Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts
Abstract
:1. Introduction
2. H2O2 Production by Carbon Nitride Photocatalysts
3. Enhancing Photocatalytic Activity of Carbon Nitride
3.1. Surface Chemistry Modulation
3.2. Functionalization
3.3. Construction of Heterostructures
4. Photocatalytic Application with In Situ H2O2 Generation
4.1. Pollutant Degradation
4.2. Fine Chemistry
5. Conclusions and Future Prospects
Author Contributions
Funding
Conflicts of Interest
References
- Hess, W.T. Hydrogen Peroxide. In Kirk-Othmer Encyclopedia of Chemical Technology, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; Volume 14, pp. 35–79. [Google Scholar]
- Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process. Appl. Catal. A Gen. 2008, 350, 133–149. [Google Scholar] [CrossRef]
- Campos-Martin, J.M.; Blanco-Brieva, G.; Fierro, J.L.G. Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process. Angew. Chem. Int. Ed. 2006, 45, 6962–6984. [Google Scholar] [CrossRef]
- Asghar, A.; Raman, A.A.A.; Wan Daud, W.M.A. Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. J. Clean. Prod. 2015, 87, 826–838. [Google Scholar] [CrossRef]
- Karmakar, S.R. Chapter 6—Bleaching of textiles. In Chemical Techonology in the Pre-Treatment Processes of Textiles; Elsevier: Amsterdam, The Netherlands, 1999; Volume 12, pp. 160–216. [Google Scholar]
- Sato, K.; Aoki, M.; Noyori, R. A “Green” Route to Adipic Acid: Direct Oxidation of Cyclohexenes with 30 Percent Hydrogen Peroxide. Science 1998, 281, 1646–1647. [Google Scholar] [CrossRef]
- Yamazaki, S.-I.; Siroma, Z.; Senoh, H.; Ioroi, T.; Fujiwara, N.; Yasuda, K. A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J. Power Sour. 2008, 178, 20–25. [Google Scholar] [CrossRef]
- Shaegh, S.A.M.; Nguyen, N.-T.; Ehteshami, S.M.M.; Chan, S.H. A membraneless hydrogen peroxide fuel cell using Prussian Blue as cathode material. Energy Environ. Sci. 2012, 5, 8225–8228. [Google Scholar] [CrossRef]
- Yamada, Y.; Yoneda, M.; Fukuzumi, S. A Robust One-Compartment Fuel Cell with a Polynuclear Cyanide Complex as a Cathode for Utilizing H2O2 as a Sustainable Fuel at Ambient Conditions. Chem. Eur. J. 2013, 19, 11733–11741. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Cheng, K.; Wu, T.; Zhang, Y.; Yin, J.; Wang, G.; Cao, D. Preparation of Au nanodendrites supported on carbon fiber cloth and its catalytic performance to H2O2 electroreduction and electrooxidation. RSC Adv. 2013, 3, 5483–5490. [Google Scholar] [CrossRef]
- Fukuzumi, S. Bioinspired Energy Conversion Systems for Hydrogen Production and Storage. Eur. J. Inorg. Chem. 2008, 2008, 1351–1362. [Google Scholar] [CrossRef]
- Perathoner, S.; Centi, G. Wet hydrogen peroxide catalytic oxidation (WHPCO) of organic waste in agro-food and industrial streams. Top. Catal. 2005, 33, 207–224. [Google Scholar] [CrossRef]
- Rokhina, E.V.; Virkutyte, J. Environmental Application of Catalytic Processes: Heterogeneous Liquid Phase Oxidation of Phenol With Hydrogen Peroxide. Crit. Rev. Environ. Sci. Technol. 2010, 41, 125–167. [Google Scholar] [CrossRef]
- Debellefontaine, H.; Chakchouk, M.; Foussard, J.N.; Tissot, D.; Striolo, P. Treatment of organic aqueous wastes: Wet air oxidation and wet peroxide oxidation®. Environ. Pollut. 1996, 92, 155–164. [Google Scholar] [CrossRef]
- Domingues, F.S.; Freitas, T.K.F.D.S.; de Almeida, C.A.; de Souza, R.P.; Ambrosio, E.; Palácio, S.M.; Garcia, J.C. Hydrogen peroxide-assisted photocatalytic degradation of textile wastewater using titanium dioxide and zinc oxide. Environ. Technol. 2017, 40, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Gomes, H.T.; Miranda, S.M.; Sampaio, M.J.; Silva, A.M.T.; Faria, J.L. Activated carbons treated with sulphuric acid: Catalysts for catalytic wet peroxide oxidation. Catal. Today 2010, 151, 153–158. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.T.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Removal of 2-nitrophenol by catalytic wet peroxide oxidation using carbon materials with different morphological and chemical properties. Appl. Catal. B Environ. 2013, 140, 356–362. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.T.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Catalytic wet peroxide oxidation: A route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Appl. Catal. B Environ. 2016, 187, 428–460. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.T.; Pastrana-Martínez, L.M.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Graphene-based materials for the catalytic wet peroxide oxidation of highly concentrated 4-nitrophenol solutions. Catal. Today 2015, 249, 204–212. [Google Scholar] [CrossRef]
- Cui, Y.; Huang, J.; Fu, X.; Wang, X. Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors. Catal. Sci. Technol. 2012, 2, 1396–1402. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, G.; Lu, F.; Wang, S.; Hu, Y.; Zhang, J.; Huang, W.; Wei, F. Enhanced photo-Fenton-like process over Z-scheme CoFe2O4/g-C3N4 Heterostructures under natural indoor light. Environ. Sci. Pollut. Res. 2016, 23, 21833–21845. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; Sharma, G.; Naushad, M.; Veses, R.C.; Ghfar, A.A.; Stadler, F.J.; Khan, M.R. Solar-driven photodegradation of 17-β-estradiol and ciprofloxacin from waste water and CO2 conversion using sustainable coal-char/polymeric-g-C3N4/rGO metal-free nano-hybrids. New. J. Chem. 2017, 41, 10208–10224. [Google Scholar] [CrossRef]
- Zhou, C.; Lai, C.; Huang, D.; Zeng, G.; Zhang, C.; Cheng, M.; Hu, L.; Wan, J.; Xiong, W.; Wen, M.; et al. Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl. Catal. B Environ. 2018, 220, 202–210. [Google Scholar] [CrossRef]
