Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review
Abstract
:1. Introduction
2. Non-Metallic Materials Modified TiO2
2.1. Non-Metallic Materials Supported TiO2
2.2. Non-Metal Element Doping Modification
3. Metal Materials Modified TiO2
3.1. Precious Metal Materials Deposition
3.2. Metal Ion Doping TiO2
4. Composite Materials Modified TiO2
4.1. The Construction the Heterojunction
4.2. Different Elements Co-Doping TiO2
4.3. Dye Photosensitization
5. Application of Modified TiO2 Composite Photocatalytic Materials
5.1. The Application in Water Pollution
5.2. The Application in Air Pollution
5.3. The Application in Soil Pollution
6. Conclusions and Perspective
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Carey, J.H.; Lawrence, J.; Tosine, H.M. Photodechlorination of PCB’s in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. [Google Scholar] [CrossRef]
- Frank, S.N.; Bard, A.J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J. Phys. Chem. 1977, 81, 1484–1488. [Google Scholar] [CrossRef]
- Xu, M.X.; Wang, Y.H.; Geng, J.F.; Jing, D.W. Photodecomposition of NOx on Ag/TiO2 composite catalysts in a gas phase reactor. Chem. Eng. J. 2017, 307, 181–188. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Arunachalam, P.; Ramachandran, K.; Al-Mayouf, A.M.; Karuppuchamy, S. Recent advances in semiconductor metal oxides with enhanced methods for solar photocatalytic applications. J. Alloys Compd. 2020, 828, 154281. [Google Scholar] [CrossRef]
- Li, Z.Y.; Cao, F.; Wang, L.; Chen, Z.W.; Ji, X.H. A novel ternary MoS2/MoO3/TiO2 composite for fast photocatalytic degradation of rhodamine B under visible-light irradiation. New J. Chem. 2020, 44, 537–542. [Google Scholar] [CrossRef]
- Paeng, D.S.; Huy, B.T.; Phuong, N.T.K.; Dao, V.D.; Lee, Y.I. Photocatalytic activity of Yb, Er, Ce-codoped TiO2 for degradation of Rhodamine B and 4-chlorophenol. J. Chem. Technol. Biot. 2019. [Google Scholar] [CrossRef]
- Chen, Y.F.; Tang, X.N.; Zhang, B.; Luo, Y.; Li, Y. TiO2@SiO2 Composites: Preparation and Photocatalytic Antimicrobial Performance. J. Inorg. Mater. 2019, 34, 1325–1333. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Zou, X.Y.; Sun, Y.Y.; Tong, Z.W.; Jiang, Z.Y. Fabrication of three-dimensional porous La-doped SrTiO3 microspheres with enhanced visible light catalytic activity for Cr(VI) reduction. Front. Chem. Sci. Eng. 2018, 12, 440–449. [Google Scholar] [CrossRef]
- Yu, X.; Lin, Y.; Liu, H.; Yang, C.; Peng, Y.; Du, C.; Wu, S.; Li, X.; Zhong, Y. Photocatalytic performances of heterojunction catalysts of silver phosphate modified by PANI and Cr-doped SrTiO3 for organic pollutant removal from high salinity wastewater. J. Colloid Interface Sci. 2020, 561, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.H.; Zhang, X.; Lei, Y.Y.; Yang, P.F.; Fan, J.M.; Zhang, B.; Yin, S. Exceptional photocatalytic activity for Ag,Cr- SrTiO3 activated by H2O2 for removal of organic pollutants. Mater. Res. Express 2020, 7, 015034. [Google Scholar] [CrossRef] [Green Version]
- Saidani, T.; Zaabat, M.; Aida, M.S.; Boudine, B. Effect of copper doping on the photocatalytic activity of ZnO thin films prepared by sol-gel method. Superlattices Microstruct. 2015, 88, 315–322. [Google Scholar] [CrossRef]
- Das, A.; Nair, R.G. Effect of aspect ratio on photocatalytic performance of hexagonal ZnO nanorods. J. Alloys Compd. 2020, 817, 153277. [Google Scholar] [CrossRef]
- Shkir, M.; Al-Shehri, B.M.; Pachamuthu, M.P.; Khan, A.; Chandekar, K.V.; AlFaify, S.; Hamdy, M.S. A remarkable improvement in photocatalytic activity of ZnO nanoparticles through Sr doping synthesized by one pot flash combustion technique for water treatments. Colloid Surf. A Physicochem. Eng. Asp. 2020, 587, 124340. [Google Scholar] [CrossRef]
- Mena, E.; Rey, A.; Rodriguez, E.M.; Beltran, F.J. Reaction mechanism and kinetics of DEET visible light assisted photocatalytic ozonation with WO3 catalyst. Appl. Catal. B 2017, 202, 460–472. [Google Scholar] [CrossRef]
- Zeng, W.G.; Cai, T.; Liu, Y.T.; Wang, L.L.; Dong, W.Y.; Chen, H.; Xia, X.N. An artificial organic-inorganic Z-scheme photocatalyst WO3@Cu@PDI supramolecular with excellent visible light absorption and photocatalytic activity. Chem. Eng. J. 2020, 381, 122691. [Google Scholar] [CrossRef]
- Rosaline, D.R.; Inbanathan, S.S.R.; Suganthi, A.; Rajarajan, M.; Kavitha, G.; Srinivasan, R.; Hegazy, H.H.; Umar, A.; Algarni, H.; Manikandan, E. Visible-Light Driven Photocatalytic Degradation of Eosin Yellow (EY) Dye Based on NiO-WO3 Nanoparticles. J. Nanosci. Nanotechnol. 2020, 20, 924–933. [Google Scholar] [CrossRef]
- Gionco, C.; Hernandez, S.; Castellino, M.; Gadhi, T.A.; Munoz-Tabares, J.A.; Cerrato, E.; Tagliaferro, A.; Russo, N.; Paganini, M.C. Synthesis and characterization of Ce and Er doped ZrO2 nanoparticles as solar light driven photocatalysts. J. Alloys Compd. 2019, 775, 896–904. [Google Scholar] [CrossRef]
- Al-Namshah, K.S.; Mohamed, R.M. Co3O4-ZrO2 nanocomposites: Simple preparation and enhanced photocatalytic performance for cyanide degradation under visible light. Desalin. Water Treat. 2019, 145, 318–325. [Google Scholar] [CrossRef]
- Reddy, C.V.; Reddy, I.N.; Ravindranadh, K.; Reddy, K.R.; Shetti, N.P.; Kim, D.; Shim, J.; Aminabhavi, T.M. Copper-doped ZrO2 nanoparticles as high-performance catalysts for efficient removal of toxic organic pollutants and stable solar water oxidation. J. Environ. Manag. 2020, 260, 110088. [Google Scholar] [CrossRef]
- Nguyen, T.B.; Huang, C.P.; Doong, R.A.; Chen, C.W.; Dong, C.D. Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water. Chem. Eng. J. 2020, 384, 123383. [Google Scholar] [CrossRef]
- Zhang, J.J.; Zhu, Z.R.; Jiang, J.C.; Li, H. Fabrication of a novel AgI/LaFeO3/g-C3N4 dual Z-scheme photocatalyst with enhanced photocatalytic performance. Mater. Lett. 2020, 262, 127029. [Google Scholar] [CrossRef]
- Liu, X.M.; Liu, Y.; Zhang, W.K.; Zhong, Q.Y.; Ma, X.Y. In situ self-assembly of 3D hierarchical 2D/2D CdS/g-C3N4 hereojunction with excellent photocatalytic performance. Mater. Sci. Semicond. Proc. 2020, 105, 104734. [Google Scholar] [CrossRef]
- Nalid, N.R.; Majid, A.; Tahir, M.B.; Niaz, N.A.; Khalid, S. Carbonaceous-TiO2 nanomaterials for photocatalytic degradation of pollutants: A review. Ceram. Int. 2017, 43, 14552–14571. [Google Scholar]
- Hafeez, H.Y.; Lakhera, S.K.; Karthik, P.; Anpo, M.; Neppolian, B. Facile construction of ternary CuFe2O4-TiO2 nanocomposite supported reduced graphene oxide (rGO) photocatalysts for the efficient hydrogen production. Appl. Surf. Sci. 2018, 449, 772–779. [Google Scholar] [CrossRef]
- Khedr, T.M.; El-Sheikh, S.M.; Ismail, A.A.; Kowalska, E.; Bahnemann, D.W. Photodegradation of Microcystin-LR Using Visible Light-Activated C/N-co-Modified Mesoporous TiO2 Photocatalyst. Materials 2019, 12, 1027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.C.; Lu, X.J. Treatment of wastewater containing Reactive Brilliant Blue KN-R using TiO2/BC composite as heterogeneous photocatalyst and adsorbent. Chemosphere 2018, 206, 777–783. [Google Scholar] [CrossRef]
- Li, Y.K.; Zhang, P.; Wan, D.Y.; Xue, C.; Zhao, J.T.; Shao, G.S. Direct evidence of 2D/1D heterojunction enhancement on photocatalytic activity through assembling MoS2 nanosheets onto super-long TiO2 nanofibers. Appl. Surf. Sci. 2020, 504, 144361. [Google Scholar] [CrossRef]
- Pelaez, M.; Nolan, N.T.; Pillai, S.C.; Seery, M.K.; Falaras, P.; Kontos, A.G.; Dunlop, P.S.M.; Hamilton, J.W.J.; Byrne, J.A.; O’Shea, K.; et al. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 2012, 125, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhao, X.; Borthwick, A.G.L.; Wang, Y.Q.; Ni, J.R. Dual-Enhanced Photocatalytic Activity of Fe-Deposited Titanate Nanotubes Used for Simultaneous Removal of As(III) and As(V). ACS Appl. Mater. Interfaces 2015, 7, 19726–19735. [Google Scholar] [CrossRef] [Green Version]
- Cai, Z.; Zhao, X.; Wang, T.; Liu, W.; Zhao, D. Reusable Platinum-Deposited Anatase/Hexa-Titanate Nanotubes: Roles of Reduced and Oxidized Platinum on Enhanced Solar-Light-Driven Photocatalytic Activity. ACS Sustain. Chem. Eng. 2017, 5, 547–555. [Google Scholar] [CrossRef]
- Shankar, R.; Shim, W.J.; An, J.G.; Yim, U.H. A practical review on photooxidation of crude oil: Laboratory lamp setup and factors affecting it. Water Res. 2015, 68, 304–315. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Zhao, Z.H.; Kumar, A.; Boughton, R.I.; Liu, H. Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: A review. Chem. Soc. Rev. 2014, 43, 6920–6937. [Google Scholar] [CrossRef] [PubMed]
