Photocatalytic Degradation of Atenolol by TiO2 Irradiated with an Ultraviolet Light Emitting Diode: Performance, Kinetics, and Mechanism Insights
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Anatase, Rutile, and Mixed Phase
2.2. Effect of the Nano-TiO2 Crystal Form on ATL Degradation
2.3. ATL Degradation by Combined UV-LED/Mixed Phase Process and Single UV-LED or Mixed Phase
2.4. Effect of UV-LED Wavelength and Intensity on ATL Degradation
2.5. Effect of the Initial ATL Concentration on Degradation Efficiency
2.6. Effect of Mixed Phase Dosage on ATL Degradation
2.7. Effect of pH on ATL Degradation
2.8. Influence of Co-Existing Ions in the Aquatic Environment on ATL Degradation
2.9. Influence of Free Radical Scavenging on ATL Degradation
2.10. Comparison with Other Reports
3. Materials and Methods
3.1. Materials
3.2. Experimental Setup
3.3. Analytical Method
4. Conclusions
- (1)
- The mixed phase exhibits the highest activity, possibly due to its large specific surface area and excellent charge separation efficiency, and the influence of light absorption may not be significant.
- (2)
- ATL can be effectively degraded using mixed phase TiO2 combined with UV-LED technology and the ATL degradation efficiency could reach 100% for 60 min. The photocatalytic reaction process could be explained via pseudo-first order kinetics;
- (3)
- ATL photodegradation was more effective under 365 nm UV-LED than 254 nm, which was caused by the effect of light-induced charge separation.
- (4)
- The enhancement of UV-LED irradiation intensity could significantly facilitate ATL degradation by increasing the number of effective photons to the TiO2 surface. The ATL degradation rate constant at 774 µW/cm2 was 0.067 min−1, which was 6.7-fold higher than that at 220 µW/cm2 (0.010 min−1).
- (5)
- The highest ATL degradation efficiency was achieved at an optimal TiO2 catalyst dosage of 2.0 g/L in the photocatalytic system, inducing complete degradation of ATL in 60 min.
- (6)
- The pH significantly affects the protonation and charge of semiconductor TiO2, leading to a fluctuation of hydroxyl radical concentrations in the reaction system. The ATL degradation efficiency increased with increasing pH, with complete degradation within 30 min at pH 11.0. The ATL degradation rate constant increased from 0.0409 min−1 to 0.1423 min−1 when the pH was increased from 3.0 to 11.0.
- (7)
- The ATL degradation efficiency decreased with an increase in initial ATL concentration.
- (8)
- The presence of co-existing ions significantly affected ATL degradation by altering the amount of hydroxyl radicals. Co-existing anions, such as SO42−, NO3−, Cl−, Ca2+, and Mg2+, exerted a negligible influence on ATL degradation, while the addition of CO32−, HCO3−, and Fe3+ ions significantly promoted photocatalytic ATL degradation, and Cu2+ ions strongly inhibited the ATL degradation process.
- (9)
- OH were found to be the dominant active species in UV-LED photocatalytic degradation of ATL.
Supplementary Materials
Supplementary File 1Author Contributions
Funding
Conflicts of Interest
References
- Ellis, J. Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ. Pollut. 2006, 144, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, H.E.; Haarhoff, J. Prioritisation of parameters influencing residential water use and wastewater flow. J. Water Supply Res. Technol. 2007, 56, 495–514. [Google Scholar] [CrossRef]
- Liu, J.-L.; Wong, M.-H. Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environ. Int. 2013, 59, 208–224. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, R.; Amiri, F.; Wilson, S.; Garvey, E.; Metcalfe, C.; Ishida, C.; Lin, K. Comparing methods to remove emerging contaminants and disinfection by-product precursors at pilot scale. J. Water Supply Res. Technol. 2011, 60, 425–433. [Google Scholar] [CrossRef]
