Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction
Abstract
:1. Introduction
2. Structured Catalysts Preparation
2.1. The Structures
2.2. Coating Techniques
2.3. Coating Stability
3. Activity and Kinetics of Structured Catalysts in WGS Reaction
4. Process and Modelling
5. Conclusions and Outlook
Author Contributions
Funding
Conflicts of Interest
References and Notes
- Bukur, D.B.; Todic, B.; Elbashir, N. Role of water-gas-shift reaction in Fischer–Tropsch synthesis on iron catalysts: A review. Catal. Today 2016, 275, 66–75. [Google Scholar] [CrossRef]
- Hallac, B.B.; Brown, J.C.; Stavitski, E.; Harrison, R.G.; Argyle, M.D. In Situ UV-Visible Assessment of Iron-Based High-Temperature Water-Gas Shift Catalysts Promoted with Lanthana: An Extent of Reduction Study. Catalysts 2018, 8, 63. [Google Scholar] [CrossRef]
- Montenegro Camacho, Y.S.; Bensaid, S.; Lorentzou, S.; Russo, N.; Fino, D. Structured catalytic reactor for soot abatement in a reducing atmosphere. Fuel Process. Technol. 2017, 167, 462–473. [Google Scholar] [CrossRef]
- Lucci, F.; Della Torre, A.; Montenegro, G.; Kaufmann, R.; Dimopoulos Eggenschwiler, P. Comparison of geometrical, momentum and mass transfer characteristics of real foams to Kelvin cell lattices for catalyst applications. Int. J. Hydrogen Energy 2017, 108, 341–350. [Google Scholar] [CrossRef]
- González-Castaño, M.; Le Saché, E.; Ivanova, S.; Romero-Sarria, F.; Centeno, M.A.; Odriozola, J.A. Tailoring structured WGS catalysts: Impact of multilayered concept on the water surface interactions. Appl. Catal. B Environ. 2018, 222, 124–132. [Google Scholar] [CrossRef]
- Wu, D.; Kong, S.; Zhang, H.; Li, Y. Mechanical stability of monolithic catalysts: Factors affecting washcoat adhesion and cohesion during preparation. AIChE J. 2014, 60, 2765–2773. [Google Scholar] [CrossRef]
- Palma, V.; Pisano, D.; Martino, M.; Ciambelli, P. Structured catalysts with high thermoconductive properties for the intensification of Water Gas Shift process. Chem. Eng. J. 2016, 304, 544–551. [Google Scholar] [CrossRef]
- Tronconi, E.; Groppi, G.; Visconti, C.G. Structured catalysts for non-adiabatic applications. Curr. Opin. Chem. Eng. 2014, 5, 55–67. [Google Scholar] [CrossRef]
- Lim, J.W.; Choi, Y.; Yoon, H.S.; Park, Y.K.; Yim, J.H.; Jeon, J.K. Extrusion of honeycomb monoliths employed with activated carbon-LDPE hybrid materials. J. Ind. Eng. Chem. 2010, 16, 51–56. [Google Scholar] [CrossRef]
- Govender, S.; Friedrich, H.B. Monoliths: A Review of the Basics, Preparation Methods and Their Relevance to Oxidation. Catalysts 2017, 7, 62. [Google Scholar] [CrossRef]
- González-Castaño, M.; Reina, T.R.; Ivanova, S.; Martínez Tejada, L.M.; Centeno, M.A.; Odriozola, J.A. O2-assisted Water Gas Shift reaction over structured Au and Pt catalysts. Appl. Catal. B Environ. 2016, 185, 337–343. [Google Scholar] [CrossRef]
- Avila, P.; Montes, M.; Miró, E.E. Monolithic reactors for environmental applications: A review on preparation technologies. Chem. Eng. J. 2005, 109, 11–36. [Google Scholar] [CrossRef]
- García-Moncada, N.; Groppi, G.; Beretta, A.; Romero-Sarria, F.; Odriozola, J.A. Metal Micro-Monoliths for the Kinetic Study and the Intensification of the Water Gas Shift Reaction. Catalysts 2018, 8, 594. [Google Scholar] [CrossRef]
- Albaldawi, R.A.H.; Shyaa, A.K.; Hammendy, B.M.H. Experimental Study on the Effect of Insertion of Copper Lessing Rings in Phase Change Material (PCM) on the Performance of Thermal Energy Storage Unit. Al Khwarizmi Eng. J. 2015, 11, 60–72. [Google Scholar]