- Dahl, M.; Liu, Y.; Yin, Y. Composite Titanium Dioxide Nanomaterials. Chem. Rev. 2014, 114, 9853–9889. [Google Scholar] [CrossRef]
- Hlekelele, L.; Durbach, S.H.; Chauke, V.P.; Dziike, F.; Franklyn, P.J. Resin-gel incorporation of high concentrations of W6+ and Zn2+ into TiO2-anatase crystal to form quaternary mixed-metal oxides: Effect on the a lattice parameter and photodegradation efficiency. RSC Adv. 2019, 9, 36875–36883. [Google Scholar] [CrossRef] [Green Version]
- Nzaba, S.K.M.; Nyoni, H.H.; Mamba, B.B.; Kuvarega, A.T. Comparative Study of Dendrimer-Templated Nitrogen-Platinum Co-Doped TiO2 for the Photocatalytic Degradation of Azo Dyes in Contaminated Water. Chemistryselect 2019, 4, 12156–12163. [Google Scholar] [CrossRef]
- Sun, D.W.; Li, Y.J.; Cao, T.P.; Zhao, Y.H.; Yang, D.K. Preparation of Dy3+-doped YVO4/TiO2 Composite Nanofibers with Three-dimensional Net-like Structure and Enhanced Photocatalytic Activity for Hydrogen Evolution. Chem. J. Chin. Univ. Chin. 2019, 40, 2348–2353. [Google Scholar] [CrossRef]
- Deng, H.Y.; He, H.; Sun, S.J.; Zhu, X.T.; Zhou, D.X.; Han, F.X.; Huang, B.; Pan, X.J. Photocatalytic degradation of dye by Ag/TiO2 nanoparticles prepared with different sol-gel crystallization in the presence of effluent organic matter. Environ. Sci. Pollut. Res. 2019, 26, 35900–35912. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Misu, Y.; Yamamoto, M.; Tanabe, T.; Kumagai, J.; Ogawa, S.; Yagi, S. Effects of the amount of Au nanoparticles on the visible light response of TiO2 photocatalysts. Catal. Today 2020, 352, 34–38. [Google Scholar] [CrossRef]
- Yang, L.X.; Chen, Z.; Zhang, J.; Wang, C.A. SrTiO3/TiO2 heterostructure nanowires with enhanced electron-hole separation for efficient photocatalytic activity. Front. Mater. Sci. 2019, 13, 342–351. [Google Scholar] [CrossRef]
- Al Jitan, S.; Palmisano, G.; Garlisi, C. Synthesis and Surface Modification of TiO2-Based Photocatalysts for the Conversion of CO2. Catalysts 2020, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Serpone, N. Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J. Phys. Chem. B 2006, 110, 24287–24293. [Google Scholar] [CrossRef]
- Devi, L.G.; Kavitha, R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 2013, 140, 559–587. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Chu, L.F.; Guo, C.X.; Guo, Y.J.; Ke, Q.F.; Guo, Y.P. Ytterbium Doped TiO2 Nanofibers on Activated Carbon Fibers Enhances Adsorption and Photocatalytic Activities for Toluene Removal. Chemistryselect 2019, 4, 9222–9231. [Google Scholar] [CrossRef]
- Suarez, S.; Jansson, I.; Ohtani, B.; Sanchez, B. From titania nanoparticles to decahedral anatase particles: Photocatalytic activity of TiO2/zeolite hybrids for VOCs oxidation. Catal. Today 2019, 326, 2–7. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Z.Q.; Liao, L.M.; Chen, L.; Li, Z.; Feng, J. High performance photocatalysts: Montmorillonite supported-nano TiO2 composites. Optik 2017, 136, 44–51. [Google Scholar] [CrossRef]
- Zhu, P.F.; Ren, Z.H.; Wang, R.X.; Duan, M.; Xie, L.S.; Xu, J.; Tian, Y.J. Preparation and visible photocatalytic dye degradation of Mn-TiO2/sepiolite photocatalysts. Front. Mater. Sci. 2020, 14, 33–42. [Google Scholar] [CrossRef]
- Saqib, N.U.; Adnan, R.; Shah, I. Zeolite supported TiO2 with enhanced degradation efficiency for organic dye under household compact fluorescent light. Mater. Res. Express 2019, 6, 095506. [Google Scholar] [CrossRef]
- Malakootian, M.; Nasiri, A.; Gharaghani, M.A. Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate. Chem. Eng. Commun. 2020, 207, 56–72. [Google Scholar] [CrossRef]
- Espino-Estevez, M.R.; Fernandez-Rodriguez, C.; Gonzalez-Diaz, O.M.; Navio, J.A.; Fernandez-Hevia, D.; Dona-Rodriguez, J.M. Enhancement of stability and photoactivity of TiO2 coatings on annular glass reactors to remove emerging pollutants from waters. Chem. Eng. J. 2015, 279, 488–497. [Google Scholar] [CrossRef]
- Pierpaoli, M.; Lewkowicz, A.; Rycewi’cz, M.; Szczodrowski, K.; Ruello, M.L.; Bogdanowicz, R. Enhanced photocatalytic activity of transparent carbon nanowall/TiO2 heterostructures. Mater. Lett. 2020, 262, 127155. [Google Scholar] [CrossRef]
- Chu, Z.D.; Qiu, L.L.; Chen, Y.; Zhuang, Z.S.; Du, P.F.; Xiong, J. TiO2-loaded carbon fiber: Microwave hydrothermal synthesis and photocatalytic activity under UV light irradiation. J. Phys. Chem. Solids 2020, 136, 109138. [Google Scholar] [CrossRef]
- Hu, C.Y.; Lei, E.; Hu, K.K.; Lai, L.Y.; Zhao, D.; Zhao, W.; Rong, H. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity. J. Mater. Sci. 2020, 55, 151–162. [Google Scholar] [CrossRef]
- Cunha, D.L.; Kuznetsov, A.; Araujo, J.R.; Neves, R.S.; Archanjo, B.S.; Canela, M.C.; Marques, M. Optimization of Benzodiazepine Drugs Removal from Water by Heterogeneous Photocatalysis Using TiO2/Activated Carbon Composite. Water Air Soil Pollut. 2019, 230, 141. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jiang, Z.L.; Huang, J.Y.; Lim, L.Y.; Li, W.L.; Deng, J.Y.; Gong, D.G.; Tang, Y.X.; Lai, Y.K.; Chen, Z. Titanate and titania nanostructured materials for environmental and energy applications: A review. RSC Adv. 2015, 5, 79479–79510. [Google Scholar] [CrossRef]
- Zhao, X.; Cai, Z.Q.; Wang, T.; O’Reilly, S.E.; Liu, W.; Zhao, D.Y. A new type of cobalt-deposited titanate nanotubes for enhanced photocatalytic degradation of phenanthrene. Appl. Catal. B Environ. 2016, 187, 134–143. [Google Scholar] [CrossRef]
- Doong, R.-A.; Liao, C.-Y. Enhanced visible-light-responsive photodegradation of bisphenol A by Cu, N-codoped titanate nanotubes prepared by microwave-assisted hydrothermal method. J. Hazard. Mater. 2017, 322, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Sun, W.L.; Borthwick, A.G.L.; Wang, T.; Li, F.; Guan, Y.D. Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: Synergetic promotion effect and autosynchronous doping. J. Hazard. Mater. 2016, 317, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Du, P.H.; Cai, Z.Q.; Wang, T.; Fu, J.; Liu, W. Photocatalysis of bisphenol A by an easy-settling titania/titanate composite: Effects of water chemistry factors, degradation pathway and theoretical calculation. Environ. Pollut. 2018, 232, 580–590. [Google Scholar] [CrossRef]
- Li, F.; Du, P.H.; Liu, W.; Li, X.S.; Ji, H.D.; Duan, J.; Zhao, D.Y. Hydrothermal synthesis of graphene grafted titania/titanate nanosheets for photocatalytic degradation of 4-chlorophenol: Solar-light-driven photocatalytic activity and computational chemistry analysis. Chem. Eng. J. 2018, 331, 685–694. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Cai, Z.Q.; Fu, J.; Sun, X.B.; Sun, W.L.; Chen, L.; Zhang, D.D.; Liu, W. Synergistic adsorption of Cu(II) and photocatalytic degradation of phenanthrene by a jaboticaba-like TiO2/titanate nanotube composite: An experimental and theoretical study. Chem. Eng. J. 2019, 358, 1155–1165. [Google Scholar] [CrossRef]
- Ji, H.D.; Du, P.H.; Zhao, D.Y.; Li, S.; Sun, F.B.; Duin, E.C.; Liu, W. 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic “hot spots” at the rutile-anatase-titanate interfaces. Appl. Catal. B 2020, 263, 118357. [Google Scholar] [CrossRef]
- Tu, H.; Li, D.; Yi, Y.; Liu, R.; Wu, Y.; Dong, X.Y.; Shi, X.W.; Deng, H.B. Incorporation of rectorite into porous polycaprolactone/TiO2 nanofibrous mats for enhancing photocatalysis properties towards organic dye pollution. Compos. Commun. 2019, 15, 58–63. [Google Scholar] [CrossRef]
- Ni, Y.H.; Yan, K.; Xu, F.Y.; Zhong, W.B.; Zhao, Q.H.; Liu, K.; Yan, K.L.; Wang, D. Synergistic effect on TiO2 doped poly (vinyl alcohol-co-ethylene) nanofibrous film for filtration and photocatalytic degradation of methylene blue. Compos. Commun. 2019, 12, 112–116. [Google Scholar] [CrossRef]
- Mohsenzadeh, M.; Mirbagheri, S.A.; Sabbaghi, S. Photocatalytic degradation of 1,2-dichloroethane using immobilized PANI-TiO2 nanocomposite in a pilot-scale packed bed reactor. Desalin. Water Treat. 2019, 155, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.Y.; Li, H.; Lu, J.; Meng, F.Y.; Ma, C.C.; Yan, Y.S.; Meng, M.J. Nitrogen-doped hydrogenated TiO2 modified with CdS nanorods with enhanced optical absorption, charge separation and photocatalytic hydrogen evolution. Chem. Eng. J. 2020, 384, 123275. [Google Scholar] [CrossRef]
- Ratova, M.; West, G.T.; Kelly, P.J.; Xia, X.; Gao, Y. Synergistic effect of doping with nitrogen and molybdenum on the photocatalytic properties of thin titania films. Vacuum 2015, 114, 205–212. [Google Scholar] [CrossRef]