- Su, M.; He, C.; Sharma, V.K.; Asi, M.A.; Xia, D.; Li, X.Z.; Deng, H.; Xiong, Y. Mesoporous zinc ferrite: Synthesis, characterization, and photocatalytic activity with H2O2/visible light. J. Hazard. Mater. 2012, 211, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Lee, B.W.; Liu, C. Magnetic ZnFe2O4 Nanocubes: Synthesis and Photocatalytic Activity with Visible Light/H2O2. IEEE Trans. Magn. 2017, 53, 1–5. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Gu, H.; Zeng, C.; Yang, Y. Facile synthesis of Cu2O nanocubes and their enhanced photocatalytic property assisted by H2O2. Asian J. Chem. 2013, 25, 1733–1736. [Google Scholar]
- Kalam, A.; Al-Sehemi, A.G.; Assiri, M.; Du, G.; Ahmad, T.; Ahmad, I.; Pannipara, M. Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light. Results Phys. 2018, 8, 1046–1053. [Google Scholar] [CrossRef]
- Deng, X.; Wang, C.; Shao, M.; Xu, X.; Huang, J. Low-temperature solution synthesis of CuO/Cu2O nanostructures for enhanced photocatalytic activity with added H2O2: Synergistic effect and mechanism insight. RSC Adv. 2017, 7, 4329–4338. [Google Scholar] [CrossRef]
- Pesakhov, S.; Benisty, R.; Sikron, N.; Cohen, Z.; Gomelsky, P.; Khozin-Goldberg, I.; Dagan, R.; Porat, N. Effect of hydrogen peroxide production and the Fenton reaction on membrane composition of Streptococcus pneumoniae. BBA Biomembr. 2007, 1768, 590–597. [Google Scholar] [CrossRef]
- Pham, A.N.; Xing, G.; Miller, C.J.; Waite, T.D. Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J. Catal. 2013, 301, 54–64. [Google Scholar] [CrossRef]
- Fujihira, M.; Satoh, Y.; Osa, T. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2. Nature 1981, 293, 206. [Google Scholar] [CrossRef]
- Chiou, C.-H.; Wu, C.-Y.; Juang, R.-S. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J. 2008, 139, 322–329. [Google Scholar] [CrossRef]
- Nishimi, T.; Kamachi, T.; Kato, K.; Kato, T.; Yoshizawa, K. Mechanistic Study on the Production of Hydrogen Peroxide in the Anthraquinone Process. Eur. J. Org. Chem. 2011, 2011, 4113–4120. [Google Scholar] [CrossRef]
- Hans-Joachim, P.G.R. Production of Hydrogen Peroxide. US Patent 2158525, 10 October 1935. [Google Scholar]
- Thenard, L.J. Observations sur des nouvelles combinaisons entre l’oxigène et divers acides. Ann. Chim. Phys. 1818, 8, 306–312. [Google Scholar]
- Kato, S.; Jung, J.; Suenobu, T.; Fukuzumi, S. Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ. Sci. 2013, 6, 3756–3764. [Google Scholar] [CrossRef] [Green Version]
- Sandelin, F.; Oinas, P.; Salmi, T.; Paloniemi, J.; Haario, H. Kinetics of the Recovery of Active Anthraquinones. Ind. Eng. Chem. Res. 2006, 45, 986–992. [Google Scholar] [CrossRef]
- Lim, M.; Son, Y.; Khim, J. The effects of hydrogen peroxide on the sonochemical degradation of phenol and bisphenol A. Ultrason. Sonochem. 2014, 21, 1976–1981. [Google Scholar] [CrossRef] [PubMed]
- Pétrier, C. 31—The use of power ultrasound for water treatment. In Power Ultrasonics; Gallego-Juárez, J.A., Graff, K.F., Eds.; Woodhead Publishing: Oxford, UK, 2015; pp. 939–972. [Google Scholar]
- Shende, T.; Andaluri, G.; Suri, R.P.S. Kinetic model for sonolytic degradation of non-volatile surfactants: Perfluoroalkyl substances. Ultrason. Sonochem. 2019, 51, 359–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziembowicz, S.; Kida, M.; Koszelnik, P. The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Sep. Purif. Technol. 2018, 204, 149–153. [Google Scholar] [CrossRef]
- Kiss, A.A.; Geertman, R.; Wierschem, M.; Skiborowski, M.; Gielen, B.; Jordens, J.; John, J.J.; Van Gerven, T. Ultrasound-assisted emerging technologies for chemical processes. J. Chem. Technol. Biotechnol. 2018, 93, 1219–1227. [Google Scholar] [CrossRef]
- Ashokkumar, M. Advantages, Disadvantages and Challenges of Ultrasonic Technology. In Ultrasonic Synthesis of Functional Materials; Springer International Publishing: Cham, Switzerland, 2016; pp. 41–42. [Google Scholar]
- Chinta, S.; Lunsford, J.H. A mechanistic study of H2O2 and H2O formation from H2 and O2 catalyzed by palladium in an aqueous medium. J. Catal. 2004, 225, 249–255. [Google Scholar] [CrossRef]
- Dissanayake, D.P.; Lunsford, J.H. Evidence for the Role of Colloidal Palladium in the Catalytic Formation of H2O2 from H2 and O2. J. Catal. 2002, 206, 173–176. [Google Scholar] [CrossRef]
- Dissanayake, D.P.; Lunsford, J.H. The direct formation of H2O2 from H2 and O2 over colloidal palladium. J. Catal. 2003, 214, 113–120. [Google Scholar] [CrossRef]
- Liu, Q.; Lunsford, J.H. The roles of chloride ions in the direct formation of H2O2 from H2 and O2 over a Pd/SiO2 catalyst in a H2SO4/ethanol system. J. Catal. 2006, 239, 237–243. [Google Scholar] [CrossRef]
- Lunsford, J.H. The direct formation of H2O2 from H2 and O2 over palladium catalysts. J. Catal. 2003, 216, 455–460. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Gaikwad, A.G.; Sansare, S.D. Activation of Supported Pd Metal Catalysts for Selective Oxidation of Hydrogen to Hydrogen Peroxide. Catal. Lett. 2002, 83, 235–239. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Samanta, C. Hydrogen peroxide formation in the interaction of oxygen with boron-containing Pd catalysts prereduced by hydrazine in aqueous acidic medium containing bromide anions. Catal. Lett. 2005, 99, 79–81. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Samanta, C.; Gaikwad, A.G. Drastic increase of selectivity for H2O2 formation in direct oxidation of H2 to H2O2 over supported Pd catalysts due to their bromination. Chem. Commun. 2004, 2054–2055. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Samanta, C.; Jana, P. A novel route for in-situ H2O2 generation from selective reduction of O2 by hydrazine using heterogeneous Pd catalyst in an aqueous medium. Chem. Commun. 2005, 5399–5401. [Google Scholar] [CrossRef]
