“PdO vs. PtO”—The Influence of PGM Oxide Promotion of Co3O4 Spinel on Direct NO Decomposition Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Direct NO Decomposition Activity Measurements
4 NO→2N2O+ O2
NO + [O]→NO2 ([O]: catalyst lattice oxygen)
2.2. Catalyst Characterization
2.2.1. Structural and Textural Properties
2.2.2. Redox Properties
2.2.3. Surface Properties
2.2.4. NO Adsorption Properties
3. Materials and Methods
3.1. Catalyst Synthesis
3.2. Catalyst Characterization
3.3. Direct NO Decomposition Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Irfan, M.F.; Goo, J.H.; Kim, S.D. Effects of NO2, CO, O2, and SO2 on oxidation kinetics of NO over Pt-WO3/TiO2 catalyst for fast selective catalytic reduction process. Int. J. Chem. Kinet. 2006, 38, 613–620. [Google Scholar] [CrossRef]
- Masui, T.; Uejima, S.; Tsujimoto, S.; Nagai, R.; Imanaka, N. Direct NO decomposition over C-type cubic Y2O3–Pr6O11–Eu2O3 solid solutions. Catal. Today 2015, 242, 338–342. [Google Scholar] [CrossRef]
- Hong, Z.; Wang, Z.; Li, X.B. Catalytic oxidation of nitric oxide (NO) over different catalysts: An overview. Catal. Sci. Technol. 2017, 7, 3440–3452. [Google Scholar] [CrossRef]
- Imanaka, N.; Masui, T. Advances in direct NO decomposition catalysts. Appl. Catal. A 2012, 431–432, 1–8. [Google Scholar] [CrossRef]
- Haneda, M.; Hamada, H. Recent progress in catalytic NO decomposition. C. R. Chim. 2016, 19, 1254–1265. [Google Scholar] [CrossRef]
- Locci, C.; Vervisch, L.; Farcy, B.; Domingo, P.; Perret, N. Selective Non-Catalytic Reduction (SNCR) of nitrogen oxide emissions: A perspective from numerical modeling. Flow Turbul. Combust. 2018, 100, 301–340. [Google Scholar] [CrossRef]
- Jellinek, K. About decomposition rate of nitric oxide and dependence of the same on the temperature. J. Inorg. Chem. 1906, 49, 229–276. [Google Scholar]
- Glick, H.S.; Klein, J.J.; Squire, W. Single-Pulse Shock Tube Studies of the Kinetics of the Reaction N2 + O2 ⇄ 2NO between 2000–3000 °K. J. Chem. Phys. 1957, 27, 850–857. [Google Scholar] [CrossRef]
- Zhu, J.; Thomas, A. Perovskitetype mixed oxides as catalytic material for NO removal. Appl. Catal. B 2009, 92, 225–233. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D.; Can, F.; Courtois, X.; Batiot-Dupeyrat, C.; Laassiri, S.; Alamdari, H. Perovskites as Substitutes of Noble Metals for Heterogeneous Catalysis: Dream or Reality. Chem. Rev. 2014, 114, 10292–10368. [Google Scholar] [CrossRef]
- Tofan, C.; Klvana, D.; Kirchnerova, J. Direct decomposition of nitric oxide over perovskite-type catalysts: Part I. Activity when no oxygen is added to the feed. Appl. Catal. A 2002, 223, 275–286. [Google Scholar] [CrossRef]
- Yokoi, Y.; Uchida, H. The influence of palladium on the structure and catalytic activity of lanthanum based mixed oxide. Catal. Today 1998, 42, 167–174. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, X.G.; Wu, Y. Comparative study of Nickel-based perovskite-like mixed oxide catalysts for direct decomposition of NO. Appl. Catal. B 1996, 8, 281–297. [Google Scholar] [CrossRef]
- Zhu, J.J.; Xiao, D.H.; Li, J.; Yang, X.G.; Wu, Y. Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1−xCexSrNiO4 (0 ≤ x ≤ 0.3). J. Mol. Catal. A Chem. 2005, 234, 99–105. [Google Scholar] [CrossRef]
- Zhu, J.J.; Xiao, D.H.; Li, J.; Yang, X.G.; Wu, Y.; Wei, K. Effect of Ce and MgO on NO decomposition over La1−x–Cex–Sr–Ni–O/MgO. Catal. Commun. 2006, 7, 432–435. [Google Scholar] [CrossRef]
- Winter, E.R.S. The catalytic decomposition of NO by metallic oxides. J. Catal. 1971, 22, 158. [Google Scholar] [CrossRef]
- Boreskov, G.K. Forms of oxygen bonds on the surface of oxidation catalysts Discuss. Faraday Soc. 1966, 41, 263. [Google Scholar] [CrossRef]