- Kwon, J.W.; Rodriguez, J.M. Occurrence and removal of selected pharmaceuticals and personal care products in three wastewater-treatment plants. Arch. Environ. Contam. Toxicol. 2014, 66, 538–548. [Google Scholar] [CrossRef]
- Xie, R.; Meng, X.; Sun, P.; Niu, J.; Jiang, W.; Bottomley, L.; Li, D.; Chen, Y.; Crittenden, J. Electrochemical oxidation of ofloxacin using a TiO2-based SnO2-Sb/polytetrafluoroethylene resin-PbO2 electrode: Reaction kinetics and mass transfer impact. Appl. Catal. B Environ. 2017, 203, 515–525. [Google Scholar] [CrossRef]
- Constantinescu, G.; Theodoros, D.; Russell, T.; Ward, E.; Wilson, S.; Wootton, R. Treating disordered speech and voice in Parkinson’s disease online: a randomized controlled non-inferiority trial. Int. J. Lang. Commun. Disord. 2011, 46, 1–16. [Google Scholar]
- Alder, A.C.; Schaffner, C.; Majewsky, M.; Klasmeier, J.; Fenner, K. Fate of β-blocker human pharmaceuticals in surface water: Comparison of measured and simulated concentrations in the Glatt Valley Watershed, Switzerland. Water Res. 2010, 44, 936–948. [Google Scholar] [CrossRef]
- Hapeshi, E.; Achilleos, A.; Vasquez, M.I.; Michael, C.; Xekoukoulotakis, N.; Mantzavinos, D.; Kassinos, D.; Xekoukoulotakis, N. Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Res. 2010, 44, 1737–1746. [Google Scholar] [CrossRef]
- Karaman, R.; Dajani, K.; Hallak, H. Computer-assisted design for atenolol prodrugs for the use in aqueous formulations. J. Mol. Mod. 2012, 18, 1523–1540. [Google Scholar] [CrossRef]
- Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E. Removal of Pharmaceuticals in Sewage Treatment Plants in Italy. Environ. Sci. Technol. 2006, 40, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Tachikawa, T.; Fujitsuka, M.; Majima, T. Mechanistic Insight into the TiO2 Photocatalytic Reactions: Design of New Photocatalysts. J. Phys. Chem. C 2007, 111, 5259–5275. [Google Scholar] [CrossRef]
- Joo, J.; Kwon, S.G.; Yu, T.; Cho, M.; Lee, J.; Yoon, J.; Hyeon, T.; Lee, J. Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol–Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. J. Phys. Chem. B 2005, 109, 15297–15302. [Google Scholar] [CrossRef]
- Ye, Y.; Feng, Y.; Bruning, H.; Yntema, D.; Rijnaarts, H. Photocatalytic degradation of metoprolol by TiO2 nanotube arrays and UV-LED: Effects of catalyst properties, operational parameters, commonly present water constituents, and photo-induced reactive species. Appl. Catal. B Environ. 2018, 220, 171–181. [Google Scholar] [CrossRef]
- Kneissl, M.; Seong, T.-Y.; Han, J.; Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photonics 2019, 13, 233–244. [Google Scholar] [CrossRef]
- Korovin, E.; Selishchev, D.; Besov, A.; Kozlov, D. UV-LED TiO2 photocatalytic oxidation of acetone vapor: Effect of high frequency controlled periodic illumination. Appl. Catal. B Environ. 2015, 163, 143–149. [Google Scholar] [CrossRef]
- Cai, Q.; Hu, J. Effect of UVA/LED/TiO2 photocatalysis treated sulfamethoxazole and trimethoprim containing wastewater on antibiotic resistance development in sequencing batch reactors. Water Res. 2018, 140, 251–260. [Google Scholar] [CrossRef]
- Liang, R.; Van Leuwen, J.C.; Bragg, L.M.; Arlos, M.J.; Fong, L.C.L.C.; Schneider, O.M.; Zurakowsky, I.J.; Fattahi, A.; Rathod, S.; Peng, P.; et al. Utilizing UV-LED pulse width modulation on TiO2 advanced oxidation processes to enhance the decomposition efficiency of pharmaceutical micropollutants. Chem. Eng. J. 2019, 361, 439–449. [Google Scholar] [CrossRef]
- Dai, K.; Lu, L.; Dawson, G. Development of UV-LED/TiO2 Device and Their Application for Photocatalytic Degradation of Methylene Blue. J. Mater. Eng. Perform. 2013, 22, 1035–1040. [Google Scholar] [CrossRef]