- Choudhary, V.R.; Sansare, S.D.; Gaikwad, A.G. Direct Oxidation of H2 to H2O2 and Decomposition of H2O2 Over Oxidized and Reduced Pd-Containing Zeolite Catalysts in Acidic Medium. Catal. Lett. 2002, 84, 81–87. [Google Scholar] [CrossRef]
- Edwards, J.K.; Hutchings, G.J. Palladium and Gold–Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide. Angew. Chem. Int. Ed. 2008, 47, 9192–9198. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.; Landon, P.; Carley, A.F.; Herzing, A.; Watanabe, M.; Kiely, C.J.; Hutchings, G.J. Direct synthesis of hydrogen peroxide from H2 and O2 using Au-Pd/Fe2O3 catalysts. J. Mater. Chem. 2005, 15, 4595–4600. [Google Scholar] [CrossRef]
- Edwards, J.K.; Solsona, B.E.; Landon, P.; Carley, A.F.; Herzing, A.; Kiely, C.J.; Hutchings, G.J. Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts. J. Catal. 2005, 236, 69–79. [Google Scholar] [CrossRef]
- Chen, J.; Eberlein, L.; Langford, C.H. Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite. J. Photochem. Photobiol. A 2002, 148, 183–189. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 29, 342001. [Google Scholar] [CrossRef] [Green Version]
- Radhika, N.P.; Selvin, R.; Kakkar, R.; Umar, A. Recent advances in nano-photocatalysts for organic synthesis. Arab. J. Chem. 2016. [Google Scholar] [CrossRef] [Green Version]
- Kaynan, N.; Berke, B.A.; Hazut, O.; Yerushalmi, R. Sustainable photocatalytic production of hydrogen peroxide from water and molecular oxygen. J. Mater. Chem. A 2014, 2, 13822–13826. [Google Scholar] [CrossRef]
- Carraway, E.R.; Hoffman, A.J.; Hoffmann, M.R. Photocatalytic Oxidation of Organic Acids on Quantum-Sized Semiconductor Colloids. Environ. Sci. Technol. 1994, 28, 786–793. [Google Scholar] [CrossRef]
- Kormann, C.; Bahnemann, D.W.; Hoffmann, M.R. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 1988, 22, 798–806. [Google Scholar] [CrossRef]
- Teranishi, M.; Naya, S.I.; Tada, H. In situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanoparticle-loaded titanium(IV) dioxide photocatalyst. J. Am. Chem. Soc. 2010, 132, 7850–7851. [Google Scholar] [CrossRef]
- Zhuang, H.; Yang, L.; Xu, J.; Li, F.; Zhang, Z.; Lin, H.; Long, J.; Wang, X. Robust Photocatalytic H2O2 Production by Octahedral Cd3(C3N3S3)2 Coordination Polymer under Visible Light. Sci. Rep. 2015, 5, 16947. [Google Scholar] [CrossRef] [Green Version]
- Shao, D.; Zhang, L.; Sun, S.; Wang, W. Oxygen Reduction Reaction for Generating H2O2 through a Piezo-Catalytic Process over Bismuth Oxychloride. ChemSusChem 2018, 11, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Zhang, L.; Wang, W.; Shao, D. Internal Electric Field Assisted Photocatalytic Generation of Hydrogen Peroxide over BiOCl with HCOOH. ACS Sustain. Chem. Eng. 2018, 6, 8704–8710. [Google Scholar] [CrossRef]
- Isaka, Y.; Kato, S.; Hong, D.; Suenobu, T.; Yamada, Y.; Fukuzumi, S. Bottom-up and top-down methods to improve catalytic reactivity for photocatalytic production of hydrogen peroxide using a Ru-complex and water oxidation catalysts. J. Mater. Chem. A 2015, 3, 12404–12412. [Google Scholar] [CrossRef] [Green Version]
- Isaka, Y.; Oyama, K.; Yamada, Y.; Suenobu, T.; Fukuzumi, S. Photocatalytic production of hydrogen peroxide from water and dioxygen using cyano-bridged polynuclear transition metal complexes as water oxidation catalysts. Catal. Sci. Technol. 2016, 6, 681–684. [Google Scholar] [CrossRef] [Green Version]
- Isaka, Y.; Yamada, Y.; Suenobu, T.; Nakagawa, T.; Fukuzumi, S. Production of hydrogen peroxide by combination of semiconductor-photocatalysed oxidation of water and photocatalytic two-electron reduction of dioxygen. RSC Adv. 2016, 6, 42041–42044. [Google Scholar] [CrossRef] [Green Version]
- Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Efficient Photocatalytic Production of Hydrogen Peroxide from Water and Dioxygen with Bismuth Vanadate and a Cobalt(II) Chlorin Complex. ACS Energy Lett. 2016, 1, 913–919. [Google Scholar] [CrossRef]
- Thakur, S.; Kshetri, T.; Kim, N.H.; Lee, J.H. Sunlight-driven sustainable production of hydrogen peroxide using a CdS–graphene hybrid photocatalyst. J. Catal. 2017, 345, 78–86. [Google Scholar] [CrossRef]
- Charanpahari, A.; Gupta, N.; Devthade, V.; Ghugal, S.; Bhatt, J. Ecofriendly Nanomaterials for Sustainable Photocatalytic Decontamination of Organics and Bacteria. In Handbook of Ecomaterials; Martínez, L.M.T., Kharissova, O.V., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–29. [Google Scholar]
- Chiranjeevi, T.; Pragya, R.; Gupta, S.; Gokak, D.T.; Bhargava, S. Minimization of Waste Spent Catalyst in Refineries. Procedia Environ. Sci. 2016, 35, 610–617. [Google Scholar] [CrossRef]
- Monai, M.; Melchionna, M.; Fornasiero, P. Chapter One—From metal to metal-free catalysts: Routes to sustainable chemistry. In Advances in Catalysis; Song, C., Ed.; Academic Press: Cambridge, MA, USA, 2018; Volume 63, pp. 1–73. [Google Scholar]
- Gautam, R.K.; Chattopadhyaya, M.C. Chapter 9—Magnetic Nanophotocatalysts for Wastewater Remediation. In Nanomaterials for Wastewater Remediation; Gautam, R.K., Chattopadhyaya, M.C., Eds.; Butterworth-Heinemann: Boston, MA, USA, 2016; pp. 189–238. [Google Scholar]
- Shiraishi, Y.; Kanazawa, S.; Sugano, Y.; Tsukamoto, D.; Sakamoto, H.; Ichikawa, S.; Hirai, T. Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 2014, 4, 774–780. [Google Scholar] [CrossRef]
- Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Graphitic Carbon Nitride Doped with Biphenyl Diimide: Efficient Photocatalyst for Hydrogen Peroxide Production from Water and Molecular Oxygen by Sunlight. ACS Catal. 2016, 6, 7021–7029. [Google Scholar] [CrossRef]