- Haneda, M.; Kintaichi, Y.; Bion, N.; Hamada, H. Alkali metal-doped cobalt oxide catalysts for NO decomposition. Appl. Catal. B 2003, 46, 473–482. [Google Scholar] [CrossRef]
- Haneda, M.; Kintaichi, Y.; Hamada, H. Reaction mechanism of NO decomposition over alkali metal-doped cobalt oxide catalysts. Appl. Catal. B 2005, 55, 169–175. [Google Scholar] [CrossRef]
- Haneda, M.; Nakamura, I.; Fujitani, T.; Hamada, H. Catalytic Active Site for NO Decomposition Elucidated by Surface Science and Real Catalyst. Catal. Surv. Asia 2005, 9, 207–215. [Google Scholar] [CrossRef]
- Park, P.W.; Kil, J.K.; Kung, H.H.; Kung, M.C. NO decomposition over Na promoted cobalt oxide. Catal. Today 1998, 42, 51–60. [Google Scholar] [CrossRef]
- Amirnazmi, A.; Benson, J.E.; Boudart, M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum. J. Catal. 1973, 30, 55–65. [Google Scholar] [CrossRef]
- Behm, R.J.; Brundle, C.R. Decomposition of NO on Ag(111) at low temperatures. J. Vac. Sci. Technol. A 1984, 2, 1040–1041. [Google Scholar] [CrossRef]
- Suzuki, Y.; Hwang, H.J.; Kondo, N.; Ohji, T. In Situ Processing of a Porous Calcium Zirconate/Magnesia Composite with Platinum Nanodispersion and Its Influence on Nitric Oxide Decomposition. J. Am. Ceram. Soc. 2001, 84, 2713–2715. [Google Scholar] [CrossRef]
- Haneda, M.; Kintaichi, Y.; Hamada, H. Surface reactivity of prereduced rare earth oxides with nitric oxide: new approach for NO decomposition. Phys. Chem. Chem. Phys. 2002, 4, 3146–3151. [Google Scholar] [CrossRef]
- Haneda, M.; Kintaichi, Y.; Nakamura, I.; Fujitani, T.; Hamada, H. Comprehensive study combining surface science and real catalyst for NO direct decomposition. Chem. Commun. 2002, 21, 2816–2817. [Google Scholar] [CrossRef]
- Haneda, M.; Kintaichi, Y.; Nakamura, I.; Fujitani, T.; Hamada, H. Effect of surface structure of supported palladium catalysts on the activity for direct decomposition of nitrogen monoxide. J. Catal. 2003, 218, 405–410. [Google Scholar] [CrossRef]
- Almusaiteer, K.; Krishnamurthy, R.; Chuang, S.S.C. In situ infrared study of catalytic decomposition of NO on carbon-supported Rh and Pd catalysts. Catal. Today 2000, 55, 291–299. [Google Scholar] [CrossRef]
- De Oliveira, A.M.; Crizel, L.E.; da Silveira, R.S.; Pergher, S.B.C.; Baibich, I.M. NO decomposition on mordenite-supported Pd and Cu catalysts. Catal. Commun. 2007, 8, 1293–1297. [Google Scholar] [CrossRef]
- Reddy, G.K.; Ling, C.; Peck, T.; Jia, H. Understanding the chemical state of palladium during the direct NO decomposition—Influence of pretreatment environment and reaction temperature. RSC Adv. 2017, 7, 19645–19655. [Google Scholar] [CrossRef]
- Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Ercolino, G.; Grzybek, G.; Stelmachowski, P.; Specchia, S.; Kotarba, A.; Specchia, V. Pd/Co3O4-based catalysts prepared by solution combustion synthesis for residual methane oxidation in lean conditions. Catal. Today 2015, 257, 66–71. [Google Scholar] [CrossRef]
- Bahlawane, N.; Rivera, E.F.; Ho¨inghaus, K.K.; Brechling, A.; Kleineberg, U. Characterization and tests of planar Co3O4 model catalysts prepared by chemical vapor deposition. Appl. Catal. B 2004, 53, 245. [Google Scholar] [CrossRef]
- Lin, H.Y.; Chen, Y.W. The mechanism of reduction of cobalt by hydrogen. Mater. Chem. Phys. 2004, 85, 171. [Google Scholar] [CrossRef]
- Chen, Z.; Wanga, S.; Dinga, Y.; Zhanga, L.; Lva, L.; Wanga, M.; Wanga, S. Pd catalysts supported on Co3O4 with the specified morphologies in CO and CH4 oxidation. Appl. Catal. A Gen. 2017, 532, 95–104. [Google Scholar] [CrossRef]