- Kovalevskiy, N.; Selishchev, D.; Svintsitskiy, D.; Selishcheva, S.; Berezin, A.; Kozlov, D. Synergistic effect of polychromatic radiation on visible light activity of N-doped TiO2 photocatalyst. Catal. Commun. 2020, 134, 105841. [Google Scholar] [CrossRef]
- Fang, W.Z.; Xing, M.Y.; Zhang, J.L. Modifications on reduced titanium dioxide photocatalysts: A review. J. Photochem. Photobio. C 2017, 32, 21–39. [Google Scholar] [CrossRef]
- Reda, S.M.; Khairy, M.; Mousa, M.A. Photocatalytic activity of nitrogen and copper doped TiO2 nanoparticles prepared by microwave-assisted sol-gel process. Arab. J. Chem. 2020, 13, 86–95. [Google Scholar] [CrossRef]
- Jin, X.D.; Zhou, X.Q.; Sun, P.; Lin, S.Y.; Cao, W.B.; Li, Z.F.; Liu, W.X. Photocatalytic degradation of norfloxacin using N-doped TiO2: Optimization, mechanism, identification of intermediates and toxicity evaluation. Chemosphere 2019, 237, 124433. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.J.; Zhou, S.; Liu, X.; Gong, M.D.; Xu, T. Synthesis of carbon- and nitrogen-doped TiO2/carbon composite fibers by a surface-hydrolyzed PAN fiber and their photocatalytic property. J. Mater. Sci. 2020, 55, 2471–2481. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef]
- Li, H.; Hao, Y.B.; Lu, H.Q.; Liang, L.P.; Wang, Y.Y.; Qiu, J.H.; Shi, X.C.; Wang, Y.; Yao, J.F. systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol-gel method. Appl. Surf. Sci. 2015, 344, 112–118. [Google Scholar] [CrossRef]
- Jyothi, M.S.; Laveena, P.D.; Shwetharani, R.; Balakrishna, G.R. Novel hydrothermal method for effective doping of N and F into nano Titania for both, energy and environmental applications. Mater. Res. Bull. 2016, 74, 478–484. [Google Scholar] [CrossRef]
- Rahbar, M.; Mehrzad, M.; Behpour, M.; Mohammadi-Aghdam, S.; Ashrafi, M. S, N co-doped carbon quantum dots/TiO2 nanocomposite as highly efficient visible light photocatalyst. Nanotechnology 2019, 30, 505702. [Google Scholar] [CrossRef]
- Liu, D.; Wang, J.Q.; Zhou, J.; Xi, Q.H.; Li, X.; Nie, E.; Piao, X.Q.; Sun, Z. Fabricating I doped TiO2 photoelectrode for the degradation of diclofenac: Performance and mechanism study. Chem. Eng. J. 2019, 369, 968–978. [Google Scholar] [CrossRef]
- Ichihara, F.; Sieland, F.; Pang, H.; Philo, D.; Duong, A.T.; Chang, K.; Kako, T.; Bahnemann, D.W.; Ye, J.H. Photogenerated Charge Carriers Dynamics on La- and/or Cr-Doped SrTiO3 Nanoparticles Studied by Transient Absorption Spectroscopy. J. Phys. Chem. C 2020, 124, 1292–1302. [Google Scholar] [CrossRef]
- Tian, L.J.; Xing, L.; Shen, X.L.; Li, Q.H.; Ge, S.J.; Liu, B.K.; Jie, L. Visible light enhanced Fe-I-TiO2 photocatalysts for the degradation of gaseous benzene. Atmos. Pollut. Res. 2020, 11, 179–185. [Google Scholar] [CrossRef]
- Razali, M.H.; Noor, A.F.M.; Yusoff, M. Physicochemical Properties of a Highly Efficient Cu-Ion-Doped TiO2 Nanotube Photocatalyst for the Degradation of Methyl Orange Under Sunlight. J. Nanosci. Nanotechnol. 2020, 20, 965–972. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tian, B.; Zhen, W.L.; Wu, Y.Q.; Lu, G.X. Inhibition of hydrogen and oxygen recombination using oxygen transfer reagent hemin chloride in Pt/TiO2 dispersion for photocatalytic hydrogen generation. Appl. Catal. B 2017, 203, 408–415. [Google Scholar] [CrossRef]
- Yu, Y.Q.; Zhu, X.R.; Wang, L.R.; Wu, F.S.; Liu, S.L.; Chang, C.Y.; Luo, X.G. A simple strategy to design 3-layered Au-TiO2 dual nanoparticles immobilized cellulose membranes with enhanced photocatalytic activity. Carbohydr. Polym. 2020, 231, 115694. [Google Scholar] [CrossRef] [PubMed]
- Surya, C.; John, N.A.A.; Pandiyan, V.; Ravikumar, S.; Amutha, P.; Sobral, A.J.F.N.; Krishnakumar, B. Costus speciosus leaf extract assisted CS-Pt-TiO2 composites: Synthesis, characterization and their bio and photocatalytic applications. J. Mol. Struct. 2019, 1195, 787–795. [Google Scholar] [CrossRef]
- Maarisetty, D.; Baral, S.S. Defect-induced enhanced dissociative adsorption, optoelectronic properties and interfacial contact in Ce doped TiO2: Solar photocatalytic degradation of Rhodamine B. Ceram Int. 2019, 45, 22253–22263. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, X.Y.; Zhou, Y.H.; Tian, H.J.; Guo, Q.J.; Hu, X.D. Efficient removal of oil pollutant via simultaneous adsorption and photocatalysis using La-N-TiO2-cellulose/SiO2 difunctional aerogel composite. Res. Chem. Intermed. 2020, 46, 1805–1822. [Google Scholar] [CrossRef]
- Liang, J.C.; Wang, J.Y.; Song, K.X.; Wang, X.F.; Yu, K.F.; Liang, C. Enhanced photocatalytic activities of Nd-doped TiO2 under visible light using a facile sol-gel method. J. Rare Earth 2020, 38, 148–156. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, C.; Lv, K.; Li, X.; Li, Q.; Fan, J. Single atomic Au induced dramatic promotion of the photocatalytic activity of TiO2 hollow microspheres. Chem. Commun. Camb. Engl. 2020, 56, 1745–1748. [Google Scholar] [CrossRef]
- Hayashi, T.; Nakamura, K.; Suzuki, T.; Saito, N.; Murakami, Y. OH radical formation by the photocatalytic reduction reactions of H2O2 on the surface of plasmonic excited Au-TiO2 photocatalysts. Chem. Phys. Lett. 2020, 739, 136958. [Google Scholar] [CrossRef]
- Jeantelot, G.; Qureshi, M.; Harb, M.; Ould-Chikh, S.; Anjum, D.H.; Abou-Hamad, E.; Aguilar-Tapia, A.; Hazemann, J.L.; Takanabe, K.; Basset, J.M. TiO2-supported Pt single atoms by surface organometallic chemistry for photocatalytic hydrogen evolution. Phys. Chem. Chem. Phys. 2019, 21, 24429–24440. [Google Scholar] [CrossRef] [Green Version]
- Singhal, N.; Kumar, U. Noble metal modified TiO2: Selective photoreduction of CO2 to hydrocarbons. Mol. Catal. 2017, 439, 91–99. [Google Scholar] [CrossRef]
- Gao, P.; Yang, L.B.; Xiao, S.T.; Wang, L.Y.; Guo, W.; Lu, J.H. Effect of Ru, Rh, Mo, and Pd Adsorption on the Electronic and Optical Properties of Anatase TiO2(101): A DFT Investigation. Materials 2019, 12, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xiao, Z.Z.; Cao, S.; Li, J.H.; Piao, L.Y. Controllable synthesis of Au-TiO2 nanodumbbell photocatalysts with spatial redox region. Chin. J. Catal. 2020, 41, 219–226. [Google Scholar] [CrossRef]
- Khatun, F.; Abd Aziz, A.; Sim, L.C.; Monir, M.U. Plasmonic enhanced Au decorated TiO2 nanotube arrays as a visible light active catalyst towards photocatalytic CO2 conversion to CH4. J. Environ. Chem. Eng. 2019, 7. [Google Scholar] [CrossRef]
- Sacco, O.; Murcia, J.J.; Lara, A.E.; Hernandez-Laverde, M.; Rojas, H.; Navio, J.A.; Hidalgo, M.C.; Vaiano, V. Pt-TiO2-Nb2O5 heterojunction as effective photocatalyst for the degradation of diclofenac and ketoprofen. Mater. Sci. Semicond. Proc. 2020, 107, 104839. [Google Scholar] [CrossRef]
- Qu, J.F.; Chen, D.Y.; Li, N.J.; Xu, Q.F.; Li, H.; He, J.H.; Lu, J.M. Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Appl. Catal. B 2019, 256. [Google Scholar] [CrossRef]
- Ouyang, W.Y.; Munoz-Batista, M.J.; Kubacka, A.; Luque, R.; Fernandez-Garcia, M. Enhancing photocatalytic performance of TiO2 in H2 evolution via Ru co-catalyst deposition. Appl. Catal B Environ. 2018, 238, 434–443. [Google Scholar] [CrossRef]
- Li, F.; Huang, H.B.; Li, G.S.; Leung, D.Y.C. TiO2 nanotube arrays modified with nanoparticles of platinum group metals (Pt, Pd, Ru): Enhancement on photoelectrochemical performance. J. Nanopart Res. 2019, 21, 29. [Google Scholar] [CrossRef]
- Sato, S.; White, J.M. Photodecomposition of water over Pt/TiO2 catalysts. Chem. Phys. Lett. 1980, 72, 83–86. [Google Scholar] [CrossRef]
- Kennedy, J.C.; Datye, A.K. Photothermal heterogeneous oxidation of ethanol over Pt/TiO2. J. Catal. 1998, 179, 375–389. [Google Scholar] [CrossRef]
- Ji, L.J.; Qin, X.; Zheng, J.J.; Zhou, S.; Xu, T.; Shi, G.J. Synthesis of Ag-Carbon-TiO2 composite tubes and their antibacterial and organic degradation properties. J. Sol Gel Sci. Technol. 2020, 93, 291–301. [Google Scholar] [CrossRef]
- Shan, R.; Lu, L.L.; Gu, J.; Zhang, Y.Y.; Yuan, H.R.; Chen, Y.; Luo, B. Photocatalytic degradation of methyl orange by Ag/TiO2/biochar composite catalysts in aqueous solutions. Mater. Sci. Semicond. Process. 2020, 114, 105088. [Google Scholar] [CrossRef]
- Jaafar, F.; Jalil, A.A.; Triwahyono, S.; Efendi, J.; Mukti, R.R.; Jusoh, R.; Jusoh, N.W.C.; Karim, A.H.; Salleh, N.F.M.; Suendo, V. Direct in situ activation of Ag0 nanoparticles in synthesis of Ag/TiO2 and its photoactivity. Appl. Surf. Sci. 2015, 338, 75–84. [Google Scholar] [CrossRef]