- Kofuji, Y.; Ohkita, S.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Mellitic Triimide-Doped Carbon Nitride as Sunlight-Driven Photocatalysts for Hydrogen Peroxide Production. ACS Sustain. Chem. Eng. 2017, 5, 6478–6485. [Google Scholar] [CrossRef]
- Ong, W.-J.; Tan, L.-L.; Ng, Y.H.; Yong, S.-T.; Chai, S.-P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability? Chem. Rev. 2016, 116, 7159–7329. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, S.; Martha, S.; Acharya, S.; Parida, K.M. An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications. Inorg. Chem. Front. 2016, 3, 336–347. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: A review. Nanoscale 2015, 7, 15–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Lan, Z.A.; Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 2017, 8, 5261–5274. [Google Scholar] [CrossRef] [Green Version]
- Mamba, G.; Mishra, A.K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl. Catal. B Environ. 2016, 198, 347–377. [Google Scholar] [CrossRef]
- Lima, M.J.; Silva, A.M.T.; Silva, C.G.; Faria, J.L. Graphitic carbon nitride modified by thermal, chemical and mechanical processes as metal-free photocatalyst for the selective synthesis of benzaldehyde from benzyl alcohol. J. Catal. 2017, 353, 44–53. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angew. Chem. Int. Ed. 2012, 51, 68–89. [Google Scholar] [CrossRef]
- Domcke, W.; Ehrmaier, J.; Sobolewski, A.L. Solar Energy Harvesting with Carbon Nitrides and N-Heterocyclic Frameworks: Do We Understand the Mechanism? ChemPhotoChem 2019, 3, 10–23. [Google Scholar] [CrossRef]
- Corp, K.L.; Schlenker, C.W. Ultrafast Spectroscopy Reveals Electron-Transfer Cascade That Improves Hydrogen Evolution with Carbon Nitride Photocatalysts. J. Am. Chem. Soc. 2017, 139, 7904–7912. [Google Scholar] [CrossRef]
- Haider, Z.; Cho, H.-I.; Moon, G.-H.; Kim, H.-I. Minireview: Selective production of hydrogen peroxide as a clean oxidant over structurally tailored carbon nitride photocatalysts. Catal. Today 2018, 335, 55–64. [Google Scholar] [CrossRef]
- Goto, H.; Hanada, Y.; Ohno, T.; Matsumura, M. Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 particles. J. Catal. 2004, 225, 223–229. [Google Scholar] [CrossRef]
- Maurino, V.; Minero, C.; Mariella, G.; Pelizzetti, E. Sustained production of H2O2 on irradiated TiO2—Fluoride systems. Chem. Commun. 2005, 2627–2629. [Google Scholar] [CrossRef] [PubMed]
- Hirakawa, T.; Nosaka, Y. Selective Production of Superoxide Ions and Hydrogen Peroxide over Nitrogen- and Sulfur-Doped TiO2 Photocatalysts with Visible Light in Aqueous Suspension Systems. J. Phys. Chem. C 2008, 112, 15818–15823. [Google Scholar] [CrossRef]
- Tsukamoto, D.; Shiro, A.; Shiraishi, Y.; Sugano, Y.; Ichikawa, S.; Tanaka, S.; Hirai, T. Photocatalytic H2O2 Production from Ethanol/O2 System Using TiO2 Loaded with Au–Ag Bimetallic Alloy Nanoparticles. ACS Catal. 2012, 2, 599–603. [Google Scholar] [CrossRef]
- Cai, R.; Kubota, Y.; Fujishima, A. Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide particles. J. Catal. 2003, 219, 214–218. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kofuji, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Effects of Surface Defects on Photocatalytic H2O2 Production by Mesoporous Graphitic Carbon Nitride under Visible Light Irradiation. ACS Catal. 2015, 5, 3058–3066. [Google Scholar] [CrossRef]
- Zhang, H.; Guo, L.-H.; Zhao, L.; Wan, B.; Yang, Y. Switching Oxygen Reduction Pathway by Exfoliating Graphitic Carbon Nitride for Enhanced Photocatalytic Phenol Degradation. J. Phys. Chem. Lett. 2015, 6, 958–963. [Google Scholar] [CrossRef]
- Yang, L.; Dong, G.; Jacobs, D.L.; Wang, Y.; Zang, L.; Wang, C. Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J. Catal. 2017, 352, 274–281. [Google Scholar] [CrossRef]
- Perry, S.C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F.C. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 2019, 3, 442–458. [Google Scholar] [CrossRef]
- Cui, Y.; Ding, Z.; Liu, P.; Antonietti, M.; Fu, X.; Wang, X. Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants. Phys. Chem. Chem. Phys. 2012, 14, 1455–1462. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wagner, P.; Tong, L.; Wallace, G.G.; Officer, D.L.; Swiegers, G.F. A Porphyrin-Doped Polymer Catalyzes Selective, Light-Assisted Water Oxidation in Seawater. Angew. Chem. Int. Ed. 2012, 51, 1907–1910. [Google Scholar] [CrossRef] [PubMed]
- Koppenol, W.H. Oxygen Activation by Cytochrome P450: A Thermodynamic Analysis. J. Am. Chem. Soc. 2007, 129, 9686–9690. [Google Scholar] [CrossRef] [PubMed]
- David, A.A.; Robert, E.H.; Willem, H.K.; Sergei, V.L.; Merényi, G.; Neta, P.; Ruscic, B.; David, M.S.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1139. [Google Scholar]
- Ghaly, M.Y.; Härtel, G.; Mayer, R.; Haseneder, R. Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste Manag. 2001, 21, 41–47. [Google Scholar] [CrossRef]
- Macías-Sánchez, J.; Hinojosa-Reyes, L.; Guzmán-Mar, J.L.; Peralta-Hernández, J.M.; Hernández-Ramírez, A. Performance of the photo-Fenton process in the degradation of a model azo dye mixture. Photochem. Photobiol. Sci. 2011, 10, 332–337. [Google Scholar] [CrossRef]
- Pérez-Moya, M.; Graells, M.; Castells, G.; Amigó, J.; Ortega, E.; Buhigas, G.; Pérez, L.M.; Mansilla, H.D. Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Res. 2010, 44, 2533–2540. [Google Scholar] [CrossRef]
- Li, S.; Dong, G.; Hailili, R.; Yang, L.; Li, Y.; Wang, F.; Zeng, Y.; Wang, C. Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B Environ. 2016, 190, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Guo, T.; Li, X.; Xu, T.; Yang, B.; Zhao, X. Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl. Catal. B Environ. 2018, 224, 725–732. [Google Scholar] [CrossRef]