- Ptáček, P.; Lang, K.; Šoukal, F.; Opravil, T.; Tvrdík, L.; Novotný, R. Preparation and properties of nanostructured ceramic foam from kaolinite. Powder Technol. 2014, 253, 29–34. [Google Scholar] [CrossRef]
- Al Amin Muhamad Nor, M.; Chain Hong, L.; Arifin Ahmad, Z.; Md Akil, H. Preparation and characterization of ceramic foam produced via polymeric foam replication method. J. Mater. Process. Technol. 2008, 207, 235–239. [Google Scholar] [CrossRef]
- Zhang, H.; Han, Y.; Chen, F.; Wen, J. Fabrication of Porous Ceramic Scaffolds via Polymeric Sponge Method Using Sol-Gel Derived Strontium Doped Hydroxyapatite. Appl. Mech. Mater. 2011, 117–119, 829–832. [Google Scholar] [CrossRef]
- Qiao, J.; Wen, Y. Preparation and characterization of magnesium aluminate (MgAl2O4) spinel ceramic foams via direct foam-gelcasting. Ceram. Int. 2019, 46, 678–684. [Google Scholar] [CrossRef]
- Pokhrel, A.; Nam Seo, D.; Taek Lee, S.; Jin Kim, I. Processing of Porous Ceramics by Direct Foaming: A Review. J. Korean Ceram. Soc. 2013, 50, 93–102. [Google Scholar] [CrossRef]
- García-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. Materials 2016, 9, 85. [Google Scholar] [CrossRef]
- Dukhan, N. Metal Foams: Fundamentals and Applications; DEStech Publications, Inc.: Lancaster, PA, USA, 2013. [Google Scholar]
- Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D printing in chemical engineering and catalytic technology: Structured catalysts, mixers and reactors. Chem. Soc. Rev. 2018, 47, 209–230. [Google Scholar] [CrossRef]
- Palma, V.; Ricca, A.; Meloni, E.; Martino, M.; Miccio, M.; Ciambelli, P. Experimental and numerical investigations on structured catalysts for methane steam reforming intensification. J. Clean. Prod. 2016, 111, 217–230. [Google Scholar] [CrossRef]
- Thimmaraju, N.; Pratap, S.R.; Senthilkumar, M.; Mohamed Shamshuddin, S.Z. Honeycomb Monolith Coated with Mo(VI)/ZrO2 as a Versatile Catalyst System for Liquid Phase Transesterification. J. Korean Chem. Soc. 2012, 56, 563–570. [Google Scholar] [CrossRef]
- Ahn, H.G.; Lee, J.D. Performance of double wash-coated monolith catalyst in selective catalytic reduction of NOx with propene. Stud. Surf. Sci. Catal. 2003, 146, 701–704. [Google Scholar] [CrossRef]
- Bahuguna, G.; Kumar Mishra, N.; Chaudhary, P.; Kumar, A.; Singh, R. Thin Film Coating through Sol-Gel Technique. Res. J. Chem. Sci. 2016, 6, 65–72. [Google Scholar]
- Tao, Y.; Pescarmona, P.P. Nanostructured Oxides Synthesised via scCO2-Assisted Sol-Gel Methods and Their Application in Catalysis. Catalysts 2018, 8, 212. [Google Scholar] [CrossRef]
- Giornelli, T.; Löfberg, A.; Bordes-Richard, E. Preparation and characterization of VOx/TiO2 catalytic coatings on stainless steel plates for structured catalytic reactors. Appl. Catal. A Gen. 2006, 305, 197. [Google Scholar] [CrossRef]
- Deganello, F.; Tyagi, A.K. Solution combustion synthesis, energy and environment: Best parameters for better materials. Prog. Cryst. Growth Charact. 2018, 64, 23–61. [Google Scholar] [CrossRef]
- Ercolino, G.; Karimi, S.; Stelmachowski, P.; Specchia, S. Catalytic combustion of residual methane on alumina monoliths and open cell foams coated with Pd/Co3O4. Chem. Eng. J. 2017, 326, 339–349. [Google Scholar] [CrossRef]
- Basile, F.; Benito, P.; Fornasari, G.; Rosetti, V.; Scavetta, E.; Tonelli, D.; Vaccari, A. Electrochemical synthesis of novel structured catalysts for H2 production. Appl. Catal. B Environ. 2009, 91, 563–572. [Google Scholar] [CrossRef]