- Zhu, D.H.; Long, L.; Sun, J.Y.; Wan, H.Q.; Zheng, S.R. Highly active and selective catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline on Pt@Cu/TiO2. Appl. Surf. Sci. 2020, 504, 144329. [Google Scholar] [CrossRef]
- Nyankson, E.; Agyei-Tuffour, B.; Adjasoo, J.; Ebenezer, A.; Dodoo-Arhin, D.; Yaya, A.; Mensah, B.; Efavi, J.K. Synthesis and Application of Fe-Doped TiO2-Halloysite Nanotubes Composite and Their Potential Application in Water Treatment. Adv. Mater. Sci. Eng. 2019, 2019, 4270310. [Google Scholar] [CrossRef] [Green Version]
- Komaraiah, D.; Radha, E.; Sivakumar, J.; Reddy, M.V.R.; Sayanna, R. Structural, optical properties and photocatalytic activity of Fe3+ doped TiO2 thin films deposited by sol-gel spin coating. Surf. Interfaces 2019, 17, 100368. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Dogra, D.; Pal, B.; Singh, S. Photodeposition time dependant growth, size and photoactivity of Ag and Cu deposited TiO2 nanocatalyst under solar irradiation. Sol. Energy 2019, 194, 618–627. [Google Scholar] [CrossRef]
- Ghanbari, S.; Givianrad, M.H.; Azar, P.A. Synthesis and characterization of visible light driven N-Fe-codoped TiO2/SiO2 for simultaneous photoremoval of Cr (VI) and azo dyes in a novel fixed bed continuous flow photoreactor. Can. J. Chem. Eng. 2020, 98, 705–716. [Google Scholar] [CrossRef]
- Ahadi, S.; Moalej, N.S.; Sheibani, S. Characteristics and photocatalytic behavior of Fe and Cu doped TiO2 prepared by combined sol-gel and mechanical alloying. Solid State Sci. 2019, 96, 105975. [Google Scholar] [CrossRef]
- Zhang, J.H.; Fu, D.; Wang, S.Q.; Hao, R.L.; Xie, Y.X. Photocatalytic removal of chromium(VI) and sulfite using transition metal (Cu, Fe, Zn) doped TiO2 driven by visible light: Feasibility, mechanism and kinetics. J. Ind. Eng. Chem. 2019, 80, 23–32. [Google Scholar] [CrossRef]
- Khan, M.A.M.; Siwach, R.; Kumar, S.; Alhazaa, A.N. Role of Fe doping in tuning photocatalytic and photoelectrochemical properties of TiO2 for photodegradation of methylene blue. Opt. Laser Technol. 2019, 118, 170–178. [Google Scholar] [CrossRef]
- Bhatia, V.; Dhir, A. Transition metal doped TiO2 mediated photocatalytic degradation of anti-inflammatory drug under solar irradiations. J. Environ. Chem. Eng. 2016, 4, 1267–1273. [Google Scholar] [CrossRef]
- Stucchi, M.; Boffito, D.C.; Pargoletti, E.; Cerrato, G.; Bianchi, C.L.; Cappelletti, G. Nano-MnO2 Decoration of TiO2 Microparticles to Promote Gaseous Ethanol Visible Photoremoval. Nanomaterials 2018, 8, 686. [Google Scholar] [CrossRef] [Green Version]
- Choi, W.; Termin, A.; Hoffmann, M.R. The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics. J. Phys. Chem. 1994, 98, 13669–13679. [Google Scholar] [CrossRef]
- Du, X.-Q.; Ma, X.-L.; Wang, Y.-J.; Gu, F.-N.; Zhang, J. Optimization of the Ge/TiO2 catalyst for the degradation of ciprofloxacin by the response surface methodology. Zhongguo Kangshengsu Zazhi 2019, 44, 750–757. [Google Scholar]
- Crisan, M.; Mardare, D.; Ianculescu, A.; Dragan, N.; Nitoi, I.; Crisan, D.; Voicescu, M.; Todan, L.; Oancea, P.; Adomnitei, C.; et al. Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water. Appl. Surf. Sci. 2018, 455, 201–215. [Google Scholar] [CrossRef]
- Gnanasekaran, L.; Hemamalini, R.; Saravanan, R.; Ravichandran, K.; Gracia, F.; Gupta, V.K. Intermediate state created by dopant ions (Mn, Co and Zr) into TiO2 nanoparticles for degradation of dyes under visible light. J. Mol. Liq. 2016, 223, 652–659. [Google Scholar] [CrossRef]
- Huang, J.G.; Guo, X.T.; Wang, B.; Li, L.Y.; Zhao, M.X.; Dong, L.L.; Liu, X.J.; Huang, Y.T. Synthesis and Photocatalytic Activity of Mo-Doped TiO2 Nanoparticles. J. Spectrosc. 2015, 2015, 681850. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Jin, R.; Zhang, M.; Gao, S. Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J. Alloys Compd. 2017, 690, 139–144. [Google Scholar] [CrossRef]
- Vinodgopal, K.; Kamat, P.V. Enhanced Rates of Photocatalytic Degradation of an Azo Dye Using SnO2/TiO2 Coupled Semiconductor Thin Films. Environ. Sci. Technol. 1995, 29, 841–845. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.K.; Badru, R.; Singh, P.P.; Kaushal, S. Photodegradation of organic pollutants using heterojunctions: A review. J. Environ. Chem. Eng. 2020, 8, 103666. [Google Scholar] [CrossRef]
- Li, H.J.; Zhou, Y.; Tu, W.G.; Ye, J.H.; Zou, Z.G. State-of-the-Art Progress in Diverse Heterostructured Photocatalysts toward Promoting Photocatalytic Performance. Adv. Funct. Mater. 2015, 25, 998–1013. [Google Scholar] [CrossRef]
- Dursun, S.; Kaya, I.C.; Kalem, V.; Akyildiz, H. UV/visible light active CuCrO2 nanoparticle-SnO2 nanofiber p-n heterostructured photocatalysts for photocatalytic applications. Dalton Trans. 2018, 47, 14662–14678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.P.; Xiao, X.Y.; Li, Y.; Zeng, X.Y.; Zheng, L.L.; Wan, C.X. Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study. Appl. Surf. Sci. 2016, 389, 496–506. [Google Scholar] [CrossRef]
- Yang, L.; Gao, M.G.; Dai, B.; Guo, X.H.; Liu, Z.Y.; Peng, B.H. Synthesis of spindle-shaped AgI/TiO2 nanoparticles with enhanced photocatalytic performance. Appl. Surf. Sci. 2016, 386, 337–344. [Google Scholar] [CrossRef]
- Demirci, S.; Dikici, T.; Yurddaskal, M.; Gultekin, S.; Toparli, M.; Celik, E. Synthesis and characterization of Ag doped TiO2 heterojunction films and their photocatalytic performances. Appl. Surf. Sci. 2016, 390, 591–601. [Google Scholar] [CrossRef]
- Sarkar, A.; Gracia-Espino, E.; Wagberg, T.; Shchukarev, A.; Mohl, M.; Rautio, A.R.; Pitkanen, O.; Sharifi, T.; Kordas, K.; Mikkola, J.P. Photocatalytic reduction of CO2 with H2O over modified TiO2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956–1968. [Google Scholar] [CrossRef]
- Low, J.X.; Cheng, B.; Yu, J.G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review. Appl. Surf. Sci. 2017, 392, 658–686. [Google Scholar] [CrossRef]
- Moniz, S.J.A.; Shevlin, S.A.; Martin, D.J.; Guo, Z.X.; Tang, J.W. Visible-light driven heterojunction photocatalysts for water splitting—A critical review. Energy Environ. Sci. 2015, 8, 731–759. [Google Scholar] [CrossRef]
- Kumar, A.; Khan, M.; He, J.H.; Lo, I.M.C. Recent developments and challenges in practical application of visible-light-driven TiO2-based heterojunctions for PPCP degradation: A critical review. Water Res. 2020, 170, 115356. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.J.; Tan, L.L.; Ng, Y.H.; Yong, S.T.; Chai, S.P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDaniel, H.; Heil, P.E.; Tsai, C.L.; Kim, K.; Shim, M. Integration of Type II Nanorod Heterostructures into Photovoltaics. ACS Nano 2011, 5, 7677–7683. [Google Scholar] [CrossRef]
- Gou, J.F.; Ma, Q.L.; Deng, X.Y.; Cui, Y.Q.; Zhang, H.X.; Cheng, X.W.; Li, X.L.; Xie, M.Z.; Cheng, Q.F. Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin. Chem. Eng. J. 2017, 308, 818–826. [Google Scholar] [CrossRef]
- Wang, W.; Fang, J.J.; Shao, S.F.; Lai, M.; Lu, C.H. Compact and uniform TiO2@g-C3N4 core-shell quantum heterojunction for photocatalytic degradation of tetracycline antibiotics. Appl. Catal. B 2017, 217, 57–64. [Google Scholar] [CrossRef]
- Hou, H.J.; Zhang, X.H.; Huang, D.K.; Ding, X.; Wang, S.Y.; Yang, X.L.; Li, S.Q.; Xiang, Y.G.; Chen, H. Conjugated microporous poly(benzothiadiazole)/TiO2 heterojunction for visible-light-driven H2 production and pollutant removal. Appl. Catal. B 2017, 203, 563–571. [Google Scholar] [CrossRef]
- Ganguly, P.; Mathew, S.; Clarizia, L.; Kumar, R.S.; Akande, A.; Hinder, S.; Breen, A.; Pillai, S.C. Theoretical and experimental investigation of visible light responsive AgBiS2-TiO2 heterojunctions for enhanced photocatalytic applications. Appl. Catal. B 2019, 253, 401–418. [Google Scholar] [CrossRef]
- Liu, Z.; Tian, J.; Zeng, D.B.; Yu, C.L.; Huang, W.Y.; Yang, K.; Liu, X.Q.; Liu, H. Binary-phase TiO2 modified Bi2MoO6 crystal for effective removal of antibiotics under visible light illumination. Mater. Res. Bull. 2019, 112, 336–345. [Google Scholar] [CrossRef]
- Yu, J.G.; Wang, S.H.; Low, J.X.; Xiao, W. Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys. 2013, 15, 16883–16890. [Google Scholar] [CrossRef]
- Mei, Q.F.; Zhang, F.Y.; Wang, N.; Lu, W.S.; Su, X.T.; Wang, W.; Wu, R.L. Photocatalysts: Z-Scheme Heterojunction Constructed with Titanium Dioxide. Chin. J. Inorg. Chem. 2019, 35, 1321–1339. [Google Scholar] [CrossRef]