- Shiraishi, Y.; Kanazawa, S.; Kofuji, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts. Angew. Chem. Int. Ed. 2014, 53, 13454–13459. [Google Scholar] [CrossRef]
- Kim, H.-I.; Choi, Y.; Hu, S.; Choi, W.; Kim, J.-H. Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl. Catal. B Environ. 2018, 229, 121–129. [Google Scholar] [CrossRef]
- Shi, L.; Yang, L.; Zhou, W.; Liu, Y.; Yin, L.; Hai, X.; Song, H.; Ye, J. Photoassisted Construction of Holey Defective g-C3N4 Photocatalysts for Efficient Visible-Light-Driven H2O2 Production. Small 2018, 14, 1703142. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Pan, H.; Murugananthan, M.; Gong, J.; Zhang, Y. Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl. Catal. B Environ. 2018, 232, 19–25. [Google Scholar] [CrossRef]
- Qu, X.; Hu, S.; Li, P.; Li, Z.; Wang, H.; Ma, H.; Li, W. The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment. Diam. Relat. Mater. 2018, 86, 159–166. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, X.; Li, F.; Cao, D.; Pu, M.; Han, D.; Yang, J.; Xiang, X. Energy-level dependent H2O2 production on metal-free, carbon-content tunable carbon nitride photocatalysts. J. Energy Chem. 2018, 27, 343–350. [Google Scholar] [CrossRef] [Green Version]
- Moon, G.-H.; Kim, W.; Bokare, A.D.; Sung, N.-E.; Choi, W. Solar production of H2O2 on reduced graphene oxide–TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 2014, 7, 4023–4028. [Google Scholar] [CrossRef]
- Kim, H.; Gim, S.; Jeon, T.H.; Kim, H.; Choi, W. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities. ACS Appl. Mater. Interfaces 2017, 9, 40360–40368. [Google Scholar] [CrossRef]
- Dong, S.; Liu, C.; Chen, Y. Boosting exciton dissociation and molecular oxygen activation by in-plane grafting nitrogen-doped carbon nanosheets to graphitic carbon nitride for enhanced photocatalytic performance. J. Colloid Interface Sci. 2019, 553, 59–70. [Google Scholar] [CrossRef]
- Wang, H.; Guan, Y.; Hu, S.; Pei, Y.; Ma, W.; Fan, Z. Hydrothermal Synthesis of Band Gap-Tunable Oxygen-Doped g-C3N4 with Outstanding “two-Channel” Photocatalytic H2O2 Production Ability Assisted by Dissolution-Precipitation Process. Nano 2019, 14, 1950023. [Google Scholar] [CrossRef]
- Bai, J.; Sun, Y.; Li, M.; Yang, L.; Li, J. The effect of phosphate modification on the photocatalytic H2O2 production ability of g-C3N4 catalyst prepared via acid-hydrothermal post-treatment. Diam. Relat. Mater. 2018, 87, 1–9. [Google Scholar] [CrossRef]
- Zang, L. Interfacial Donor–Acceptor Engineering of Nanofiber Materials To Achieve Photoconductivity and Applications. Acc. Chem. Res. 2015, 48, 2705–2714. [Google Scholar] [CrossRef]
- Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Tanaka, S.; Ichikawa, S.; Hirai, T. Carbon Nitride-Aromatic Diimide-Graphene Nanohybrids: Metal-Free Photocatalysts for Solar-to-Hydrogen Peroxide Energy Conversion with 0.2% Efficiency. J. Am. Chem. Soc. 2016, 138, 10019–10025. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Huang, D.; Zeng, G.; Huang, J.; Lai, C.; Zhou, C.; Wang, W.; Guo, H.; Xue, W.; et al. Boron nitride quantum dots decorated ultrathin porous g-C3N4: Intensified exciton dissociation and charge transfer for promoting visible-light-driven molecular oxygen activation. Appl. Catal. B Environ. 2019, 245, 87–99. [Google Scholar] [CrossRef]
- He, Z.; Kim, C.; Lin, L.; Jeon, T.H.; Lin, S.; Wang, X.; Choi, W. Formation of heterostructures via direct growth CN on h-BN porous nanosheets for metal-free photocatalysis. Nano Energy 2017, 42, 58–68. [Google Scholar] [CrossRef]
- Kofuji, Y.; Isobe, Y.; Shiraishi, Y.; Sakamoto, H.; Ichikawa, S.; Tanaka, S.; Hirai, T. Hydrogen Peroxide Production on a Carbon Nitride–Boron Nitride-Reduced Graphene Oxide Hybrid Photocatalyst under Visible Light. ChemCatChem 2018, 10, 2070–2077. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Yu, Z.; Ou, H.; Asiri, A.M.; Chen, Y.; Wang, X. Black Phosphorus and Polymeric Carbon Nitride Heterostructure for Photoinduced Molecular Oxygen Activation. Adv. Funct. Mater. 2018, 28, 1705407. [Google Scholar] [CrossRef]
- Li, R.; Li, C. Chapter One—Photocatalytic Water Splitting on Semiconductor-Based Photocatalysts. In Advances in Catalysis; Song, C., Ed.; Academic Press: Cambridge, MA, USA, 2017; Volume 60, pp. 1–57. [Google Scholar]
- Chen, Y.-C.; Smirniotis, P. Enhancement of Photocatalytic Degradation of Phenol and Chlorophenols by Ultrasound. Ind. Eng. Chem. Res. 2002, 41, 5958–5965. [Google Scholar] [CrossRef]
- Qin, T.; You, Z.; Wang, H.; Shen, Q.; Zhang, F.; Yang, H. Preparation and photocatalytic behavior of carbon-nanodots/graphitic carbon nitride composite photocatalyst. J. Electrochem. Soc. 2017, 164, H211–H214. [Google Scholar] [CrossRef]
- Desipio, M.M.; Thorpe, R.; Saha, D. Photocatalytic Decomposition of Paraquat Under Visible Light by Carbon Nitride and Hydrogen Peroxide. Optik 2018, 172, 1047–1056. [Google Scholar] [CrossRef]
- Wang, X.; Li, D.; Nan, Z. Effect of N content in g-C3N4 as metal-free catalyst on H2O2 decomposition for MB degradation. Sep. Purif. Technol. 2019, 224, 152–162. [Google Scholar] [CrossRef]
- Dinesh, G.K.; Chakma, S. Mechanistic investigation in degradation mechanism of 5-fluorouracil using graphitic carbon nitride. Ultrason. Sonochem. 2019, 50, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Yang, N.; Lv, H.; Wang, S.; Hu, M.; Wang, C.; Wang, D.; Wang, G. Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water. Chem 2019, 5, 664–680. [Google Scholar] [CrossRef] [Green Version]