- Ho, P.H.; Ambrosetti, M.; Groppi, G.; Tronconi, E.; Jaroszewicz, J.; Ospitali, F.; Rodriguez-Castellon, E.; Fornasari, G.; Vaccari, A.; Benito, P. One-step electrodeposition of Pd–CeO2 on high pore density foams for environmental catalytic processes. Catal. Sci. Technol. 2018, 8, 4678–4689. [Google Scholar] [CrossRef]
- Meille, V. Review on methods to deposit catalysts on structured surfaces. Appl. Catal. A Gen. 2006, 315, 1–17. [Google Scholar] [CrossRef]
- Montebelli, A.; Visconti, C.G.; Groppi, G.; Tronconi, E.; Cristiani, C.; Ferreira, C.; Kohler, S. Methods for the catalytic activation of metallic structured substrates. Catal. Sci. Technol. 2014, 4, 2846–2870. [Google Scholar] [CrossRef]
- Moritz, K.; Dietze, C.; Voigt, C.; Hubálková, J.; Aneziris, C.G. Porous alumina coatings on carbon-bonded foam filters by electrophoretic deposition. Ceram. Int. 2019, 45, 10701–10706. [Google Scholar] [CrossRef]
- Linga Reddy, E.; Chan Lee, H.; Hyun Kim, D. Steam reforming of methanol over structured catalysts prepared by electroless deposition of Cu and Zn on anodically oxidized alumina. Int. J. Hydrogen Energy 2015, 40, 2509–2517. [Google Scholar] [CrossRef]
- Fukuhara, C.; Ohkura, H.; Gonohe, K.; Igarashi, A. Low-temperature water-gas shift reaction of plate-type copper-based catalysts on an aluminum plate prepared by electroless plating. Appl. Catal. A Gen. 2005, 279, 195–203. [Google Scholar] [CrossRef]
- El-Eskandarany, M.S. Introduction. In Mechanical Alloying, 2nd ed.; El-Eskandarany, M.S., Ed.; William Andrew Publishing: Oxford, UK, 2015; pp. 1–12. [Google Scholar]
- Faust, M.; Dinkel, M.; Bruns, M.; Brase, S.; Seipenbusch, M. Support Effect on the Water Gas Shift Activity of Chemical Vapor Deposition-Tailored-Pt/TiO2 Catalysts. Ind. Eng. Chem. Res. 2017, 56, 3194–3203. [Google Scholar] [CrossRef]
- Nassoy, F.; Pinault, M.; Descarpentries, J.; Vignal, T.; Banet, P.; Coulon, P.E.; Goislard de Monsabert, T.; Hauf, H.; Aubert, P.H.; Reynaud, C.; et al. Single-Step Synthesis of Vertically Aligned Carbon Nanotube Forest on Aluminium Foils. Nanomaterials 2019, 9, 1590. [Google Scholar] [CrossRef] [Green Version]
- Minett, D.R.; O’Byrne, J.P.; Jones, M.D.; Ting, V.P.; Mays, T.J.; Mattia, D. One-step production of monolith-supported long carbon nanotube arrays. CARBON 2013, 51, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Lee, H.Y.; An, G.J.; Piao, S.J.; Ahn, D.Y.; Kim, M.T.; Min, Y.S. Shrinking Core Model for Knudsen Diffusion-Limited Atomic Layer Deposition on a Nanoporous Monolith with an Ultrahigh Aspect Ratio. J. Phys. Chem. C 2010, 114, 18601–18606. [Google Scholar] [CrossRef]
- Hassannejad, H.; Moghaddasi, M.; Saebnoori, E.; Baboukan, A.R. Microstructure, deposition mechanism and corrosion behavior ofnanostructured cerium oxide conversion coating modified withchitosan on AA2024 aluminum alloy. J. Alloys Compd. 2017, 725, 968–975. [Google Scholar] [CrossRef]
- Milošev, I.; Frankel, G.S. Review—Conversion Coatings Based on Zirconium and/or Titanium. J. Electrochem. Soc. 2018, 165, C127–C144. [Google Scholar] [CrossRef]
- Szunerits, S.; Thouin, L. Microelectrode Arrays. In Handbook of Electrochemistry; Zoski, C.G., Ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 391–428. [Google Scholar]
- Palma, V.; Martino, M.; Truda, L. Nano-CeO2 coating on Aluminum Foam Carriers for Structured Catalysts Preparation. Chem. Eng. Trans. 2019, 73, 127–132. [Google Scholar] [CrossRef]
- SEM images were acquired at the laboratories of the industrial engineering department of the University of Salerno.
