]
- Abdellah, I.; Kasongo, P.; Labattut, A.; Guillot, R.; Schulz, E.; Martini, C.; Huc, V. Benzyloxycalix[8]Arene: A New Valuable Support for NHC Palladium Complexes in C–C Suzuki–Miyaura Couplings. Dalton Trans. 2018. [Google Scholar] [CrossRef]
- Pandarus, V.; Desplantier-Giscard, D.; Gingras, G.; Ciriminna, R.; Demma Carà, P.; Béland, F.; Pagliaro, M. Enhanced Heterogeneously Catalyzed Suzuki–Miyaura Reaction over SiliaCat Pd(0). Tetrahedron Lett. 2013, 54, 4712–4716. [Google Scholar] [CrossRef]
- Bennett, J.A.; Kristof, A.J.; Vasudevan, V.; Genzer, J.; Srogl, J.; Abolhasani, M. Microfluidic Synthesis of Elastomeric Microparticles: A Case Study in Catalysis of Palladium-Mediated Cross-Coupling. AIChE J. 2018, 64, 3188–3197. [Google Scholar] [CrossRef]
- Widegren, J.A.; Finke, R.G. A review of soluble transition-metal nanoclusters as arene hydrogenation catalysts. J. Mol. Catal. 2003, 191, 187–207. [Google Scholar] [CrossRef]
- Phan, N.T.S.; Van Der Sluys, M.; Jones, C.W. On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings—Homogeneous or Heterogeneous Catalysis. A Critical Review. Adv. Synth. Catal. 2006, 348, 609–679. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Kurokhtina, A.A.; Larina, E.V. Simple kinetic method for distinguishing between homogeneous and heterogeneous mechanisms of catalysis, illustrated by the example of “ligand-free” Suzuki and Heck reactions of aryl iodides and aryl bromides. Kinet. Catal. 2012, 53, 84–90. [Google Scholar] [CrossRef]
- Schmidt, A.F.; Kurokhtina, A.A. Distinguishing between the homogeneous and heterogeneous mechanisms of catalysis in the Mizoroki-Heck and Suzuki-Miyaura reactions: Problems and prospects. Kinet. Catal. 2012, 53, 714–730. [Google Scholar] [CrossRef]
- Thathagar, M.B.; ten Elshof, J.E.; Rothenberg, G. Pd Nanoclusters in C-C Coupling Reactions: Proof of Leaching. Angew. Chem. Int. Ed. 2006, 45, 2886–2890. [Google Scholar] [CrossRef]
- Barreiro, E.M.; Hao, Z.; Adrio, L.A.; van Ommen, J.R.; Hellgardt, K.; Hii, K.K.M. Spatial, temporal and quantitative assessment of catalyst leaching in continuous flow. Catal. Today 2018, 308, 64–70. [Google Scholar] [CrossRef]
- Bourouina, A.; Meille, V.; de Bellefon, C. A flow split test to discriminating between heterogeneous and homogeneous contributions in Suzuki coupling. J. Flow Chem. 2018, 8, 117–121. [Google Scholar]
- Budroni, G.; Corma, A.; García, H.; Primo, A. Pd Nanoparticles Embedded in Sponge-like Porous Silica as a Suzuki–Miyaura Catalyst: Similarities and Differences with Homogeneous Catalysts. J. Catal. 2007, 251, 345–353. [Google Scholar] [CrossRef]
- Webb, J.D.; MacQuarrie, S.; McEleney, K.; Crudden, C.M. Mesoporous Silica-Supported Pd Catalysts: An Investigation into Structure, Activity, Leaching and Heterogeneity. J. Catal. 2007, 252, 97–109. [Google Scholar] [CrossRef]