- Saha, D.; Desipio, M.M.; Hoinkis, T.J.; Smeltz, E.J.; Thorpe, R.; Hensley, D.K.; Fischer-Drowos, S.G.; Chen, J. Influence of hydrogen peroxide in enhancing photocatalytic activity of carbon nitride under visible light: An insight into reaction intermediates. J. Environ. Chem. Eng. 2018, 6, 4927–4936. [Google Scholar] [CrossRef]
- Chen, Q.L.; Liu, Y.L.; Tong, L.G. Enhanced visible light photocatalytic activity of g-C3N4 assisted by hydrogen peroxide. Mater. Res. Express 2018, 5, 046203. [Google Scholar] [CrossRef]
- Wu, Q.; He, Y.; Zhang, H.; Feng, Z.; Wu, Y.; Wu, T. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free g-C3N4 under visible light irradiation. Mol. Catal. 2017, 436, 10–18. [Google Scholar] [CrossRef]
- Jiang, L.; Yuan, X.; Zeng, G.; Wu, Z.; Liang, J.; Chen, X.; Leng, L.; Wang, H.; Wang, H. Metal-free efficient photocatalyst for stable visible-light photocatalytic degradation of refractory pollutant. Appl. Catal. B Environ. 2018, 221, 715–725. [Google Scholar] [CrossRef]
- Wang, H.; Su, Y.; Zhao, H.; Yu, H.; Chen, S.; Zhang, Y.; Quan, X. Photocatalytic oxidation of aqueous ammonia using atomic single layer graphitic-C3N4. Environ. Sci. Technol. 2014, 48, 11984–11990. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, P.; Tan, C.; Chen, T.; Zhuo, M.; Xie, Z.; Wang, F.; Liu, H.; Cai, Z.; Liu, G.; et al. A photocatalytic degradation strategy of PPCPs by a heptazine-based CN organic polymer (OCN) under visible light. Environ. Sci. Nano 2018, 5, 2325–2336. [Google Scholar] [CrossRef]
- Wang, H.; Guo, H.; Zhang, N.; Chen, Z.; Hu, B.; Wang, X. Enhanced Photoreduction of U(VI) on C3N4 by Cr(VI) and Bisphenol A: ESR, XPS, and EXAFS Investigation. Environ. Sci. Technol. 2019, 53, 6454–6461. [Google Scholar] [CrossRef]
- Wang, Z.; Murugananthan, M.; Zhang, Y. Graphitic carbon nitride based photocatalysis for redox conversion of arsenic(III) and chromium(VI) in acid aqueous solution. Appl. Catal. B Environ. 2019, 248, 349–356. [Google Scholar] [CrossRef]
- Wang, H.; Li, Q.; Zhang, S.; Chen, Z.; Wang, W.; Zhao, G.; Zhuang, L.; Hu, B.; Wang, X. Visible-light-driven N2-g-C3N4 as a highly stable and efficient photocatalyst for bisphenol A and Cr(VI) removal in binary systems. Catal. Today 2019, 335, 110–116. [Google Scholar] [CrossRef]
- Chen, J.; Xu, X.; Li, T.; Pandiselvi, K.; Wang, J. Toward High Performance 2D/2D Hybrid Photocatalyst by Electrostatic Assembly of Rationally Modified Carbon Nitride on Reduced Graphene Oxide. Sci. Rep. 2016, 6, 37318. [Google Scholar] [CrossRef] [Green Version]
- Svoboda, L.; Praus, P.; Lima, M.J.; Sampaio, M.J.; Matýsek, D.; Ritz, M.; Dvorský, R.; Faria, J.L.; Silva, C.G. Graphitic carbon nitride nanosheets as highly efficient photocatalysts for phenol degradation under high-power visible LED irradiation. Mater. Res. Bull. 2018, 100, 322–332. [Google Scholar] [CrossRef]
- Yazici, E.; Deveci, H. Factors Affecting Decomposition of Hydrogen Peroxide. In Proceedings of the XIIth International Mineral Processing Symposium, Cappadocia-Nevşehir, Turkey, 6 October 2010; pp. 609–616. [Google Scholar]
- Cheng, F.; Wang, H.; Dong, X. The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem. Commun. 2015, 51, 7176–7179. [Google Scholar] [CrossRef] [PubMed]
- Bicheng, Z.; Xia, P.; Ho, W.; Yu, J. Isoelectric point and adsorption activity of porous g-C3N4. Appl. Surf. Sci. 2015, 344, 188–195. [Google Scholar]
- Torres-Pinto, A.; Sampaio, M.J.; Silva, C.G.; Faria, J.L.; Silva, A.M.T. Metal-free carbon nitride photocatalysis with in-situ hydrogen peroxide generation for the degradation of aromatic compounds. Appl. Catal. B Environ. 2019, 252, 128–137. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Tian, K.; Jiang, H. Improvement of phenol photodegradation efficiency by a combined g-C3N4 /Fe(III)/persulfate system. Chemosphere 2016, 148, 34–40. [Google Scholar] [CrossRef]
- Yuan, X.; Xie, R.; Zhang, Q.; Sun, L.; Long, X.; Xia, D. Oxygen functionalized graphitic carbon nitride as an efficient metal-free ozonation catalyst for atrazine removal: Performance and mechanism. Sep. Purif. Technol. 2019, 211, 823–831. [Google Scholar] [CrossRef]
- Li, X.; Pi, Y.; Wu, L.; Xia, Q.; Wu, J.; Li, Z.; Xiao, J. Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4 /NH2-Iron terephthalate metal-organic framework for MB degradation. Appl. Catal. B Environ. 2017, 202, 653–663. [Google Scholar] [CrossRef]
- Ren, S.; Chen, C.; Zhou, Y.; Dong, Q.; Ding, H. The α-Fe2O3/g-C3N4 composite as an efficient heterogeneous catalyst with combined Fenton and photocatalytic effects. Res. Chem. Intermediat. 2017, 43, 3307–3323. [Google Scholar] [CrossRef]
- Desipio, M.M.; Van Bramer, S.E.; Thorpe, R.; Saha, D. Photocatalytic and photo-fenton activity of iron oxide-doped carbon nitride in 3D printed and LED driven photon concentrator. J. Hazard. Mater. 2019, 376, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Lam, F.L.Y.; Hu, X. Complete degradation of ciprofloxacin over g-C3N4-iron oxide composite via heterogeneous dark Fenton reaction. J. Environ. Manag. 2019, 244, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Pedrosa, M.; Sampaio, M.J.; Horvat, T.; Nunes, O.C.; Dražić, G.; Rodrigues, A.E.; Figueiredo, J.L.; Silva, C.G.; Silva, A.M.T.; Faria, J.L. Visible-light-induced self-cleaning functional fabrics using graphene oxide/carbon nitride materials. Appl. Surf. Sci. 2019, 497, 143757. [Google Scholar] [CrossRef]
- Moreira, N.F.F.; Sampaio, M.J.; Ribeiro, A.R.; Silva, C.G.; Faria, J.L.; Silva, A.M.T. Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light. Appl. Catal. B Environ. 2019, 248, 184–192. [Google Scholar] [CrossRef]