- Li, H.J.; Tu, W.G.; Zhou, Y.; Zou, Z.G. Z-Scheme Photocatalytic Systems for Promoting Photocatalytic Performance: Recent Progress and Future Challenges. Adv. Sci. 2016, 3, 1500389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, K.Z.; Cheng, B.; Yu, J.G.; Ho, W.K. A review on TiO2-based Z-scheme photocatalysts. Chin. J. Catal. 2017, 38, 1936–1955. [Google Scholar] [CrossRef]
- Low, J.X.; Jiang, C.; Cheng, B.; Wageh, S.; Al-Ghamdi, A.A.; Yu, J.G. A Review of Direct Z-Scheme Photocatalysts. Small Methods 2017, 1, 1700080. [Google Scholar] [CrossRef]
- Meng, S.G.; Zhang, J.F.; Chen, S.F.; Zhang, S.J.; Huang, W.X. Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. Appl. Surf. Sci. 2019, 476, 982–992. [Google Scholar] [CrossRef]
- Wang, F.L.; Wu, Y.L.; Wang, Y.F.; Li, J.H.; Jin, X.Y.; Zhang, Q.X.; Li, R.B.; Yan, S.C.; Liu, H.J.; Feng, Y.P.; et al. Construction of novel Z-scheme nitrogen-doped carbon dots/{001} TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation: Mechanism insight, products and effects of natural water matrices. Chem. Eng. J. 2019, 356, 857–868. [Google Scholar] [CrossRef]
- Hao, J.G.; Zhang, S.F.; Ren, F.; Wang, Z.W.; Lei, J.F.; Wang, X.N.; Cheng, T.; Li, L.B. Synthesis of TiO2@g-C3N4 core-shell nanorod arrays with Z-scheme enhanced photocatalytic activity under visible light. J. Colloid Interface Sci. 2017, 508, 419–425. [Google Scholar] [CrossRef]
- Liao, W.J.; Murugananthan, M.; Zhang, Y.R. Synthesis of Z-scheme g-C3N4-Ti3+/TiO2 material: An efficient visible light photoelectrocatalyst for degradation of phenol. Phys. Chem. Chem. Phys. 2015, 17, 8877–8884. [Google Scholar] [CrossRef]
- Shayegan, Z.; Lee, C.S.; Haghighat, F. TiO2 photocatalyst for removal of volatile organic compounds in gas phase—A review. Chem. Eng. J. 2018, 334, 2408–2439. [Google Scholar] [CrossRef]
- Basavarajappa, P.S.; Patil, S.B.; Ganganagappa, N.; Reddy, K.R.; Raghu, A.V.; Reddy, C.V. Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis. Int. J. Hydrog. Energy 2020, 45, 7764–7778. [Google Scholar] [CrossRef]
- Li, S.Y.; Yang, Y.L.; Su, Q.; Liu, X.Y.; Zhao, H.P.; Zhao, Z.X.; Li, J.; Jin, C. Synthesis and photocatalytic activity of transition metal and rare earth element co-doped TiO2 nano particles. Mater. Lett. 2019, 252, 123–125. [Google Scholar] [CrossRef]
- Oladipo, G.O.; Akinlabi, A.K.; Alayande, S.O.; Msagati, T.A.M.; Nyoni, H.H.; Ogunyinka, O.O. Synthesis, characterization, and photocatalytic activity of silver and zinc co-doped TiO2 nanoparticle for photodegradation of methyl orange dye in aqueous solution. Can. J. Chem. 2019, 97, 642–650. [Google Scholar] [CrossRef]
- Shahan, M.; Ahmed, A.M.; Shehata, N.; Betiha, M.A.; Rabie, A.M. Ni-doped and Ni/Cr co-doped TiO2 nanotubes for enhancement of photocatalytic degradation of methylene blue. J. Colloid Interface Sci. 2019, 555, 31–41. [Google Scholar] [CrossRef]
- Xia, H.Y.; Liu, G.Y.; Zhang, R.; Song, L.F.; Chen, H.X. The Photocatalytic Degradation of Vehicle Exhausts by an Fe/N/Co-TiO2 Waterborne Coating under Visible Light. Materials 2019, 12, 3378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.X.; Yao, Y.; Ding, W.; Anandan, S. N/Ti3+ co-doping biphasic TiO2/Bi2WO6 heterojunctions: Hydrothermal fabrication and sonophotocatalytic degradation of organic pollutants. J. Alloys Compd. 2020, 820, 153172. [Google Scholar] [CrossRef]
- Bayan, E.M.; Lupeiko, T.G.; Pustovaya, L.E.; Volkova, M.G.; Butova, V.V.; Guda, A.A. Zn-F co-doped TiO2 nanomaterials: Synthesis, structure and photocatalytic activity. J. Alloys Compd. 2020, 822, 153662. [Google Scholar] [CrossRef]
- Zhao, L.; Xie, Y.Z.; Lin, Q.Y.; Zheng, R.Z.; Diao, Y. Preparation of C, N and P co-doped TiO2 and its photocatalytic activity under visible light. Funct. Mater. Lett. 2019, 12, 1950045. [Google Scholar] [CrossRef]
- Wang, H.X.; Zhu, L.N.; Guo, F.Q. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays. Environ. Sci. Pollut. Res. 2019, 26, 33847–33855. [Google Scholar] [CrossRef]
- Yan, J.C.; Zhao, J.; Hao, L.; Hu, Y.F.; Liu, T.Y.; Guan, S.J.; Zhao, Q.; Zhu, Z.; Lu, Y. Low-temperature S-doping on N-doped TiO2 films and remarkable enhancement on visible-light performance. Mater. Res. Bull. 2019, 120, 110594. [Google Scholar] [CrossRef]
- Mohamed, R.M.; Bahnemann, D.W.; Basaleh, A.S.; Qadah, R.H. Photo-catalytic destruction of acetaldehyde using cobalt, copper co-doped titania dioxide nanoparticles beneath Visible light. Appl. Nanosci. 2020, 10, 931–939. [Google Scholar] [CrossRef]
- Pham, T.D.; Lee, B.K. Selective removal of polar VOCs by novel photocatalytic activity of metals co-doped TiO2/PU under visible light. Chem. Eng. J. 2017, 307, 63–73. [Google Scholar] [CrossRef]
- Isari, A.A.; Hayati, F.; Kakavandi, B.; Rostami, M.; Motevassel, M.; Dehghanifard, E. N, Cu co-doped TiO2@functionalized SWCNT photocatalyst coupled with ultrasound and visible-light: An effective sono-photocatalysis process for pharmaceutical wastewaters treatment. Chem. Eng. J. 2020, 392, 123685. [Google Scholar] [CrossRef]
- Sharotri, N.; Sharma, D.; Sud, D. Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants. J. Mater. Res. Technol. 2019, 8, 3995–4009. [Google Scholar] [CrossRef]
- Sirivallop, A.; Areerob, T.; Chiarakorn, S. Enhanced Visible Light Photocatalytic Activity of N and Ag Doped and Co-Doped TiO2 Synthesized by Using an In-Situ Solvothermal Method for Gas Phase Ammonia Removal. Catalysts 2020, 10, 251. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, N.; Singh, V.; Kumar, S.; Sirohi, K. Preparation of palladium, silver, and nitrogen co-doped mesoporous titanium dioxide nanoparticles to investigate their photocatalytic action. Mater. Res. Express 2019, 6, 13. [Google Scholar] [CrossRef]
- Osin, O.A.; Yu, T.Y.; Cai, X.M.; Jiang, Y.; Peng, G.T.; Cheng, X.M.; Li, R.B.; Qin, Y.; Lin, S.J. Photocatalytic Degradation of 4-Nitrophenol by C, N-TiO2: Degradation Efficiency vs. Embryonic Toxicity of the Resulting Compounds. Front. Chem. 2018, 6, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.Y.; Feng, M.C.; Peng, Z.J.; Huang, H.W.; Guo, Z.H.; Li, Z.H. Molten-salt fabrication of (N,F)-codoped single-crystal-like titania with high exposure of (001) crystal facet for highly efficient degradation of methylene blue under visible light irradiation. J. Mater. Res. 2018, 33, 1411–1421. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.S.; Qi, C.X.; Wen, P.C.; Hao, L.Y.; Xu, X.; Agathopoulos, S. Synthesis of Si, N co-Doped Nano-Sized TiO2 with High Thermal Stability and Photocatalytic Activity by Mechanochemical Method. Nanomaterials 2018, 8, 294. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Q.; Xing, Z.P.; Cui, J.Y.; Li, Z.Z.; Tan, S.Y.; Yin, J.W.; Zou, J.L.; Zhu, Q.; Zhou, W. C,N co-doped porous TiO2 hollow sphere visible light photocatalysts for efficient removal of highly toxic phenolic pollutants. Dalton Trans. 2018, 47, 4877–4884. [Google Scholar] [CrossRef] [PubMed]
- Singh, I.; Birajdar, B. Effective La-Na Co-Doped TiO2 Nano-Particles for Dye Adsorption: Synthesis, Characterization and Study on Adsorption Kinetics. Nanomaterials 2019, 9, 400. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Xu, D.H.; Oh, J.I.; Shen, W.; Li, X.; Yu, Y. Mechanistic Study of Codoped Titania with Nonmetal and Metal Ions: A Case of C plus Mo Codoped TiO2. ACS Catal. 2012, 2, 391–398. [Google Scholar] [CrossRef]
- Garg, A.; Singhania, T.; Singh, A.; Sharma, S.; Rani, S.; Neogy, A.; Yadav, S.R.; Sangal, V.K.; Garg, N. Photocatalytic Degradation of Bisphenol-A using N, Co Codoped TiO2 Catalyst under Solar Light. Sci. Rep. 2019, 9, 765. [Google Scholar] [CrossRef]
- Wang, F.; Ma, Z.Z.; Ban, P.P.; Xu, X.H. C, N and S codoped rutile TiO2 nanorods for enhanced visible-light photocatalytic activity. Mater. Lett. 2017, 195, 143–146. [Google Scholar] [CrossRef]
- Wang, M.G.; Han, J.; Hu, Y.M.; Guo, R. Mesoporous C, N-codoped TiO2 hybrid shells with enhanced visible light photocatalytic performance. RSC Adv. 2017, 7, 15513–15520. [Google Scholar] [CrossRef] [Green Version]
- Modanlu, S.; Shafiekhani, A. Synthesis of pure and C/S/N co-doped Titania on Al mesh and their photocatalytic usage in Benzene degradation. Sci. Rep. 2019, 9, 16648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, X.L.; Sun, X.Z.; Yu, Y.S.; Wang, H.Y.; Wang, Y. Photocatalytic degradation of flumequine with B/N codoped TiO2 catalyst: Kinetics, main active species, intermediates and pathways. Chem. Eng. J. 2019, 378, 122226. [Google Scholar] [CrossRef]