- Snelders, D.J.M.; van Koten, G.; Klein Gebbink, R.J.M. Hexacationic Dendriphos Ligands in the Pd-Catalyzed Suzuki-Miyaura Cross-Coupling Reaction: Scope and Mechanistic Studies. J. Am. Chem. Soc. 2009, 131, 11407–11416. [Google Scholar] [CrossRef]
- Lee, J.Y.; Tzeng, R.J.; Wang, M.C.; Lee, H.M. Application of a zwitterionic palladium complex as a metal precursor of recyclable palladium nanoparticles for catalyzing Suzuki-Miyaura coupling reactions. Inorg. Chim. Acta 2017, 464, 74–80. [Google Scholar] [CrossRef]
- Gorunova, O.N.; Novitskiy, I.M.; Grishin, Y.K.; Gloriozov, I.P.; Roznyatovsky, V.A.; Khrustalev, V.N.; Kochetkov, K.A.; Dunina, V.V. When Applying the Mercury Poisoning Test to Palladacycle-Catalyzed Reactions, One Should Not Consider the Common Misconception of Mercury(0) Selectivity. Organometallics 2018. [Google Scholar] [CrossRef]
- Phillips, S.; Kauppinen, P. The Use of Metal Scavengers for Recovery of Palladium Catalyst from Solution. Platin. Met. Rev. 2010, 54, 69–70. [Google Scholar] [CrossRef]
- Huang, L.; Ang, T.P.; Wang, Z.; Tan, J.; Chen, J.; Wong, P.K. On the Roles of Solid-Bound Ligand Scavengers in the Removal of Palladium Residues and in the Distinction between Homogeneous and Heterogeneous Catalysis. Inorg. Chem. 2011, 50, 2094–2111. [Google Scholar] [CrossRef]
- Richardson, J.M.; Jones, C.W. Strong Evidence of Solution-Phase Catalysis Associated with Palladium Leaching from Immobilized Thiols during Heck and Suzuki Coupling of Aryl Iodides, Bromides, and Chlorides. J. Catal. 2007, 251, 80–93. [Google Scholar] [CrossRef]
- Collins, G.; Schmidt, M.; O’Dwyer, C.; McGlacken, G.; Holmes, J.D. Enhanced Catalytic Activity of High-Index Faceted Palladium Nanoparticles in Suzuki–Miyaura Coupling Due to Efficient Leaching Mechanism. ACS Catal. 2014, 4, 3105–3111. [Google Scholar] [CrossRef] [Green Version]
- Beletskaya, I.P.; Kashin, A.N.; Khotina, I.A.; Khokhlov, A.R. Efficient and Recyclable Catalyst of Palladium Nanoparticles Stabilized by Polymer Micelles Soluble in Water for Suzuki-Miyaura Reaction, Ostwald Ripening Process with Palladium Nanoparticles. Synlett 2008, 2008, 1547–1552. [Google Scholar] [CrossRef]
- Davis, J.J.; Hanyu, Y. Mechanistic Studies of AFM Probe-Driven Suzuki and Heck Molecular Coupling. Nanotechnology 2010, 21, 265302. [Google Scholar] [CrossRef]
- Lee, A.F.; Ellis, P.J.; Fairlamb, I.J.S.; Wilson, K. Surface catalysed Suzuki–Miyaura cross-coupling by Pd nanoparticles: An operando XAS study. Dalton Trans. 2010, 39, 10473–10482. [Google Scholar] [CrossRef]
- Ellis, P.J.; Fairlamb, I.J.S.; Hackett, S.F.J.; Wilson, K.; Lee, A.F. Evidence for the Surface-Catalyzed Suzuki–Miyaura Reaction over Palladium Nanoparticles: An Operando XAS Study. Angew. Chem. Int. Ed. 2010, 49, 1820–1824. [Google Scholar] [CrossRef]