- Wang, Y.; Li, H.; Yao, J.; Wang, X.; Antonietti, M. Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C-H bond oxidation. Chem. Sci. 2011, 2, 446–450. [Google Scholar] [CrossRef]
- Min, B.H.; Ansari, M.B.; Mo, Y.H.; Park, S.E. Mesoporous carbon nitride synthesized by nanocasting with urea/formaldehyde and metal-free catalytic oxidation of cyclic olefins. Catal. Today 2013, 204, 156–163. [Google Scholar] [CrossRef]
- Lopes, J.C.; Sampaio, M.J.; Fernandes, R.A.; Lima, M.J.; Faria, J.L.; Silva, C.G. Outstanding response of carbon nitride photocatalysts for selective synthesis of aldehydes under UV-LED irradiation. Catal. Today 2019. [Google Scholar] [CrossRef]
- Zhang, J.J.; Ge, J.M.; Wang, H.H.; Wei, X.; Li, X.H.; Chen, J.S. Activating Oxygen Molecules over Carbonyl-Modified Graphitic Carbon Nitride: Merging Supramolecular Oxidation with Photocatalysis in a Metal-Free Catalyst for Oxidative Coupling of Amines into Imines. ChemCatChem 2016, 8, 3441–3445. [Google Scholar] [CrossRef]
Modification on CN | Preparation Method | Experimental Conditions | Photocatalytic Results | Ref. | |
---|---|---|---|---|---|
H2O2 Generated (µmol) | Production Rate (µmol gcat−1 h−1) | ||||
None | Thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) propan-2-ol/water (5 mL); 4 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 60 µmol (24 h) | 125 | [76] |
None | Thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) benzyl alcohol/water matrix (5 mL); 4 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 109 µmol (24 h) | 227 | [76] |
None | Thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) ethanol/water (5 mL); 4 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 30 µmol (24 h) | 63 | [76] |
None | Thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) butan−1-ol/water (5 mL); 4 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 18 µmol (24 h) | 38 | [76] |
None | Thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) propan−1-ol/water (5 mL); 4 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 6.3 µmol (24 h) | 13 | [76] |
None | Thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) propan-2-ol/water (5 mL); 4 g L−1; sunlight; O2 | 120 µmol (9 h) | 667 | [76] |
None | Thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) propan-2-ol/water (5 mL); 4 g L−1; sunlight (λ > 420 nm); O2 | 70 µmol (9 h) | 389 | [76] |
None | Thermal polymerization of melamine | 9/1 (v/v) propan-2-ol/water (30 mL); 1.7 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 148 µmol (6 h) | 493 | [107] |
Adding surface defects | Silica-templated thermal polymerization of cyanamide under N2 atmosphere | 9/1 (v/v) ethanol/water (5 mL); 4 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 90 µmol (24 h) | 188 | [94] |
Adding C vacancies | Thermal polymerization of melamine and further treatment under Ar atmosphere | water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ > 420 nm); O2 | 9 µmol (1 h) | 90 | [105] |
Adding N vacancies | Thermal polymerization of melamine and further treatment under H2 atmosphere | water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ > 420 nm); O2 | 1.5 µmol (1 h) | 15 | [105] |
Adding N vacancies | Thermal polymerization of dicyandiamide and photo-assisted post-treatment with hydrazine | 20% (v) propan-2-ol/water (60 mL); 0.83 g L−1; solar simulator (λ > 420 nm); O2 | 12.1 µmol (2.5 h) | 97 | [109] |
Adding N vacancies | Thermal polymerization of melamine and further calcinated with sodium borohydride | water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ ≥ 420 nm); O2 | 30.0 µmol (1 h) | 300 | [110] |
Adding N vacancies | Thermal polymerization of melamine and further calcinated with sodium borohydride | water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ ≥ 400 nm); air | 17.0 µmol (1 h) | 170 | [110] |
Adding N vacancies | Thermal polymerization of melamine and further calcinated with sodium borohydride | water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ ≥ 400 nm); N2 | 2.5 µmol (1 h) | 25 | [110] |
Adding N vacancies | Thermal polymerization of melamine and H2 plasma treatment | 50% (v) ethanol/water (200 mL); 1.0 g L−1; 250 W high-pressure sodium lamp (λ > 400 nm); O2 | 26000 µmol (12 h) | 2167 | [111] |
C doping | Thermal polymerization of melamine and sonication with glucose | 5/95 (v/v) propan-2-ol/water; 1.0 g L−1; 300 W Xe lamp; O2 | 38.1 µmol (4 h) | 318 | [112] |
Carbon nanotubes combination | Thermal polymerization of dicyandiamide and ammonium chloride and mixed with carbon nanotubes | 5/95 (v/v) formic acid/water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ ≥ 400 nm); O2 | 48.7 µmol (1 h) | 487 | [106] |
Carbon nanotubes combination | Thermal polymerization of dicyandiamide and ammonium chloride and mixed with carbon nanotubes | 5/95 (v/v) methanol/water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ ≥ 400 nm); O2 | 23.1 µmol (1 h) | 231 | [106] |
Carbon nanotubes combination | Thermal polymerization of dicyandiamide and ammonium chloride and mixed with carbon nanotubes | water (100 mL); 1.0 g L−1; 300 W Xe lamp (λ ≥ 400 nm); O2 | 1.3 µmol (1 h) | 13 | [106] |
AQ-COOH coupling | Thermal polymerization of melamine and sonication with anthraquinone (AQ)-2-carboxylic acid | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 361 | [108] |
AQ-COOH coupling | Thermal polymerization of melamine and sonication with anthraquinone-2-carboxylic acid | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); air | no data | 270 | [108] |
AQ-NH2 coupling | Thermal polymerization of melamine and sonication with 2-aminoanthraquinone | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 233 | [108] |