- Humayun, M.; Raziq, F.; Khan, A.; Luo, W. Modification strategies of TiO2 for potential applications in photocatalysis: Acritical review. Green Chem. Lett. Rev. 2018, 11, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Neale, N.R.; Miedaner, A.; Frank, A.J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett. 2007, 7, 69–74. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.L.; Habibi, M.; Akia, M.; Isa, M.H. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review. J. Ind. Eng. Chem. 2015, 26, 1–36. [Google Scholar] [CrossRef]
- Toumazatou, A.; Arfanis, M.K.; Pantazopoulos, P.A.; Kontos, A.G.; Falaras, P.; Stefanou, N.; Likodimos, V. Slow-photon enhancement of dye sensitized TiO2 photocatalysis. Mater. Lett. 2017, 197, 123–126. [Google Scholar] [CrossRef]
- Diaz-Angulo, J.; Lara-Ramos, J.; Mueses, M.; Hernandez-Ramirez, A.; Li Puma, G.; Machuca-Martinez, F. Enhancement of the oxidative removal of diclofenac and of the TiO2 rate of photon absorption in dye-sensitized solar pilot scale CPC photocatalytic reactors. Chem. Eng. J. 2020, 381, 122520. [Google Scholar] [CrossRef]
- Park, H.; Park, Y.; Kim, W.; Choi, W. Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol. C Photochem. Rev. 2013, 15, 1–20. [Google Scholar] [CrossRef]
- Choi, S.K.; Yang, H.S.; Kim, J.H.; Park, H. Organic dye-sensitized TiO2 as a versatile photocatalyst for solar hydrogen and environmental remediation. Appl. Catal. B 2012, 121, 206–213. [Google Scholar] [CrossRef]
- Dong, S.Y.; Feng, J.L.; Fan, M.H.; Pi, Y.Q.; Hu, L.M.; Han, X.; Liu, M.L.; Sun, J.Y.; Sun, J.H. Recent developments in heterogeneous photocatalytic water treatment using visible light-responsive photocatalysts: A review. RSC Adv. 2015, 5, 14610–14630. [Google Scholar] [CrossRef]
- Diaz-Angulo, J.; Gomez-Bonilla, I.; Jimenez-Tohapanta, C.; Mueses, M.; Pinzon, M.; Machuca-Martinez, F. Visible-light activation of TiO2 by dye-sensitization for degradation of pharmaceutical compounds. Photochem. Photobiol. Sci. 2019, 18, 897–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, E.T.; Yoo, H.Y.; Kim, W.; Kim, H.E.; Kang, G.; Lee, H.; Lee, S.; Park, T.; Lee, C.; Kim, J.H.; et al. Visible-light-induced activation of periodate that mimics dye-sensitization of TiO2: Simultaneous decolorization of dyes and production of oxidizing radicals. Appl. Catal. B 2017, 203, 475–484. [Google Scholar] [CrossRef]
- Sengupta, D.; Das, P.; Mondal, B.; Mukherjee, K. Effects of doping, morphology and film-thickness of photo-anode materials for dye sensitized solar cell application—A review. Renew. Sust. Energ. Rev. 2016, 60, 356–376. [Google Scholar] [CrossRef]
- Ahmad, I.; Kan, C.W. Visible-Light-Driven, Dye-Sensitized TiO2 Photo-Catalyst for Self-Cleaning Cotton Fabrics. Coatings 2017, 7, 192. [Google Scholar] [CrossRef] [Green Version]
- Murcia, J.J.; Avila-Martinez, E.G.; Rojas, H.; Cubillos, J.; Ivanova, S.; Penkova, A.; Laguna, O.H. Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. Nanomaterials 2019, 9, 517. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.Q.; Guo, H.Y.; Wang, F.; France, L.J.; Yang, W.X.; Mei, Z.H.; Yu, Y.H. Dye-sensitized TiO2@SBA-15 composites: Preparation and their application in photocatalytic desulfurization. Green Energy Environ. 2020, 5, 114–120. [Google Scholar] [CrossRef]
- Xu, T.Z.; Zhao, H.C.; Zheng, H.; Zhang, P.Y. Atomically Pt implanted nanoporous TiO2 film for photocatalytic degradation of trace organic pollutants in water. Chem. Eng. J. 2020, 385, 123832. [Google Scholar] [CrossRef]
- Lu, L.L.; Shan, R.; Shi, Y.Y.; Wang, S.X.; Yuan, H.R. A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere 2019, 222, 391–398. [Google Scholar] [CrossRef]
- Ismael, M. Enhanced photocatalytic hydrogen production and degradation of organic pollutants from Fe (III) doped TiO2 nanoparticles. J. Environ. Chem. Eng. 2020, 8, 103676. [Google Scholar] [CrossRef]
- Xu, J.J.; Chen, Y.F.; Dong, Z.Y.; Peng, Y.N.; Yue, S.T.; Huang, H. Strong effect of multi-electron oxygen reduction reaction on photocatalysis through the promotion of interfacial charge transfer. Appl. Catal. B 2019, 252, 41–46. [Google Scholar] [CrossRef]
- Singh, K.; Harish, S.; Archana, J.; Navaneethan, M.; Shimomura, M.; Hayakawa, Y. Investigation of Gd-doped mesoporous TiO2 spheres for environmental remediation and energy applications. Appl. Surf. Sci. 2019, 489, 883–892. [Google Scholar] [CrossRef]
- Zhang, J.L.; Pang, Z.Y.; Sun, Q.; Chen, X.; Zhu, Y.A.; Li, M.J.; Wang, J.D.; Qiu, H.; Li, X.Q.; Li, Y.G.; et al. TiO2 nanotube array modified with polypyrrole for efficient photoelectrocatalytic decolorization of methylene blue. J. Alloys Compd. 2020, 820, 153128. [Google Scholar] [CrossRef]
- Singaram, B.; Jeyaram, J.; Rajendran, R.; Arumugam, P.; Varadharajan, K. Visible light photocatalytic activity of tungsten and fluorine codoped TiO2 nanoparticle for an efficient dye degradation. Ionics 2019, 25, 773–784. [Google Scholar] [CrossRef]
- Janbandhu, S.Y.; Joshi, A.; Munishwar, S.R.; Gedam, R.S. CdS/TiO2 heterojunction in glass matrix: Synthesis, characterization, and application as an improved photocatalyst. Appl. Surf. Sci. 2019, 497, 143758. [Google Scholar] [CrossRef]
- Liu, C.Q.; Li, X.; Wu, Y.T.; Zhang, L.Y.; Chang, X.J.; Yuan, X.X.; Wang, X.F. Fabrication of multilayer porous structured TiO2-ZrTiO4-SiO2 heterostructure towards enhanced photo-degradation activities. Ceram. Int. 2020, 46, 476–486. [Google Scholar] [CrossRef]
- Wang, R.; Shen, J.; Zhang, W.J.; Liu, Q.Q.; Zhang, M.Y.; Zulfiqar; Tang, H. Build-in electric field induced step-scheme TiO2/W18O49 heterojunction for enhanced photocatalytic activity under visible-light irradiation. Ceram. Int. 2020, 46, 23–30. [Google Scholar] [CrossRef]
- Thanh, T.L.T.; Thi, L.N.; Dinh, T.T.; Van, N.N. Enhanced Photocatalytic Degradation of Rhodamine B Using C/Fe Co-Doped Titanium Dioxide Coated on Activated Carbon. J. Chem. 2019, 2019, 2949316. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Khan, M.; He, J.H.; Lo, I.M.C. Visible-light-driven magnetically recyclable terephthalic acid functionalized g-C3N4/TiO2 heterojunction nanophotocatalyst for enhanced degradation of PPCPs. Appl. Catal. B 2020, 270, 118898. [Google Scholar] [CrossRef]
- Chen, M.; Wang, H.H.; Chen, X.Y.; Wang, F.; Qin, X.X.; Zhang, C.B.; He, H. High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. Chem. Eng. J. 2020, 390, 124481. [Google Scholar] [CrossRef]
- He, L.; Dong, Y.N.; Zheng, Y.N.; Jia, Q.M.; Shan, S.Y.; Zhang, Y.Q. A novel magnetic MIL-101(Fe)/TiO2 composite for photo degradation of tetracycline under solar light. J. Hazard. Mater. 2019, 361, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Namshah, K.S.; Mohamed, R.M. WO3-TiO2 nanocomposites for paracetamol degradation under visible light. Appl. Nanosci. 2018, 8, 2021–2030. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, P.F.; Shen, X.F.; Zhang, Y.; Luo, L.; Duoerkun, G.; Zhang, L.S. TiO2/MoS2 heterojunctions-decorated carbon fibers with broad-spectrum response as weaveable photocatalyst/photoelectrode. Mater. Res. Bull. 2019, 112, 354–362. [Google Scholar] [CrossRef]
- Djouadi, L.; Khalaf, H.; Boukhatem, H.; Boutoumi, H.; Kezzime, A.; Santaballa, J.A.; Canle, M. Degradation of aqueous ketoprofen by heterogeneous photocatalysis using Bi2S3/TiO2-Montmorillonite nanocomposites under simulated solar irradiation. Appl. Clay Sci. 2018, 166, 27–37. [Google Scholar] [CrossRef]
- Leal, J.F.; Cruz, S.M.A.; Almeida, B.T.A.; Esteves, V.I.; Marques, P.; Santos, E.B.H. TiO2-rGO nanocomposite as an efficient catalyst to photodegrade formalin in aquaculture’s waters, under solar light. Environ. Sci. Water Res. Technol. 2020, 6, 1018–1027. [Google Scholar] [CrossRef]
- Morones-Esquivel, M.M.; Nunez-Nunez, C.M.; Gonzalez-Burciaga, L.A.; Hernandez-Mendoza, J.L.; Osorio-Revilla, G.I.; Proal-Najera, J.B. Kinetics and statistical approach for 2,5-dichlorophenol degradation in short reaction times by solar TiO2/glass photocatalysis. Rev. Mex. Ing. Quim. 2020, 19, 555–568. [Google Scholar] [CrossRef] [Green Version]
- Borzyszkowska, A.F.; Pieczynska, A.; Ofiarska, A.; Lisowski, W.; Nikiforow, K.; Siedlecka, E.M. Photocatalytic degradation of 5-fluorouracil in an aqueous environment via Bi-B co-doped TiO2 under artificial sunlight. Int. J. Environ. Sci. Technol. 2020, 17, 2163–2176. [Google Scholar] [CrossRef]
- Tbessi, I.; Benito, M.; Molins, E.; Llorca, J.; Touati, A.; Sayadi, S.; Najjar, W. Effect of Ce and Mn co-doping on photocatalytic performance of sol-gel TiO2. Solid State Sci. 2019, 88, 20–28. [Google Scholar] [CrossRef]