- Wheeler, C.; Jhalani, A.; Klein, E.J.; Tummala, S.; Schmidt, L.D. The water–gas-shift reaction at short contact times. J. Catal. 2004, 223, 191–199. [Google Scholar] [CrossRef]
- Özyönüm, G.N.; Yildirim, R. Water gas shift activity of Au Re catalyst over microstructured cordierite monolith wash-coated by ceria. Int. J. Hydrogen Energy 2016, 41, 5513–5521. [Google Scholar] [CrossRef]
- Palma, V.; Pisano, D.; Martino, M. Comparative Study between Aluminum Monolith and Foam as Carriers for the Intensification of the CO Water Gas Shift Process. Catalysts 2018, 8, 489. [Google Scholar] [CrossRef] [Green Version]
- Palma, V.; Pisano, D.; Martino, M. Structured noble metal-based catalysts for the WGS process intensification. Int. J. Hydrogen Energy 2018, 43, 11745–11754. [Google Scholar] [CrossRef]
- Visconti, C.G. Alumina: A key-component of structured catalysts for process intensification. Trans. Indian Ceram. Soc. 2012, 71, 123–136. [Google Scholar] [CrossRef]
- Kuan Teo, J.S.; Pheng Teh, S.; Addiego, W.P.; Zhong, Z.; Borgna, A.; Truitt, R.E. Monolithic gold catalysts: Preparation and their catalytic performances in water gas shift and CO oxidation reactions. Int. J. Hydrogen Energy 2011, 36, 5763–5774. [Google Scholar] [CrossRef]
- Rao Peela, N.; Mubayi, A.; Kunzru, D. Washcoating of γ-alumina on stainless steel microchannels. Catal. Today 2009, 147S, S17–S23. [Google Scholar] [CrossRef]
- Cristiani, C.; Visconti, C.G.; Finocchio, E.; Gallo Stampino, P.; Forzatti, P. Towards the rationalization of the washcoating process conditions. Catal. Today 2009, 147S, S24–S29. [Google Scholar] [CrossRef]
- Katheria, S.; Deo, G.; Kunzru, D. Washcoating of Ni/MgAl2O4 Catalyst on FeCralloy Monoliths for Steam Reforming of Methane. Energy Fuels 2017, 31, 3143–3153. [Google Scholar] [CrossRef]
- Wójcik, S.; Ercolino, G.; Gajewska, M.; Moncada Quintero, C.W.; Specchia, S.; Kotarba, A. Robust Co3O4|α-Al2O3|cordierite structured catalyst for N2O abatement—Validation of the SCS method for active phase synthesis and deposition. Chem. Eng. J. 2019, 377, 120088. [Google Scholar] [CrossRef]
- Pennemann, H.; Dobra, M.; Wichert, M.; Kolb, G. Optimization of Wash-Coating Slurries as Catalyst Carrier for Screen Printing into Microstructured Reactors. Chem. Eng. Technol. 2013, 36, 1033–1041. [Google Scholar] [CrossRef]
- Yasaki, S.; Yoshino, Y.; Ihara, K.; Ohkubo, K. Method of Manufacturing an Exhaust Gas Purifying Catalyst. U.S. Patent 5208206 (A), 4 May 1993. [Google Scholar]
- Pérez, H.; Navarro, P.; Montes, M. Deposition of SBA-15 layers on Fecralloy monoliths by washcoating. Chem. Eng. J. 2010, 158, 325–332. [Google Scholar] [CrossRef]
- Zapf, R.; Kolb, G.; Pennemann, H.; Hessel, V. Basic Study of Adhesion of Several Alumina-based Washcoats Deposited on Stainless Steel Microchannels. Chem. Eng. Technol. 2006, 29, 1509–1512. [Google Scholar] [CrossRef]
- Stefanescu, A.; van Veen, A.C.; Mirodatos, C.; Beziat, J.C.; Duval-Brunel, E. Wall coating optimization for microchannel reactors. Catal. Today 2007, 125, 16–23. [Google Scholar] [CrossRef]
- Agrafiotis, C.; Tsetsekou, A. The effect of powder characteristics on washcoat quality. Part I: Alumina washcoats. J. Eur. Ceram. Soc. 2000, 20, 815. [Google Scholar] [CrossRef]
- Ugues, D.; Specchia, S.; Saracco, G. Optimal Microstructural Design of a Catalytic Premixed FeCrAlloy Fiber Burner for Methane Combustion. Ind. Eng. Chem. Res. 2004, 43, 1990–1998. [Google Scholar] [CrossRef]