AQ-SO3- coupling | Thermal polymerization of melamine and sonication with sodium anthraquinone-2-sulfonate | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 131 | [108] |
AQ-OH coupling | Thermal polymerization of melamine and sonication with 2-hydroxymethylanthraquinone | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 86.9 | [108] |
AQ-COOH coupling | Thermal polymerization of melamine and sonication with anthraquinone-2-carboxylic acid | water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 24 | [108] |
Benzene substitution | Thermal polymerization of urea with trimesic acid | 1/9 (v/v) ethanol/water (30 mL); 0.5 g L−1; 300 W Xe lamp (λ > 420 nm); O2 | 275 µmol (3 h) | 300 | [114] |
N doping | Thermal polymerization of melamine, sonication with tetracycline hydrochloride and further thermal exfoliation | 3/7 (v/v) propan-2-ol/water (100 mL); 0.5 g L−1; solar simulator (λ > 420 nm); O2 | 14 µmol (1 h) | 279 | [115] |
O doping | Thermal polymerization of dicyandiamide with nitric acid and hydrothermal post-treatment | water (50 mL); 1.0 g L−1; 250 W high-pressure sodium lamp (λ > 400 nm); O2 | 760 µmol (6 h) | 633 | [116] |
Phosphate doping | Thermal polymerization of melamine and hydrothermal treatment with H3PO4 | 2.6 mM EDTA aqueous solution (200 mL); 1.0 g L−1; 250 W high-pressure sodium lamp (λ > 400 nm); O2 | 1080 µmol (6 h) | 900 | [117] |
CN-C60 | Thermal polymerization of melamine and C60 | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 63.2 | [108] |
CN-GO | Thermal polymerization of melamine and sonication with GO | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 62.3 | [108] |
CN-rGO | Thermal polymerization of melamine and sonication with hydrazine-reduced GO | 1/9 (v/v) propan-2-ol/water; 0.5 g L−1; 150 W Xe lamp (λ > 400 nm); O2 | no data | 74.3 | [108] |
CN-PDI | Thermal polymerization of melamine and pyromellitic dianhydride (PMDA) | water (30 mL); 1.7 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 50.6 µmol (48 h) | 21 | [107] |
CN-PDI | Thermal polymerization of melamine and pyromellitic dianhydride (PMDA) | 9/1 (v/v) propan-2-ol/water (30 mL); 1.7 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 210 µmol (6 h) | 700 | [107] |
CN-BDI | Thermal polymerization of melamine and biphenyl tetracarboxylic dianhydride (BTCDA) | 9/1 (v/v) propan-2-ol/water (30 mL); 3.3 g L−1; solar simulator (λ > 400-500 nm); O2 | 22.2 µmol (2 h) | 111 | [77] |
CN-BDI | Thermal polymerization of melamine and biphenyl tetracarboxylic dianhydride (BTCDA) | water (30 mL); 1.7 g L−1; solar simulator (λ > 420 nm); O2 | 11.6 µmol (24 h) | 10 | [77] |
CN-MTI | Thermal polymerization of melem and mellitic acid trianhydride (MTA) | water (30 mL); 1.7 g L−1; Xe lamp (λ > 420 nm); O2 | 27.5 µmol (24 h) | 23 | [78] |
CN-PDI-rGO | Hydrothermal treatment of melem and GO and thermal polymerization with PMDA | water (30 mL); 1.7 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 60 µmol (48 h) | 25 | [119] |
CN-PDI-rGO | Hydrothermal treatment of melem and GO and thermal polymerization with PMDA | 9/1 (v/v) propan-2-ol/water (30 mL); 1.7 g L−1; 2000 W Xe lamp (λ > 420 nm); O2 | 550 µmol (9 h) | 1222 | [119] |
CN-PDI-BN | Sonication of melem and CN and thermal polymerization with PMDA | water (30 mL); 1.7 g L−1; 200 W Xe lamp (λ > 420 nm); O2 | 28 µmol (24 h) | 23 | [122] |
CN-PDI-BN | Sonication of melem and CN and thermal polymerization with PMDA | 9/1 (v/v) propan-2-ol/water (30 mL); 1.7 g L−1; 200 W Xe lamp (λ > 420 nm); O2 | 370 µmol (6 h) | 1233 | [122] |
CN-PDI-rGO-BN | Sonication of melem, GO and CN and thermal polymerization with PMDA | water (30 mL); 1.7 g L−1; 200 W Xe lamp (λ > 420 nm); O2 | 37 µmol (24 h) | 31 | [122] |
CN-PDI-rGO-BN | Sonication of melem, GO and CN and thermal polymerization with PMDA | 9/1 (v/v) propan-2-ol/water (30 mL); 1.7 g L−1; 200 W Xe lamp (λ > 420 nm); O2 | 550 µmol (6 h) | 1833 | [122] |
CN-PI | Thermal polymerization of melamine and cyanuric acid and reflux condensation reaction with perylene tetracarboxylic dianyhdride (PTCDA) and imidazole | water (30 mL); 1.7 g L−1; 300 W Xe lamp (λ > 420 nm); no data | 120 µmol (2 h) | 1200 | [96] |
CN-BP | Thermal polymerization of urea followed by sonication with N-methyl-2-pyrrolidone and BP | 1/9 (v/v) propan-2-ol/water (30 mL); 1.7 g L−1; 300 W Xe lamp (λ > 420 nm); O2 | 540 µmol (1 h) | 540 | [124] |
CN-BN | Hydrothermal treatment and thermal polymerization of thiourea and melamine and sonication with BN dots | 1/9 (v/v) propan-2-ol/water (50 mL); 1.0 g L−1; 300 W Xe lamp (λ > 420 nm); O2 | 72.3 µmol (1 h) | 72.3 | [120] |
CN-BN | Thermal polymerization of urea and BN nanosheets | 1/9 (v/v) methanol/water (40 mL); 0.5 g L−1; 300 W Xe lamp (λ > 305 nm); O2 | 112 µmol (4 h) | 1400 | [121] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Pinto, A.; Sampaio, M.J.; Silva, C.G.; Faria, J.L.; M. T. Silva, A. Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts. Catalysts 2019, 9, 990. https://doi.org/10.3390/catal9120990
Torres-Pinto A, Sampaio MJ, Silva CG, Faria JL, M. T. Silva A. Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts. Catalysts. 2019; 9(12):990. https://doi.org/10.3390/catal9120990
Chicago/Turabian StyleTorres-Pinto, André, Maria J. Sampaio, Cláudia G. Silva, Joaquim L. Faria, and Adrián M. T. Silva. 2019. "Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts" Catalysts 9, no. 12: 990. https://doi.org/10.3390/catal9120990
APA StyleTorres-Pinto, A., Sampaio, M. J., Silva, C. G., Faria, J. L., & M. T. Silva, A. (2019). Recent Strategies for Hydrogen Peroxide Production by Metal-Free Carbon Nitride Photocatalysts. Catalysts, 9(12), 990. https://doi.org/10.3390/catal9120990