- Eskandarian, M.R.; Choi, H.; Fazli, M.; Rasoulifard, M.H. Effect of UV-LED wavelengths on direct photolytic and TiO2 photocatalytic degradation of emerging contaminants in water. Chem. Eng. J. 2016, 300, 414–422. [Google Scholar] [CrossRef]
- Chen, H.-W.; Ku, Y.; Irawan, A. Photodecomposition of o-cresol by UV-LED/TiO2 process with controlled periodic illumination. Chemosphere 2007, 69, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhou, L.; Ferronato, C.; Yang, X.; Salvador, A.; Zeng, C.; Chovelon, J.-M. Photocatalytic degradation of atenolol in aqueous titanium dioxide suspensions: Kinetics, intermediates and degradation pathways. J. Photochem. Photobiol. A Chem. 2013, 254, 35–44. [Google Scholar] [CrossRef]
- D’Amato, C.A.; Giovannetti, R.; Zannotti, M.; Rommozzi, E.; Minicucci, M.; Gunnella, R.; Di Cicco, A. Band Gap Implications on Nano-TiO2 Surface Modification with Ascorbic Acid for Visible Light-Active Polypropylene Coated Photocatalyst. Nanomaterials 2018, 8, 599. [Google Scholar] [CrossRef] [PubMed]
- Kronik, L. Surface photovoltage phenomena: theory, experiment, and applications. Surf. Sci. Rep. 1999, 37, 1–206. [Google Scholar] [CrossRef]
- Deiana, C.; Fois, E.; Coluccia, S.; Martra, G. Surface Structure of TiO2P25 Nanoparticles: Infrared Study of Hydroxy Groups on Coordinative Defect Sites. J. Phys. Chem. C 2010, 114, 21531–21538. [Google Scholar] [CrossRef]
- Macdonald, D.D. Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1376–1388. [Google Scholar] [CrossRef]
- Pereira, J.H.; Reis, A.C.; Queirós, D.; Nunes, O.C.; Borges, M.T.; Vilar, V.J.; Boaventura, R.A. Insights into solar TiO2-assisted photocatalytic oxidation of two antibiotics employed in aquatic animal production, oxolinic acid and oxytetracycline. Sci. Total Environ. 2013, 463, 274–283. [Google Scholar] [CrossRef]
- Wang, L.; Guo, J.; Dang, J.; Huang, X.; Chen, S.; Guan, W. Comparison of the photocatalytic performance of TiO2/AC and TiO2/CNT nanocomposites for methyl orange photodegradation. Water Sci. Technol. 2018, 78, 1082–1093. [Google Scholar] [CrossRef]
- Avisar, D.; Horovitz, I.; Lozzi, L.; Ruggieri, F.; Baker, M.; Abel, M.-L.; Mamane, H. Impact of water quality on removal of carbamazepine in natural waters by N-doped TiO2 photo-catalytic thin film surfaces. J. Hazard. Mater. 2013, 244, 463–471. [Google Scholar] [CrossRef]
- Hu, L.; Flanders, P.M.; Miller, P.L.; Strathmann, T.J. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis. Water Res. 2007, 41, 2612–2626. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.; Hamilton, J.W.; Byrne, J.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Tian, L.; Tan, X.; Li, X.; Chen, X. Synthesis, properties, and applications of black titanium dioxide nanomaterials. Sci. Bull. 2017, 62, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Medana, C.; Calza, P.; Carbone, F.; Pelizzetti, E.; Hidaka, H.; Baiocchi, C. Characterization of atenolol transformation products on light-activated TiO2 surface by high-performance liquid chromatography/high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 206. [Google Scholar] [CrossRef]
- Ling, Y.; Liao, G.; Xie, Y.; Yin, J.; Huang, J.; Feng, W.; Li, L. Coupling photocatalysis with ozonation for enhanced degradation of Atenolol by Ag-TiO2 micro-tube. J. Photochem. Photobiol. A Chem. 2016, 329, 280–286. [Google Scholar] [CrossRef]
- Mehrabadi, Z.; Faghihian, H. Comparative photocatalytic performance of TiO2 supported on clinoptilolite and TiO2/Salicylaldehyde-NH2-MIL-101(Cr) for degradation of pharmaceutical pollutant atenolol under UV and visible irradiations. J. Photochem. Photobiol. A Chem. 2018, 356, 102–111. [Google Scholar] [CrossRef]