- Brazier, J.B.; Nguyen, B.N.; Adrio, L.A.; Barreiro, E.M.; Leong, W.P.; Newton, M.A.; Figueroa, S.J.A.; Hellgardt, K.; Hii, K.K.M. Catalysis in flow: Operando study of Pd catalyst speciation and leaching. Catal. Today 2014, 229, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Weck, M.; Jones, C.W. Mizoroki-Heck Coupling Using Immobilized Molecular Precatalysts: Leaching Active Species from Pd Pincers, Entrapped Pd Salts, and Pd NHC Complexes. Inorg. Chem. 2007, 46, 1865–1875. [Google Scholar] [CrossRef]
Entry | X | R | Solvent | Catalyst | T | Pdtot | TON | TOF | Ref. |
---|---|---|---|---|---|---|---|---|---|
(°C) | (mol %) | mol/mol | (h−1) | ||||||
1 | 4-Cl | COCH3 | DMAc | Pd tetraphosphine | 130 | 0.01 | 10,000 | 170 | [26] |
2 | 4-Cl | COCH3 | Toluene | Pd(OAc)2+phosphane | 100 | 0.02 | 4600 | 200 | [34] |
3 | 2-Cl | CN | Xylene | Pd tetraphosphine | 130 | 0.002 | 29,000 | 1450 | [28] |
4 | 2-Cl | 1-NO2+5-CF3 | DMAc | Pd tetraphosphine | 130 | 10−4 | 680,000 | 5000 | [26] |
5 | 4-Cl | NO2 | H2O | TBAB stab. NPs | 120 | 0.001 | 66,000 | 22,000 | [25] |
6 | 4-Cl | COCH3-H-NO2 | Dioxane | Pd phosphite | 100 | 5 × 10−5 | 2,000,000 | 100,000 | [27] |
7 | 2-Cl | 1-NO2+5-CF3 | Xylene | Pd tetraphosphine | 130 | 10−5 | 6,800,000 | 340,000 | [28] |
8 | I | H | CHCl3-MeOH | Dendrimer stab. NPs | 25 | 10−4 | 540,000 | 6000 | [31] |
9 | 4-I | NO2 | H2O | Pd(OAc)2+guanidine | RT | 10−4 | 850,000 | 42,000 | [32] |
10 | 4-Br | COCH3 | NMP-H2O | tetranuclear Pd(II) | RT | 1.8 × 10−4 | 530,000 | 23,000 | [33] |
11 | 4-Br | NO2 | EtOH-H2O | Dendrimer stab. NPs | 80 | 3 × 10−5 | 2,700,000 | 45,000 | [21] |
12 | 4-Br | CF3 | EtOH | PdCl2 pyridine | 70 | 10−6 | 58,000,000 | 72,000 | [41] |
13 | 4-Br | CH3 | Dioxane | Pd(OAc)2 - monophosphane | 100 | 2 × 10−6 | 14,550,000 | 202,000 | [35] |
14 | 4-Br | OCH3 | Xylene | Pd cyclodextrin-tetraphosphine | 120 | 3 × 10−7 | 60,000,000 | 380,000 | [38] |
15 | 4-Br | CH3 | Xylene | Pd cyclodextrin-tetraphosphine | 120 | 3 × 10−7 | 130,000,000 | 670,000 | [38] |
16 | 2-Br | CH3 | Ethylene glycol | Pd(II)NHC dimer | 110 | 10−4 | 900,000 | 900,000 | [40] |
17 | 4-Br | OCH3 | EtOH | Pd aminocarbene | 80 | 10−5 | 1,400,000 | 1,000,000 | [39] |
18 | 4-Br | COCH3 | EtOH-H2O | Stab. Pd(OAC)2 | 150 | 250 ppb | 212,000 | 1,500,000 | [19] |
19 | 4-Br | COCH3 | Toluene | Pd(OAc)2+phosphane | 100 | 10−6 | 91,000,000 | 3,800,000 | [34] |
20 | 4-Br | CF3 or COCH3 | Xylene | Pd tetraphosphine | 130 | 10−6 | 96,000,000 | 4,800,000 | [36] |
21 | 4-Br | COCH3 | Xylene | Pd cyclodextrin-tetraphosphine | 120 | 10−10 | 340,000,000,000 | 1,000,000,000 | [38] |
Entry | X | R | Solvent | Catalyst | T | Pdtot | Pd Leach. | TOFtot | TOFLeach | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (mol %) | (ppm) | (h−1) | (h−1) | ||||||
1 | 4-Br | OCH3 | EtOH-H2O | Pd cubic NC | RT | 0.5 | 1.1 | <10 | 230 | [47] |
2 | I | H | DMF-H2O | Pd (NP) /hydrotalcite | 40 | 2 | <2% Pdtot | 10 | 430 | [46] |
3 | 4-Br | OCH3 | EtOH-H2O | Pd octahedric NC | RT | 0.5 | 0.32 | <10 | 770 | [47] |