- Yang, J.; Blanco-García, P.; Holt, E.M.; Wagland, A.; Huang, K.; Salman, A.D. Adhesive strength measurement of catalyst support. Powder Technol. 2018, 340, 465–472. [Google Scholar] [CrossRef]
- Yang, J.; Holt, E.M.; Blanco-García, P.; Wagland, A.; Hounslow, M.J.; Salman, A.D. A novel technique for quantifying the cohesivestrength of washcoat. Chem. Eng. Res. Des. 2016, 110, 108–113. [Google Scholar] [CrossRef]
- Bobadilla, L.F.; Muñoz-Murillo, A.; Laguna, O.H.; Centeno, M.A.; Odriozola, J.A. Does shaping catalysts modify active phase sites? A comprehensive in situ FTIR spectroscopic study on the performance of a model Ru/Al2O3 catalyst for the CO methanation. Chem. Eng. J. 2019, 357, 248–257. [Google Scholar] [CrossRef]
- Goguet, A.; Meunier, F.C.; Tibiletti, D.; Breen, J.P.; Burch, R. Spectrokinetic Investigation of Reverse Water-Gas-Shift Reaction Intermediates over a Pt/CeO2 Catalyst. J. Phys. Chem. B 2004, 108, 20240–20246. [Google Scholar] [CrossRef] [Green Version]
- Quiney, A.S.; Germani, G.; Schuurman, Y. Optimization of a water–gas shift reactor over a Pt/ceria/alumina monolith. J. Power Sources 2006, 160, 1163–1169. [Google Scholar] [CrossRef]
- Ruettinger, W.; Ilinich, O.; Farrauto, R.J. A new generation of water gas shift catalysts for fuel cell applications. J. Power Sources 2003, 118, 61–65. [Google Scholar] [CrossRef]
- Palma, V.; Martino, M. Aluminum Foam based Catalysts for the CO-WGS Reaction. Chem. Eng. Trans. 2018, 70, 1225–1230. [Google Scholar] [CrossRef]
- Rebrov, E.V. Advances in water-gas shift technology: Modern catalysts and improved reactor concepts. In Advances in Clean Hydrocarbon Fuel Processing; Khan, M.R., Ed.; Woodhead Publishing: Cambridge, UK, 2011; pp. 387–412. [Google Scholar]
- Tonkovich, A.Y.; Zilka, J.L.; LaMont, M.J.; Wang, Y.; Wegeng, R.S. Microchannel reactors for fuel processing applications. I. Water gas shift reactor. Chem. Eng. Sci. 1999, 54, 2947–2951. [Google Scholar] [CrossRef]
- Goerke, O.; Pfeifer, P.; Schubert, K. Water gas shift reaction and selective oxidation of CO in microreactors. Appl. Catal. A Gen. 2004, 263, 11–18. [Google Scholar] [CrossRef]
- Germani, G.; Schuurman, Y. Water-gas shift kinetics over μ-structured Pt/CeO2/Al2O3 cataysts. AIChE J. 2006, 52, 1806–1813. [Google Scholar] [CrossRef]
- Quiney, A.S.; Schuurman, Y. Kinetic modelling of CO conversion over a Cu/ceria catalyst. Chem. Eng. Sci. 2007, 62, 5026–5032. [Google Scholar] [CrossRef]
- Byron Smith, R.J.; Muruganandam, L.; Murthy, S.S. A Review of the Water Gas Shift Reaction Kinetics. Int. J. Chem. React. Eng. 2010, 8, 1542–6580. [Google Scholar] [CrossRef]
- Maestri, M.; Livio, D.; Beretta, A.; Groppi, G. Hierarchical Refinement of Microkinetic Models: Assessment of the Role of the WGS and r-WGS Pathways in CH4 Partial Oxidation on Rh. Ind. Eng. Chem. Res. 2014, 53, 10914–10928. [Google Scholar] [CrossRef]
- García-Moncada, N.; Bobadilla, L.F.; Poyato, R.; López-Cartes, C.; Romero-Sarria, F.; Centeno, M.Á.; Odriozola, J.A. A direct in situ observation of water-enhanced proton conductivity of Eu-doped ZrO2: Effect on WGS reaction. Appl. Catal. B Environ. 2018, 231, 343–356. [Google Scholar] [CrossRef]
- Palma, V.; Pisano, D.; Martino, M. CFD modeling of the influence of carrier thermal conductivity for structured catalysts in the WGS reaction. Chem. Eng. Sci. 2018, 178, 1–11. [Google Scholar] [CrossRef]
- Monno, M.; Negri, D.; Mussi, V.; Aghaei, P.; Groppi, G.; Tronconi, E.; Strano, M. Cost-Efficient Aluminum Open-Cell Foams: Manufacture, Characterization, and Heat Transfer Measurements. Adv. Eng. Mater. 2018, 20, 1701032. [Google Scholar] [CrossRef]