- Arlos, M.J.; Hatat-Fraile, M.M.; Liang, R.; Bragg, L.M.; Zhou, N.Y.; Andrews, S.A.; Servos, M.R.; Maricor, J.A.; Melisa, M.H.-F.; Leslie, M.B.; et al. Photocatalytic decomposition of organic micropollutants using immobilized TiO2 having different isoelectric points. Water Res. 2016, 101, 351–361. [Google Scholar] [CrossRef]
- Ponkshe, A.; Thakur, P. Significant mineralization of beta blockers Propranolol and Atenolol by TiO2 induced photocatalysis. Mater. Today Proc. 2019, 18, 1162–1175. [Google Scholar] [CrossRef]
- Ravisankar, P.; Devala Rao, G.; Krishna Chaitanya, M.; Devadasu, C.H.; Srinivasa Babu, P. Rapid separation of five anti-hypertensive agents-atenolol, metoprolol, hydrochlorothiazide, amlodipine and nebivolol: Application to estimation of metoprolol succinate in tablet dosage form. J. Chem. Pharm. Res. 2013, 5, 215–228. [Google Scholar]
Chemical Formula | Molecular Weight (g·mol−1) | Solubility (20 °C) (mg·mL−1) | Molecular Structure |
---|---|---|---|
C14H22N2O3 | 266.34 | 0.3 |
Catalyst | Light Source | Atenolol Concentration | Degradation Time | Ref. |
---|---|---|---|---|
Degussa P25 | Xe lamp | 15 mg/L | 4 h | [34] |
Degussa P25 | High-pressure mercury lamp | 37.6 μM | 1 h | [23] |
Ag-TiO2 | High-pressure mercury lamp | 20 mg/L | 0.5 h | [35] |
TiO2/Salicylaldehyde-NH2-MIL-101(Cr) | Xe lamp | 10 mg/L | 5 h | [36] |
Immobilized TiO2 | High-pressure mercucry lamp | 10 mg/L | 5 h | [37] |
Aeroxide TiO2 P25 | Low-pressure mercury lamp | 50 μM | 1 h | [38] |
Mixed phase TiO2 | UV-LED | 18.77 μM | 1 h | This work |
Crystal Form | Composition | Particle Size (nm) | BET Surface Area (m2/g) |
---|---|---|---|
Anatase | 100% anatase | 20–50 | 78.7 |
Rutile | 100% rutile | 50–100 | 32.2 |
Mixed phase | 83% anatase + 17% rutile | 20–50 | 102.6 |
Photocatalysts | Illumination | pH | ATL Concentration | Co-Existing Ions | TBA | |
---|---|---|---|---|---|---|
2.2 | 2.0 g/L of mixed phase, anatase, rutile | 365 nm; 774 uW/cm2 | 7.6 | 18.77 uM | None | None |
2.3 | 2.0 g/L of mixed phase | 365 nm; 774 uW/cm2 | 7.6 | 18.77 uM | None | None |
2.4 | 2.0 g/L of mixed phase | 275/365 nm; 774 uW/cm2 | 7.6 | 18.77 uM | None | None |
2.5 | 2.0 g/L of mixed phase | 365 nm; 220–774 uW/cm2 | 7.6 | 9.39–37.55 uM | None | None |
2.6 | 2.8 g/L of mixed phase | 365 nm; 774 uW/cm2 | 7.6 | 18.77 uM | None | None |
2.7 | 2.0 g/L of mixed phase | 365 nm; 774 uW/cm2 | 3–11 | 18.77 uM | None | None |
2.8 | 2.0 g/L of mixed phase | 365 nm; 774 uW/cm2 | 7.6 | 18.77 uM | 1 mM of CO32−, HCO3−, SO42−, NO3−, Cl−, Ca2+, and Mg2+, Fe3+ Cu2+ | None |
2.9 | 2.0 g/L of mixed phase | 365 nm; 774 uW/cm2 | 7.6 | 18.77 uM | None | 0–50 mM |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, Z.; Wang, L.; Fang, Y.; Ma, C.; Li, S. Photocatalytic Degradation of Atenolol by TiO2 Irradiated with an Ultraviolet Light Emitting Diode: Performance, Kinetics, and Mechanism Insights. Catalysts 2019, 9, 876. https://doi.org/10.3390/catal9110876
Ran Z, Wang L, Fang Y, Ma C, Li S. Photocatalytic Degradation of Atenolol by TiO2 Irradiated with an Ultraviolet Light Emitting Diode: Performance, Kinetics, and Mechanism Insights. Catalysts. 2019; 9(11):876. https://doi.org/10.3390/catal9110876
Chicago/Turabian StyleRan, Zhilin, Liping Wang, Yuanhang Fang, Cong Ma, and Shaofeng Li. 2019. "Photocatalytic Degradation of Atenolol by TiO2 Irradiated with an Ultraviolet Light Emitting Diode: Performance, Kinetics, and Mechanism Insights" Catalysts 9, no. 11: 876. https://doi.org/10.3390/catal9110876
APA StyleRan, Z., Wang, L., Fang, Y., Ma, C., & Li, S. (2019). Photocatalytic Degradation of Atenolol by TiO2 Irradiated with an Ultraviolet Light Emitting Diode: Performance, Kinetics, and Mechanism Insights. Catalysts, 9(11), 876. https://doi.org/10.3390/catal9110876