- Saqlain, S.; Cha, B.J.; Kim, S.Y.; Ahn, T.K.; Park, C.; Oh, J.M.; Jeong, E.C.; Seo, H.O.; Kim, Y.D. Visible light-responsive Fe-loaded TiO2 photocatalysts for total oxidation of acetaldehyde: Fundamental studies towards large-scale production and applications. Appl. Surf. Sci. 2020, 505, 144160. [Google Scholar] [CrossRef]
- Cherni, D.; Moussa, N.; Nsib, M.F.; Olivo, A.; Signoretto, M.; Prati, L.; Villa, A. Photocatalytic degradation of ethylbenzene in gas phase over N or NF doped TiO2 catalysts. J. Mater. Sci. Mater. Electron. 2019, 30, 18919–18926. [Google Scholar] [CrossRef]
- Jaleh, B.; Rouzbahani, M.G.; Abedi, K.; Azizian, S.; Ebrahimi, H.; Nasrollahzadeh, M.; Varma, R.S. Photocatalytic decomposition of VOCs by AC-TiO2 and EG-TiO2 nanocomposites. Clean Technol. Environ. Policy 2019, 21, 1259–1268. [Google Scholar] [CrossRef]
- Kim, J.; Lee, B.K. Enhanced photocatalytic decomposition of VOCs by visible-driven photocatalyst combined Cu-TiO2 and activated carbon fiber. Process Saf. Environ. Prot. 2018, 119, 164–171. [Google Scholar] [CrossRef]
- Belet, A.; Wolfs, C.; Mahy, J.G.; Poelman, D.; Vreuls, C.; Gillard, N.; Lambert, S.D. Sol-gel Syntheses of Photocatalysts for the Removal of Pharmaceutical Products in Water. Nanomaterials 2019, 9, 126. [Google Scholar] [CrossRef] [Green Version]
- Saif, M.; Aboul-Fotouh, S.M.K.; El-Molla, S.A.; Ibrahim, M.M.; Ismail, L.F.M. Evaluation of the photocatalytic activity of Ln(3+)-TiO2 nanomaterial using fluorescence technique for real wastewater treatment. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 128, 153–162. [Google Scholar] [CrossRef]
- Lima, K.V.; Emídio, E.S.; Pupo Nogueira, R.F.; do Vasconcelos, N.S.L.; Araújo, A.B. Application of a stable Ag/TiO2 film in the simultaneous photodegradation of hormones. J. Chem. Technol. Biotechnol. 2020, 8. [Google Scholar] [CrossRef]
- Peng, X.M.; Wang, M.; Hu, F.P.; Qiu, F.X.; Dai, H.L.; Cao, Z. Facile fabrication of hollow biochar carbon-doped TiO2/CuO composites for the photocatalytic degradation of ammonia nitrogen from aqueous solution. J. Alloys Compd. 2019, 770, 1055–1063. [Google Scholar] [CrossRef]
- Li, S.M.; Tan, J.; Jiang, Z.J.; Wang, J.; Li, Z.Q. MOF-derived bimetallic Fe-Ni-P nanotubes with tunable compositions for dye-sensitized photocatalytic H2 and O2 production. Chem. Eng. J. 2020, 384, 123354. [Google Scholar] [CrossRef]
- Saad, A.M.; Abukhadra, M.R.; Abdel-Kader Ahmed, S.; Elzanaty, A.M.; Mady, A.H.; Betiha, M.A.; Shim, J.-J.; Rabie, A.M. Photocatalytic degradation of malachite green dye using chitosan supported ZnO and Ce-ZnO nano-flowers under visible light. J. Environ. Manag. 2020, 258, 110043. [Google Scholar] [CrossRef] [PubMed]
- Espino-Estevez, M.R.; Fernandez-Rodriguez, C.; Gonzalez-Diaz, O.M.; Arana, J.; Espinos, J.P.; Ortega-Mendez, J.A.; Dona-Rodriguez, J.M. Effect of TiO2-Pd and TiO2-Ag on the photocatalytic oxidation of diclofenac, isoproturon and phenol. Chem. Eng. J. 2016, 298, 82–95. [Google Scholar] [CrossRef]
- Xu, H.F.; Li, G.; Liu, N.; Zhu, K.R.; Zhu, G.; Jin, S.W. Ag @ hierarchical TiO2 core-shell nanostructures for enhanced photocatalysis. Mater. Lett. 2015, 142, 324–327. [Google Scholar] [CrossRef]
- Ji, L.J.; Liu, X.; Xu, T.; Gong, M.D.; Zhou, S. Preparation and photocatalytic properties of carbon/carbon-doped TiO2 double-layer hollow microspheres. J. Sol-Gel Sci. Technol. 2020, 93, 380–390. [Google Scholar] [CrossRef]
- Fu, Z.T.; Zhang, S.; Fu, Z.X. Preparation of Multicycle GO/TiO2 Composite Photocatalyst and Study on Degradation of Methylene Blue Synthetic Wastewater. Appl. Sci. (Basel) 2019, 9, 3282. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Wang, X.C.; Cheng, B.Z.; Cao, S.; Zhou, J.F. Application of Mn-doped Mesoporous TiO2 in Tannery Wastewater Treatment. J. Soc. Leather Technol. Chem. 2019, 103, 318–322. [Google Scholar]
- Bordes, M.C.; Vicent, M.; Moreno, R.; Garcia-Montano, J.; Serra, A.; Sanchez, E. Application of plasma-sprayed TiO2 coatings for industrial (tannery) wastewater treatment. Ceram Int. 2015, 41, 14468–14474. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef]
- Fiorenza, R.; Di Mauro, A.; Cantarella, M.; Iaria, C.; Scalisi, E.M.; Brundo, M.V.; Gulino, A.; Spitaleri, L.; Nicotra, G.; Dattilo, S.; et al. Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts. Chem. Eng. J. 2020, 379, 122309. [Google Scholar] [CrossRef]
- Abdennouri, M.; Baalala, M.; Galadi, A.; El Makhfouk, M.; Bensitel, M.; Nohair, K.; Sadiq, M.; Boussaoud, A.; Barka, N. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays. Arab. J. Chem. 2016, 9, S313–S318. [Google Scholar] [CrossRef] [Green Version]
- Nasseh, N.; Taghavi, L.; Barikbin, B.; Nasseri, M.A. Synthesis and characterizations of a novel FeNi3/SiO2/CuS magnetic nanocomposite for photocatalytic degradation of tetracycline in simulated wastewater. J. Clean. Prod. 2018, 179, 42–54. [Google Scholar] [CrossRef]
- de Oliveira, C.P.M.; Viana, M.M.; Amaral, M.C.S. Coupling photocatalytic degradation using a green TiO2 catalyst to membrane bioreactor for petroleum refinery wastewater reclamation. Comp. Immunol. Microbiol. Infect. Dis. 2019, 68, 101403. [Google Scholar] [CrossRef]
- Ani, I.J.; Akpan, U.G.; Olutoye, M.A.; Hameed, B.H. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. J. Clean. Prod. 2018, 205, 930–954. [Google Scholar] [CrossRef]
- Shivaraju, H.P.; Muzakkira, N.; Shahmoradi, B. Photocatalytic treatment of oil and grease spills in wastewater using coated N-doped TiO2 polyscales under sunlight as an alternative driving energy. Int. J. Environ. Sci. Technol. 2016, 13, 2293–2302. [Google Scholar] [CrossRef] [Green Version]
- Andronic, L.; Isac, L.; Miralles-Cuevas, S.; Visa, M.; Oller, I.; Duta, A.; Malato, S. Pilot-plant evaluation of TiO2 and TiO2-based hybrid photocatalysts for solar treatment of polluted water. J. Hazard. Mater. 2016, 320, 469–478. [Google Scholar] [CrossRef]
- Solis-Casados, D.A.; Escobar-Alarcon, L.; Gomez-Olivan, L.M.; Haro-Poniatowski, E.; Klimova, T. Photodegradation of pharmaceutical drugs using Sn-modified TiO2 powders under visible light irradiation. Fuel 2017, 198, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Malakootian, M.; Olama, N.; Malakootian, M.; Nasiri, A. Photocatalytic degradation of metronidazole from aquatic solution by TiO2-doped Fe3+ nano-photocatalyst. Int. J. Environ. Sci. Technol. 2019, 16, 4275–4284. [Google Scholar] [CrossRef]
- Lacerda, J.A.S.; Macedo, A.M.; Teixeira, R.I.; Simoes, G.; Ribeiro, E.S.; Forero, J.S.B.; Correa, R.J. TiO2 Decorated Sand Grains for Photodegradation of Pollutants: Methylene Blue and Ciprofloxacin Study. J. Braz. Chem. Soc. 2020, 31, 201–210. [Google Scholar] [CrossRef]
- Hou, C.T.; Xie, J.Q.; Yang, H.L.; Chen, S.M.; Liu, H.L. Preparation of Cu2O@TiOF2/TiO2 and its photocatalytic degradation of tetracycline hydrochloride wastewater. RSC Adv. 2019, 9, 37911–37918. [Google Scholar] [CrossRef] [Green Version]
- Li, S.P.; Chang, L.B.; Peng, J.H.; Gao, J.Z.; Lu, J.B.; Zhang, F.C.; Zhu, G.Q.; Hojamberdiev, M. Bi-0 nanoparticle loaded on Bi3+-doped ZnWO4 nanorods with oxygen vacancies for enhanced photocatalytic NO removal. J. Alloys Compd. 2020, 818, 152837. [Google Scholar] [CrossRef]
- Rao, F.; Zhu, G.Q.; Hojamberdiev, M.; Zhang, W.B.; Li, S.P.; Gao, J.Z.; Zhang, F.C.; Huang, Y.H.; Huang, Y. Uniform Zn2+-Doped BiOI Microspheres Assembled by Ultrathin Nanosheets with Tunable Oxygen Vacancies for Super-Stable Removal of NO. J. Phys. Chem. C 2019, 123, 16268–16280. [Google Scholar] [CrossRef]
- Zhang, G.X.; Sun, Z.M.; Duan, Y.W.; Ma, R.X.; Zheng, S.L. Synthesis of nano-TiO2/diatomite composite and its photocatalytic degradation of gaseous formaldehyde. Appl. Surf. Sci. 2017, 412, 105–112. [Google Scholar] [CrossRef]
- Qin, Z.B.; Zhang, W.T.; Qian, G.P.; Wu, X.L.; Li, Y.J.M.R.I. The effects of different ways of adding nano-TiO2 to concrete on the degradation performance of NO2. Mater. Res. Innov. 2015, 19, S10–S148. [Google Scholar] [CrossRef]
- Zhang, J.H.; Hu, Y.; Qin, J.X.; Yang, Z.X.; Fu, M.L. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs. Chem. Eng. J. 2020, 385, 123814. [Google Scholar] [CrossRef]
- Wang, X.G.; Sun, M.H.; Murugananthan, M.; Zhang, Y.R.; Zhang, L.Z. Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds. Appl. Catal. B 2020, 260, 118205. [Google Scholar] [CrossRef]
- Lai, M.; Zhao, J.; Chen, Q.C.; Feng, S.J.; Bai, Y.J.; Li, Y.X.; Wang, C.Y. Photocatalytic toluene degradation over Bi-decorated TiO2: Promoted O2 supply to catalyst’s surface by metallic Bi. Catal. Today 2019, 335, 372–380. [Google Scholar] [CrossRef]