4 | 4-Cl | COCH3 | NMP-H2O | Pd/Al2O3+TBAB | 65 | 0.1 | 25% Pdtot | 270 | 1070 | [45] |
5 | 4-I | NO2 | DMF-H2O | Pd foil | 100 | - | 0.1 | - | 2000 a | [49] |
6 | 2-Br | CH3 | iPrOH-H2O | Pd(OAc)2/siloxane | 60 | 0.23 | 18% Pdtot | 430 | 2400 | [52] |
7 | 4-I | OCH3 | THF | Pd/C | 80 | 0.8 | 0.06 | <10 | 14,000 | [53] |
8 | 4-I | COOH | H2O | NPs Pd-DMAP/MWCNT | 100 | 0.05 | <0.01 | 1000 | 22,700 | [54] |
9 | 4-I | OCH3 | THF | Pd-Au/SBA-15 | 80 | 0.8 | 0.02 | <10 | 27,000 | [53] |
10 | 4-Br | CH3 | EtOH-H2O | Ce0.99-Pd0.01O2−x | 75 | 0.5 | 0.06 | 200 | 31,000 | [55] |
11 | 4-Br | CH3 | EtOH-H2O | Sn0.99-Pd0.01O2−x | 75 | 0.5 | 0.14 | 1200 | 53,000 | [55] |
12 | Br | H | DMF | S-modified-Au-Pd | 90 | - | 0.2 | - | 130,000 b | [59] |
13 | I | H | EtOH | S-modified-Au-Pd | 80 | - | 0.02 | - | 1,300,000 b | [59] |
14 | 4-Br | CH3 | EtOH | Pd cross-linked imidazolium | 50 | 0.1 | 0.015% | 26 | 176,000 | [62] |
15 | 4-Br | OCH3 | EtOH 96% | Pd/ZPGly-15 | 70 | 0.1 | 3 | 98 | 19,200 | [61] |
Entry | X | R | Solvent | Catalyst | T | Pdtot | Pd Leach. | TOFtot | TOFLeach | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
(°C) | (mol %) | (ppm) | (h−1) | (h−1) | ||||||
1 | 4-Br | OCH3 | H2O | Pd-MIL-101Cr-NH2 | RT | 3 | 5.64 | 6 | 155 | [65] |
2 | I | H | EtOH:H2O | Pd(0)/PVC | 25 | 1 | 2.4 | 48 b | 533 b | [71] |
3 | 4-Br | COCH3 | DMF:H2O | Pd-NHC-MPS | 50 | 1 | 7.07 | 93 b | 1160 b | [72] |
4 | 4-Br | CH3 | EtOH:H2O | Pd(0/II)/magnetic Fe3O4 NPs | 25 | 0.2 | 3.53 | 133 b | 2650 b | [70] |
5 | 4-Cl | OCH3 | H2O | Pd-MIL-101 (MOF) | 80 | 0.9 | <0.2% Pdtot | 6 | 2800 | [8] |
6 | 2-Br | CH3 | iPrOH:H2O | Pd/Copolymer | 60 | 0.23 | 5.85 | 400 b | 3600 b | [52] |
7 | 4-Br | OCH3 | H2O | Pd-MIL-101Cr-NH2 | RT | 3 | 0.17 | 6 | 5140 | [65] |
8 | I | H | EtOH:H2O | SBA-15/di-urea/Pd | 70 | 0.26 | 2.55 | 322 b | 5800 b | [78] |
9 | p-Br | CH3 | EtOH:H2O | Pd-MIL-101Cr-NH2 | RT | 3 | 1.5 | 66 b | 6880 b | [65] |
10 | I | H | H2O:iPrOH | Pd/AlO(OH) NPs | 25 | 0.12 | 1.1 | 394 b | 11,800 b | [77] |
11 | I | H | EtOH:H2O | Pd/Fe3O4-PC | 60 | 0.02 | <1 | 1891 b | 11,900 b | [76] |
12 | p-Br | OCH3 | H2O | Pd (NP)-NMe2/SiO2 | 50 | 0.1 | <2% Pdtot | 250 | 12,500 | [74] |
13 | I | H | EtOH:H2O | 3D rGO/Pd | 80 | 0.5 | 0.658 | 471 b | 15,200 b | [69] |
14 | 4-I | CN | MeOH:H2O | Siliacat Pd-DPP | 70 | 5 mgPd | 0.1% Pdtot | 2 | 21,000 | [83] |
15 | 4-Br | COCH3 | H2O | C60-TEGS/PdCl2 | 80 | 0.0087 | 0.231 | 2700 b | 27,000 b | [73] |
16 | 4-I | OCH3 | EtOH:H2O | Pd(0)-AMP-SMC | 90 | 0.24 | <0.1 | 111 | 47,100 | [75] |
17 | 5-I and 5-Br | R1 | H2O | Pd NPs/ZrO2 | 90 | 0.1 | 0.067 | 57 b | 56,500 b;c | [79] |
18 | 3-I | OH | H2O:iPrOH | Pd/C | 150 | 12 mgPd | 40 | 239 | 71,550 | [80] |
19 | 4-I | CN | THF:EtOH:H2O | Siliacat Pd-DPP | 80 | 3.9 mgPd | 1% Pdtot | 81 | 88,800 | [83] |
20 | 4-Br | COCH3 | H2O | Pd-SBA-15-SH | 100 | 1 | 0.09 | 50 | 114,000 | [84] |