- Bianchi, E.; Heidig, T.; Visconti, C.G.; Groppi, G.; Freund, H.; Tronconi, E. Heat Transfer Properties of Metal Foam Supports for Structured Catalysts: Wall Heat Transfer Coefficient. Catal. Today 2013, 216, 121–134. [Google Scholar] [CrossRef]
- Bianchi, E.; Groppi, G.; Schwieger, W.; Tronconi, E.; Freund, H. Numerical Simulation of Heat Transfer in the Near-Wall Region of Tubular Reactors Packed with Metal Open-Cell Foams. Chem. Eng. J. 2015, 264, 268–279. [Google Scholar] [CrossRef]
- Della Torre, A.; Lucci, F.; Montenegro, G.; Onorati, A.; Dimopoulos Eggenschwiler, P.; Tronconi, E.; Groppi, G. CFD Modeling of Catalytic Reactions in Open-Cell Foam Substrates. Comput. Chem. Eng. 2016, 92, 55–63. [Google Scholar] [CrossRef]
- Bracconi, M.; Ambrosetti, M.; Maestri, M.; Groppi, G.; Tronconi, E. A Fundamental Analysis of the Influence of the Geometrical Properties on the Effective Thermal Conductivity of Open-Cell Foams. Chem. Eng. Process. Process Intensif. 2018, 129, 181–189. [Google Scholar] [CrossRef]
- Bracconi, M.; Ambrosetti, M.; Maestri, M.; Groppi, G.; Tronconi, E. A Fundamental Investigation of Gas/Solid Mass Transfer in Open-Cell Foams Using a Combined Experimental and CFD Approach. Chem. Eng. J. 2018, 352, 558–571. [Google Scholar] [CrossRef]
- Ambrosetti, M.; Bracconi, M.; Groppi, G.; Tronconi, E. Analytical Geometrical Model of Open Cell Foams with Detailed Description of Strut-Node Intersection. Chem. Ing. Tech. 2017, 89, 915–925. [Google Scholar] [CrossRef]
- Palma, V.; Pisano, D.; Martino, M.; Ricca, A.; Ciambelli, P. High Thermal Conductivity Structured Carriers for Catalytic Processes Intensification. Chem. Eng. Trans. 2015, 43, 2047–2052. [Google Scholar] [CrossRef]
- Van Dijk, H.A.J.; Boon, J.; Nyqvist, R.N.; van den Brink, R.W. Development of a Single Stage Heat Integrated Water-Gas Shift Reactor for Fuel Processing. Chem. Eng. J. 2010, 159, 182–189. [Google Scholar] [CrossRef]
- Palma, V.; Palo, E.; Ciambelli, P. Structured Catalytic Substrates with Radial Configurations for the Intensification of the WGS Stage in H2 Production. Catal. Today 2009, 147, S107–S112. [Google Scholar] [CrossRef]
- Otaru, A.J.; Morvan, H.P.; Kennedy, A.R. Measurement and Simulation of Pressure Drop across Replicated Porous Aluminium in the Darcy-Forchheimer Regime. Acta Mater. 2018, 149, 265–273. [Google Scholar] [CrossRef]
- Bracconi, M.; Ambrosetti, M.; Okafor, O.; Sans, V.; Zhang, X.; Ou, X.; Da Fonte, C.P.; Fan, X.; Maestri, M.; Groppi, G.; et al. Investigation of pressure drop in 3D replicated open-cell foams: Coupling CFD with experimental data on additively manufactured foams. Chem. Eng. J. 2018, 377, 120123. [Google Scholar] [CrossRef]
Method | Structure | Material | Deposited Catalytic Formulation | Reference |
---|---|---|---|---|
Solution combustion synthesis | Monolith | SiC | LiFeO2 | [3] |
Washcoating | Monolith | FeCrAlloy | ɣ-Al2O3, CeO2/Al2O3, Ce0.9Eu0.1O2/Al2O3, Pt/CeO2/Al2O3, | [5] |
Washcoating | Monolith | Cordierite | ɣ-Al2O3 | [6] |
Washcoating | Foams | Aluminum | ɣ-Al2O3 | [7] |
Washcoating | Monolith | FeCrAlloy | Ce0.8Fe0.2O2/Al2O3, Pt/Ce0.8Fe0.2O2/Al2O3, Au/Ce0.8Fe0.2O2/Al2O3 | [11] |
Impregnation | Monolith | SiC | Ni | [23] |
Washcoating | Monolith | SiC | CeO2-ɣ-Al2O3 | [23] |
Impregnation | Monolith | Cordierite | Mo(VI)/ZrO2 | [24] |
Impregnation | Monolith | SiC | Al2O3, Co3O4 | [25] |