- Rao, Z.P.; Xie, X.F.; Wang, X.; Mahmood, A.; Tong, S.R.; Ge, M.F.; Sun, J. Defect Chemistry of Er3+-Doped TiO2 and Its Photocatalytic Activity for the Degradation of Flowing Gas-Phase VOCs. J. Phys. Chem. C 2019, 123, 12321–12334. [Google Scholar] [CrossRef]
- Ali, N.; Bilal, M.; Khan, A.; Ali, F.; Iqbal, H.M.N. Effective exploitation of anionic, nonionic, and nanoparticle-stabilized surfactant foams for petroleum hydrocarbon contaminated soil remediation. Sci. Total Environ. 2020, 704, 135391. [Google Scholar] [CrossRef]
- Peikam, E.N.; Jalali, M. Application of three nanoparticles (Al2O3, SiO2 and TiO2) for metal-contaminated soil remediation (measuring and modeling). Int. J. Environ. Sci. Technol. 2019, 16, 7207–7220. [Google Scholar] [CrossRef]
- Wang, L.; Li, X.; Tsang, D.C.W.; Jin, F.; Hou, D. Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. J. Hazard. Mater. 2020, 387, 122005. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Murtaza, B.; Bibi, I.; Natasha; Asif Naeem, M.; Niazi, N.K. A critical review of different factors governing the fate of pesticides in soil under biochar application. Sci. Total Environ. 2020, 711, 134645. [Google Scholar] [CrossRef]
- Eker, G.; Hatipoglu, M. Effect of UV wavelength, temperature and photocatalyst on the removal of PAHs from industrial soil with photodegradation applications. Environ. Technol. 2019, 40, 3793–3803. [Google Scholar] [CrossRef]
- Rachna; Rani, M.; Shanker, U. Degradation of tricyclic polyaromatic hydrocarbons in water, soil and river sediment with a novel TiO2 based heterogeneous nanocomposite. J. Environ. Manag. 2019, 248, 109340. [Google Scholar] [CrossRef]
- Zyoud, A.; Ateeq, M.; Helal, M.H.; Zyoud, S.H.; Hilal, H.S. Photocatalytic degradation of phenazopyridine contaminant in soil with direct solar light. Environ. Technol. 2019, 40, 2928–2939. [Google Scholar] [CrossRef]
- Xu, Q.; Huang, Z.; Ji, S.T.; Zhou, J.; Shi, R.Z.; Shi, W.Y. Cu2O nanoparticles grafting onto PLA fibers via electron beam irradiation: Bifunctional composite fibers with enhanced photocatalytic of organic pollutants in aqueous and soil systems. J. Radioanal. Nucl. Chem. 2020, 323, 253–261. [Google Scholar] [CrossRef]
- Theerakarunwong, C.D.; Phanichphant, S. Visible-Light-Induced Photocatalytic Degradation of PAH-Contaminated Soil and Their Pathways by Fe-Doped TiO2 Nanocatalyst. Water Air Soil Poll. 2018, 229, 291. [Google Scholar] [CrossRef]
- Kuang, X.; Shao, J.; Peng, L.; Song, H.; Wei, X.; Luo, S.; Gu, J.-D. Nano-TiO2 enhances the adsorption of Cd(II) on biological soil crusts under mildly acidic conditions. J. Contam. Hydrol. 2020, 229, 103583. [Google Scholar] [CrossRef]
- Yang, Y.; Javed, H.; Zhang, D.N.; Li, D.Y.; Kamath, R.; McVey, K.; Sra, K.; Alvarez, P.J.J. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation. Front. Chem. Sci. Eng. 2017, 11, 387–394. [Google Scholar] [CrossRef]
Type | Photocatalysts | Light Source | Target Pollutant | Degradation Rate | Ref. |
---|---|---|---|---|---|
TiO2 | MoS2/MoO3/TiO2 | 300 W Xe lamp | rhodamine B | 95% | [6] |
Yb, Er, Ce-codoped TiO2 | Xe lamp | 4-chlorophenol | 95% | [7] | |
TiO2@SiO2 composites | 500 W mercury lamp | methyl orange | 99% | [8] | |
SrTiO3 | La- SrTiO3 | 500 W Xe lamp | Cr6+ | 84% | [9] |
Ag3PO4/PANI/Cr: SrTiO3 | 300 W Xe lamp | phenol | 99% | [10] | |
Ag, Cr-SrTiO3 | 500 W Xe lamp | methyl orange | 98% | [11] | |
ZnO | Cu-ZnO | blue light lamp | Orange II | 70% | [12] |
ZnO | sunlight | methylene blue | 90% | [13] | |
Sr-ZnO | black light | methylene blue | 99% | [14] | |
WO3 | WO3 | 1500 W Xe lamp | N, N-diethyl-meta- toluamide | 60% | [15] |
WO3@Cu@PDI | 300 W Xe lamp | tetracycline hydrochloride | 85% | [16] | |
NiO-WO3 | 150 W tungsten lamp | eosin yellow | 95% | [17] | |
ZrO2 | Ce, Er-codoped ZrO2 | halogen lamp | rhodamine B | 92% | [18] |
Co3O4-ZrO2 | visible light | cyanide | 100% | [19] | |
Cu- ZrO2 | Visible light | methyl orange | 98% | [20] | |
g-C3N4 | Ag-P-codoped g-C3N4 | 8 W visible lamps | sulfamethoxazole | 99% | [21] |
AgI/LaFeO3/g-C3N4 | 500 W Xe lamp | norfloxacin | 95% | [22] | |
CdS/g-C3N42 | 500 W Xe lamp | rhodamine B | 96% | [23] |
Doping Elements | Crystal Phases of TiO2 | Light Source and Reaction Time | Target Pollutant | Degradation Rate | Ref. |
---|---|---|---|---|---|
Ni, Cr | anatase | Sunlight 90 min | methylene blue | 96% | [153] |
Cu, Co | anatase | LED 300 min | acetaldehyde | 99% | [160] |
Ag, V | - | 40 W white light bulbs 180 min | hexane gas butyl acetate gas | 94% 96% | [161] |
N, Cu | anatase | 200 W Xe lamp 60 min | sulfamethoxazole | 99% | [162] |
Fe, I | anatase | visible light 60 min | gaseous benzene | 59% | [80] |
Mn, N | anatase, rutile, wurtzite | LED 40 min | Quinalphos 2-chlorophenol | 92% 88% | [163] |
N, Ag | anatase | LED 360 min | methylene blue | 99% | [164] |
Ag, Pd, N | anatase | mercury vapor lamp 120 min | malachite green methylene blue mongo red | 75% 92% 62% | [165] |
C, N | anatase | simulated sunlight 420 min | 4-nitrophenol | 87% | [166] |
N, F | anatase | 500 W Xe lamp 150 min | methylene blue | 89% | [167] |
Si, N | anatase | 500 W Xe lamp 180 min | Rhodamine B | 86% | [168] |
C, N | anatase and rutile | 300 W Xe lamp 150 min | phenol | 92% | [169] |
Photocatalysts | Crystal Phases of TiO2 | Light Source and Reaction Time | Target Pollutant | Degradation Rate | Ref. |
---|---|---|---|---|---|
TiO2/biochar | anatase | 500 W mercury lamp 150 min | methyl orange | 97% | [192] |
Fe3+-TiO2 nanoparticles | anatase | 150 W Xe lamp 240 min | 4-chlorophenol ethyl orange | 65% 95% | [193] |
TiO2-Fe-porphyrin-conjugated microporous polymers | anatase | Xe lamp 90 min | methyl orange | 96% | [194] |
Gd-TiO2 | anatase | visible light 93 min | methylene blue | 28% | [195] |
polypyrrole@TiO2 | anatase and rutile | 250 W mercury lamp 60 min | methylene blue | 25% | [196] |
W, F-TiO2 | anatase | 500 W halogen lamp 180 min | methylene blue | 96% | [197] |
sodium borosilicate glass SiO2-B2O3-Na2O- ZnO with CdS and TiO2 | anatase | Sunlight 300 min | indigo carmine dye | 92% | [198] |
TiO2-ZrTiO4-SiO2 | anatase | 300 W Xe lamp 90 min | rhodamine B | 95% | [199] |
TiO2-W18O49 | anatase | visible light 60 min | rhodamine B | 82% | [200] |
C/Fe-TiO2 coated on activated carbon | anatase | 36 W compact light 140 min | rhoda mine B | 99% | [201] |
terephthalic acid functionalized g-C3N4/TiO2/Fe3O4@SiO2 | anatase | 8 W compact fluorescent lamps 120 min | ibuprofen | 97% | [202] |
Cu-TiO2 | anatase | 500 W Xe lamp 140 min | formaldehyde | 100% | [203] |
MIL-101(Fe)/TiO2 | anatase | Sunlight 30 min | tetracycline | 93% | [204] |
WO3/TiO2 | anatase | 500 W Xe lamp 60 min | paracetamol | 100% | [205] |
MoS2/TiO2/Carbon Fiber | rutile | visible light 60 min | tetracycline | 93% | [206] |
Bi2S3/TiO2/Montmorillonite | anatase | mercury vapor lamp 120 min | ketoprofen | 90% | [207] |
TiO2-reduced graphene oxide (TiO2-rGO) | anatase | simulated sunlight 90 min | formalin | 98% | [208] |
TiO2/glass | anatase | Sunlight 30 min | 2,5-dichlorophenol | 95% | [209] |
Bi, B-TiO2 | anatase | Xe lamp 90 min | 5-fluorouracil | 100% | [210] |
Ce, Mn- TiO2 | anatase | 30 W ultraviolet lamp 240 min | diclofenac | 94% | [211] |
Fe-TiO2 | anatase and rutile | visible light 1050 min | acetaldehyde | 65% | [212] |
N, F-TiO2 | anatase | mercury vapor lamp 180 min | ethylbenzene | 33% | [213] |
activated carbon-TiO2 | anatase and rutile | UV light 20 min | toluene | 99% | [214] |
Eosin Y- TiO2 | anatase | visible light 180 min | acetaminophen diclofenac | 71% 83% | [185] |
Cu-TiO2 combine with activated carbon fiber | anatase and rutile | fluorescent lamp 180 min | Benzene toluene | 81% 98% | [215] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Li, T.; Zhou, Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts 2020, 10, 804. https://doi.org/10.3390/catal10070804
Li R, Li T, Zhou Q. Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts. 2020; 10(7):804. https://doi.org/10.3390/catal10070804
Chicago/Turabian StyleLi, Ruixiang, Tian Li, and Qixing Zhou. 2020. "Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review" Catalysts 10, no. 7: 804. https://doi.org/10.3390/catal10070804
APA StyleLi, R., Li, T., & Zhou, Q. (2020). Impact of Titanium Dioxide (TiO2) Modification on Its Application to Pollution Treatment—A Review. Catalysts, 10(7), 804. https://doi.org/10.3390/catal10070804