- Yang, H.; Deng, J.; Liu, Y.; Xie, S.; Xu, P.; Dai., H. Pt/Co3O4/3DOM Al2O3: Highly effective catalysts for toluene combustion. Chin. J. Catal. 2016, 37, 934–946. [Google Scholar] [CrossRef]
- Voogt, E.H.; Mens, A.J.M.; Gijzeman, O.L.J.; Geus, J.W. XPS analysis of palladium oxide layers and particles. Surf. Sci. 1996, 350, 21–31. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, L.; Xu, G.C.; Ma, X.; Li, Y.H.; Zhang, C.; Jia, D. Metal organic framework-derived Co3O4 microcubes and their catalytic applications in CO oxidation. New J. Chem. 2017, 41, 1631–1636. [Google Scholar] [CrossRef]
- Gnanamani, M.K.; Jacobs, G.; Hamdeh, H.H.; Shafer, W.D.; Liu, F.; Hopps, S.D.; Thomas, G.A.; Davis, B.H. Hydrogenation of Carbon Dioxide over Co–Fe Bimetallic Catalysts. ACS Catal. 2016, 6, 913–927. [Google Scholar] [CrossRef]
- Brun, M.; Berthet, A.; Bertolini, J.C. XPS, AES and Auger parameter of Pd and PdO. J. Electron Spectrosc. Relat. Phenom. 1999, 104, 55–60. [Google Scholar] [CrossRef]
- Suhonen, S.; Valden, M.; Pessa, M.; Savimaki, A.; Harkonen, M.; Hietikko, M.; Pursiainen, J.; Laitinen, R. Characterization of alumina supported Pd catalysts modified by rare earth oxides using X-ray photoelectron spectroscopy and X-ray diffraction: Enhanced thermal stability of PdO in Nd/Pd catalysts. Appl. Catal. A Gen. 2001, 207, 113–120. [Google Scholar] [CrossRef]
- Mirkelamoglu, B.; Karakas, G. The role of alkali-metal promotion on CO oxidation over PdO/SnO2 catalysts. Appl. Catal. A Gen. 2006, 299, 84–94. [Google Scholar] [CrossRef]
- Mucalo, M.R.; Cooney, R.P.; Metson, J.B. Platinum and palladium hydrosols: Characterisation by X-ray photoelectron spectroscopy and transmission electron microscopy. Colloids Surf. 1991, 60, 175–197. [Google Scholar] [CrossRef]
- Kibis, L.S.; Titkov, A.I.; Stadnichenko, A.I.; Koscheev, S.V.; Boronin, A.I. X-ray photoelectron spectroscopy study of Pd oxidation by RF discharge in oxygen. Appl. Surf. Sci. 2009, 255, 9248–9254. [Google Scholar] [CrossRef]
- Hegdea, M.S.; Bera., P. Noble metal ion substituted CeO2 catalysts: Electronic interaction between noble metal ions and CeO2 lattice. Catal. Today 2015, 253, 40–50. [Google Scholar] [CrossRef]
- Hadjiivanov, K.I. Identification of Neutral and Charged NxOy Surface Species by IR Spectroscopy. Catal. Rev. Sci. Eng. 2000, 42, 71–144. [Google Scholar] [CrossRef]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F. Handbook of X-ray Photoelectron Spectroscopy; Muilenberg, G.E., Ed.; Perkin-Elmer Corp.: Waltham, MA, USA, 1978. [Google Scholar]
Catalyst Loading | PGM Loading (wt%) * | BET Surface Area (m2/g) | ||
---|---|---|---|---|
Pd wt% | Pt wt% | PdO/Co3O4 | PtO/Co3O4 | |
0 | - | - | 36 | 36 |
1 | 0.83 | 0.93 | 36 | 35 |
2 | 1.94 | 2.12 | 35 | 39 |
3 | 2.8 | 3.23 | 33 | 34 |
4 | 4.15 | 4.02 | 26 | 33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
K. Reddy, G.; C. Peck, T.; A. Roberts, C. “PdO vs. PtO”—The Influence of PGM Oxide Promotion of Co3O4 Spinel on Direct NO Decomposition Activity. Catalysts 2019, 9, 62. https://doi.org/10.3390/catal9010062
K. Reddy G, C. Peck T, A. Roberts C. “PdO vs. PtO”—The Influence of PGM Oxide Promotion of Co3O4 Spinel on Direct NO Decomposition Activity. Catalysts. 2019; 9(1):62. https://doi.org/10.3390/catal9010062
Chicago/Turabian StyleK. Reddy, Gunugunuri, Torin C. Peck, and Charles A. Roberts. 2019. "“PdO vs. PtO”—The Influence of PGM Oxide Promotion of Co3O4 Spinel on Direct NO Decomposition Activity" Catalysts 9, no. 1: 62. https://doi.org/10.3390/catal9010062
APA StyleK. Reddy, G., C. Peck, T., & A. Roberts, C. (2019). “PdO vs. PtO”—The Influence of PGM Oxide Promotion of Co3O4 Spinel on Direct NO Decomposition Activity. Catalysts, 9(1), 62. https://doi.org/10.3390/catal9010062