Sol-Gel | Plate | Stainless steel | VOx/TiO2 | [28] |
Solution combustion synthesis | Monolith | Alumina | Pd/Co3O4 | [30] |
Electrodeposition | Foams | FeCrAlloy | Ni/Al–NO3 | [31] |
Electrodeposition | Foams | FeCrAlloy | Pd–CeO2 | [32] |
Electrophoretic deposition | Foams | Al2O3-C | Al2O3 | [35] |
Electroless deposition | Plate | Aluminum | Cu-Zn | [36] |
Electroless deposition | Plate | Aluminum | Cu-Ni/Zn, Cu-Co/Zn, Cu-Sn/Zn, Cu-Fe/Zn | [37] |
Chemical vapor deposition (CVD) | Foils | Aluminum | Fe | [40] |
Chemical vapor deposition (CVD) | Monolith | Cordierite | Fe | [41] |
Atomic layer deposition (ALD) | Monolith | Alumina | ZnO | [43] |
Chemical conversion coating | Foams | Aluminum | CeO2 | [47] |
Washcoating | Monolith | Alumina | ɣ-Al2O3 | [49] |
Washcoating | Monolith | Cordierite | CeO2 | [50] |
Washcoating | Foams | Aluminum | ɣ-Al2O3 | [51] |
Washcoating | Monolith | Aluminum | ɣ-Al2O3 | [51] |
Washcoating | Foams | Aluminum | ɣ-Al2O3 | [52] |
Washcoating | Monolith | Cordierite | Au/α-Fe2O3 | [54] |
Washcoating | Microchannels | Stainless steel | ɣ-Al2O3 | [55] |
Washcoating | Monolith | FeCrAlloy | ɣ-Al2O3, Ni/MgAl2O4 | [57] |
Solution combustion synthesis | Monolith | α-Al2O3/Cordierite | Co3O4 | [58] |
Washcoating | Monolith | Cordierite | α-Al2O3 | [58] |
Washcoating | Monolith | FeCrAlloy | SBA-15 | [61] |
Washcoating | Microchannels | Stainless steel | ɣ-Al2O3, Pt/Al2O3, Rh/Al2O3 | [62] |
Washcoating | Monolith | Cordierite | ɣ-Al2O3 | [64] |
Structured Catalyst | Operative Conditions | CO Conversion at 300 °C (%) | CO Conversion at 200 °C (%) | Ref. |
---|---|---|---|---|
Pt/Ce0.8Fe0.2O2/Al2O3 supported on metallic monolith | CO/H2O = 6.7 900 ms | 99 | 55 | [11] |
Au/Ce0.8Fe0.2O2/Al2O3 supported on metallic monolith | CO/H2O = 6.7 900 ms | 81 | 32 | [11] |
M/CeO2 supported on alumina foam monoliths | CO/H2O = 1/4 17 ms | [49] | ||
Ru/CeO2 | 8 | 0 | ||
Ni/CeO22 | 10 | 0 | ||
Rh/CeO2 | 0 | 0 | ||
Pd/CeO2 | 0 | 0 | ||
Pt/CeO2 | 5 | 0 | ||
Pt-Re/CeZrO4/Al2O3 supported on aluminium foam | CO/H2O = 1/3.75 180 ms | 92 | - | [52] |
Pt-Re/CeZrO4/Al2O3 supported on aluminium foam | CO/H2O = 1/3.75 360 ms | 98 | 40 | [52] |
Au/Fe2O3·ZrO2 supported on cordierite foam | CO/H2O = 1/17.1 4 s | - | 93 | [54] |
Au/Fe2O3·ZrO2 supported on cordierite foam | CO/H2O = 1/17.1 436 ms | - | 40 | [54] |
Pt/CeO2/Al2O3 supported on stainless steel monoliths | CO/H2O = 1/10.6 56 ms | 70 | 30 | [70] |
Pt/CeO2/Al2O3 supported on stainless steel monoliths | CO/H2O = 1/2.6 25 ms | 30 | 0 | [70] |
PM(1.5x)+promoter/support | CO/H2O = 1/8.6 280 ms | 80 | 30 | [71] |
Au-Re/CeO2 supported on cordierite foam | CO/H2O = 1/3 150 | 68 | - | [71] |
Pt-Re/CeO2/Al2O3 supported on aluminium foam | CO/H2O = 3.75 360 ms | 98 | 30 | [72] |
Pt-Re/ZrO2/Al2O3 supported on aluminium foam | CO/H2O = 3.75 360 ms | 50 | - | [72] |
k0 | 2.08 × 10−7 |
A | 0.052 |
Ea (kJ·mol−1) | 67.40 |
T0 (K) | 473.15 |
β | 0.359 |
α | 0.428 |
Structured Catalyst | Operative Conditions | Kinetic Expression Type | Activation Energy (kJ·mol−1) | Ref. |
---|---|---|---|---|
M/CeO2 supported on alumina foam monoliths | 300–1000 °C 8–50 ms | Power-law | [49] | |
Ru/CeO2 | 80 | |||
Ni/CeO22 | 85 | |||
Rh/CeO2 | 130 | |||
Pd/CeO2 | 100 | |||
Pt/CeO2 | 80 | |||
Pt-Re/CeZrO4/Al2O3 supported on aluminium foam | 150–350 °C 180 ms | Power-low | 49.8 | [52] |
Pt/CeO2/Al2O3 supported on a metallic micromonolith and promoted by ionic conductors | 175–400 °C 45 ms | Langmuir-Hinshelwood | 67.4 | [76] |