21 | I | H | DMF | Pd HoMOF | 100 | 0.4 | 0.086 | 248 b | 122,000 b | [85] |
22 | 4-Br | COCH3 | MeOH | Siliacat Pd(0) | 75 | 0.1 | 2 | 12,500 | 127,200 | [95] |
23 | 4-Br | COCH3 | EtOH:H2O | Pd (NP)/mesop carbon | 80 | 2 | <0.1 | 50 | 132,500 | [86] |
24 | Br | H | H2O | Pd-NPs-IL | 100 | 0.25 | 5 a | 368 b | 138,000 b | [87] |
25 | 4-I | CH3 | H2O | MEPI-Pd | 100 | 2.8 × 10−5 | <0.005 | 119,000 | 233,000 | [11] |
26 | Cl | H | H2O | Polymer anchored Pd(II) | 100 | 0.001 | <0.3 | 840 | 280,000 | [10] |
27 | 4-Cl | CH3 | H2O | MEPI-Pd | 100 | 0.0066 | <0.005 | 15,000 | 308,000 | [11] |
28 | I | H | H2O | [Pd(COD)Cl2]/hydroxyapatite | 80 | 0.034 | <0.001 | 125 b | 422,000 b;c | [89] |
29 | 4-I | NO2 | MeOH | Siliacat Pd(0) | 65 | 0.1 | 0.02 | 1000 b | 424,000 b | [81] |
30 | p-Br | OCH3 | THF:EtOH:H2O | Siliacat Pd-DPP | 70 | 46.64 mgPd | 26.76 | 12 | 453,000 | [82] |
31 | 4-I | OCH3 | DMF:H2O | Pd-NHC-MNP | 80 | 0.12 | 0.064 | 908 b | 634,000 b | [88] |
32 | 4-Br | COCH3 | H2O | Pd-SBA-15-SH | 80 | 1 | 0.003 | 20 | 1,390,000 | [84] |
33 | 4-Cl | OCH3 | EtOH:H2O | Pd-MP-LTA | 50 | 1 | 0.0048 | 20 b | 2,270,000 b | [90] |
34 | 4-Br | CH3 | H2O | MEPI-Pd | 100 | 0.004 | <0.005 | 12,500 | 2,770,000 | [11] |
35 | Br | H | H2O | Polymer anchored Pd(II) | 100 | 0.001 | <0.3 | 28,800 | 9,600,000 | [10] |
36 | p-Br | CN | THF:EtOH:H2O | Siliacat Pd-DPP | 70 | 46.64 mgPd | 1.26 | 295 | 9,610,000 | [82] |
37 | p-Br | COCH3 | H2O | Polymer anchored Pd(II) | 100 | 0.001 | <0.3 | 29,440 b | 9,810,000 b | [10] |
38 | 4-Br | OCH3 | Neat | Chitosan-pyridil-base Pd(II) | 50 | 0.005 | 2% Pdtot | 210,000 b | 10,500,000 b | [18] |
39 | 4-Br | OCH3 | Toluene | Chitosan-pyridil-base Pd(II) | 100 | 0.005 | NA | 440 | NA | [18] |
40 | I | H | H2O | Polymer anchored Pd(II) | 100 | 0.001 | <0.3 | 57,600 | 19,200,000 | [10] |
41 | 4-I | CH3 | EtOH:H2O | Pd-PHMS (0.06-0.12mm) | 65 | 20 mgPd | 0.0003 a | 1 | 64,600,000 | [96] |
42 | 4-Br | OCH3 | Neat | Silicagel-Pd | 50 | 0.0015 | 1% Pdtot | 724,000 b | 72,400,000 b | [91] |
43 | 4-Br | OCH3 | Toluene | Silicagel-Pd | 100 | 0.0015 | NA | 1500 | NA | [91] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourouina, A.; Meille, V.; de Bellefon, C. About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction. Catalysts 2019, 9, 60. https://doi.org/10.3390/catal9010060
Bourouina A, Meille V, de Bellefon C. About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction. Catalysts. 2019; 9(1):60. https://doi.org/10.3390/catal9010060
Chicago/Turabian StyleBourouina, Amine, Valérie Meille, and Claude de Bellefon. 2019. "About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction" Catalysts 9, no. 1: 60. https://doi.org/10.3390/catal9010060
APA StyleBourouina, A., Meille, V., & de Bellefon, C. (2019). About Solid Phase vs. Liquid Phase in Suzuki-Miyaura Reaction. Catalysts, 9(1), 60. https://doi.org/10.3390/catal9010060