Catalyst | Aim of the Study | Model Type | Reference |
---|---|---|---|
Two Pt/CeO2/Al2O3 based structured catalysts supported on a flow-through aluminum monolith and an open-cell aluminum foam | Comparative study between monoliths and foams as carriers for the WGS reaction | CFD simulation through COMSOL Multiphysics® | [51] |
Pt/Re based catalyst supported on CeZrO4 | Comparison between structured catalyst and powder catalyst for the WGS reaction | Computational Fluid Dynamics (CFD) modelling | [52] |
A powder catalyst and a structured foam | Study of WGS single stage process in adiabatic condition. | CFD modelling with the use of COMSOL Multiphysics 5.0® | [80] |
Two types of open-cell metal foams: FeCrAlY and aluminum | Find a correlation for the wall heat transfer model | 2D pseudo-homogeneous heat transfer model | [83] |
Aluminium open-cell foams | Estimation of the heat transfer coefficients for different reactor’s configurations | 3D model coupled with X-ray micro-computed tomography | [84] |
γ-alumina open-cell foams washcoated by palladium oxide | Simulation of catalytic CO combustion and description of CO conversion under both kinetic- and diffusion-controlled regimes | Computational Fluid Dynamics (CFD) modelling, based on the open-source finite volume code OpenFOAM® | [85] |
Virtually reconstructed foams | Evaluation of the foam geometry influence on the transport phenomena | Computational Fluid Dynamics (CFD) modelling | [86,87] |
Foams with a wide range of porosities | Estimation of the specific surface area of open-cell foams as a function of either cell diameter and porosity or pore diameter and porosity. | An analytical Geometical model | [88] |
Four types of open-cell foams, characterized by almost the same void fraction but different PPI values | Evaluation of the material tortuosity influence on the heat transfer. | Discretized mathematical model | [89] |
An aluminum metal foam and an aluminum metal monolith | Study of isothermal adiabatic WGS process. | An analytical model based on power law rate equation for the reaction kinetics description. | [90] |
Noble metals foam structured catalysts | Evaluation of the influence of flow geometry on the WGS performances. | Experimental tests | [91] |
Aluminum foams | Description of the pressure drops profile along the catalyst. | Computational fluid dynamics simulations | [92] |
Virtually generated models with different porosities, different cell sizes and circular struts | Estimation of the effect of the geometrical properties (e.g., cell size, porosity and strut shape) on the pressure drops. | A virtually generated foam model and 3D printed replicas. | [93] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palma, V.; Ruocco, C.; Cortese, M.; Martino, M. Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction. Catalysts 2019, 9, 991. https://doi.org/10.3390/catal9120991
Palma V, Ruocco C, Cortese M, Martino M. Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction. Catalysts. 2019; 9(12):991. https://doi.org/10.3390/catal9120991
Chicago/Turabian StylePalma, Vincenzo, Concetta Ruocco, Marta Cortese, and Marco Martino. 2019. "Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction" Catalysts 9, no. 12: 991. https://doi.org/10.3390/catal9120991
APA StylePalma, V., Ruocco, C., Cortese, M., & Martino, M. (2019). Recent Advances in Structured Catalysts Preparation and Use in Water-Gas Shift Reaction. Catalysts, 9(12), 991. https://doi.org/10.3390/catal9120991