Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres
Abstract
:1. Introduction
2. Results
2.1. Characterisation of Catalysts
2.2. Product Yields
2.3. Upgraded Bio-Oil: Analysis of the Organic Fraction Properties
2.4. Non-Condensable Gas Composition
2.5. GC-MS
2.6. Char Characterisation
3. Materials and Methods
3.1. Biomass, Waste Tyres, and Catalysts
3.2. Pilot Plant
3.3. Catalysts Characterisation
3.4. Product Characterisation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, Y.; Tao, L.; Huang, Y.; Liu, C.; Wang, Z.; Zheng, Z. Improving aromatic hydrocarbon content from catalytic pyrolysis upgrading of biomass on a CaO/HZSM-5 dual-catalyst. J. Anal. Appl. Pyrolysis 2019, 140, 355–366. [Google Scholar] [CrossRef]
- Imran, A.; Bramer, E.A.; Seshan, K.; Brem, G. An overview of catalysts in biomass pyrolysis for production of biofuels. Biofuel Res. J. 2018, 5, 872–885. [Google Scholar] [CrossRef]
- Pires, A.P.P.; Arauzo, J.; Fonts, I.; Domine, M.E.; Arroyo, A.F.; Garcia-Perez, M.E.; Montoya, J.; Chejne, F.; Pfromm, P.; Garcia-Perez, M. Challenges and Opportunities for Bio-oil Refining: A Review. Energy Fuels 2019. [Google Scholar] [CrossRef]
- Oasmaa, A.; Van De Beld, B.; Saari, P.; Elliott, D.C.; Solantausta, Y. Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass. Energy Fuels 2015, 29, 2471–2484. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Lappas, A.A. Co-processing bio-oil in the refinery for drop-in biofuels via fluid catalytic cracking. Wiley Interdiscip. Rev. 2018, 7. [Google Scholar] [CrossRef]
- Thegarid, N.; Fogassy, G.; Schuurman, Y.; Mirodatos, C.; Stefanidis, S.; Iliopoulou, E.F.; Kalogiannis, K.; Lappas, A.A. Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units. Appl. Catal. B Environ. 2014, 145, 161–166. [Google Scholar] [CrossRef]
- Baloch, H.A.; Nizamuddin, S.; Siddiqui, M.T.H.; Riaz, S.; Jatoi, A.S.; Dumbre, D.K.; Mubarak, N.M.; Srinivasan, M.P.; Griffin, G.J. Recent advances in production and upgrading of bio-oil from biomass: A critical overview. J. Environ. Chem. Eng. 2018, 6, 5101–5118. [Google Scholar] [CrossRef]
- Yildiz, G.; Ronsse, F.; Duren, R.V.; Prins, W. Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass. Renew. Sustain. Energy Rev. 2016, 57, 1596–1610. [Google Scholar] [CrossRef]
- Dickerson, T.; Soria, J. Catalytic Fast Pyrolysis: A Review. Energies 2013, 6, 514–538. [Google Scholar] [CrossRef]
- Rahman, M.M.; Liu, R.; Cai, J. Catalytic fast pyrolysis of biomass over zeolites for high quality bio-oil—A review. Fuel Process. Technol. 2018, 180, 32–46. [Google Scholar] [CrossRef]
- Paasikallio, V.; Lindfors, C.; Kuoppala, E.; Solantausta, Y.; Oasmaa, A.; Lehto, J.; Lehtonen, J. Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production run. Green Chem. 2014, 16, 3549–3559. [Google Scholar] [CrossRef]
- Paasikallio, V.; Lindfors, C.; Lehto, J.; Oasmaa, A.; Reinikainen, M. Short vapour residence time catalytic pyrolysis of spruce sawdust in a bubbling fluidized-bed reactor with HZSM-5 catalysts. Top. Catal. 2013, 56, 800–812. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Karakoulia, S.A.; Kalogiannis, K.G.; Iliopoulou, E.F.; Delimitis, A.; Yiannoulakis, H.; Zampetakis, T.; Lappas, A.A.; Triantafyllidis, K.S. Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil. Appl. Catal. B Environ. 2016, 196, 155–173. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; Callén, M.S.; Murillo, R.; García, T. An integrated process for the production of lignocellulosic biomass pyrolysis oils using calcined limestone as a heat carrier with catalytic properties. Fuel 2016, 181, 430–437. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; Martínez, I.; Martínez, J.D.; López, J.M.; Navarro, M.V.; Callén, M.S.; Murillo, R.; García, T. Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts. Bioresour. Technol. 2014, 162, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Kalogiannis, K.G.; Stefanidis, S.D.; Karakoulia, S.A.; Triantafyllidis, K.S.; Yiannoulakis, H.; Michailof, C.; Lappas, A.A. First pilot scale study of basic vs. acidic catalysts in biomass pyrolysis: Deoxygenation mechanisms and catalyst deactivation. Appl. Catal. B Environ. 2018, 238, 346–357. [Google Scholar] [CrossRef]
- Wong, S.L.; Ngadi, N.; Abdullah, T.A.T.; Inuwa, I.M. Current state and future prospects of plastic waste as source of fuel: A review. Renew. Sustain. Energy Rev. 2015, 50, 1167–1180. [Google Scholar] [CrossRef]
- Abnisa, F.; Daud, W.M.A.W. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 2014, 87, 71–85. [Google Scholar] [CrossRef]
- Uzoejinwa, B.B.; He, X.; Wang, S.; El-Fatah Abomohra, A.; Hu, Y.; Wang, Q. Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: Recent progress and future directions elsewhere worldwide. Energy Convers. Manag. 2018, 163, 468–492. [Google Scholar] [CrossRef]
- Alvarez, J.; Amutio, M.; Lopez, G.; Santamaria, L.; Bilbao, J.; Olazar, M. Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres. Waste Manag. 2019, 85, 385–395. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, Z.; Ding, K.; Li, M.; Hao, N.; Meng, X.; Ruan, R.; Ragauskas, A.J. Catalytic fast co-pyrolysis of bamboo sawdust and waste tire using a tandem reactor with cascade bubbling fluidized bed and fixed bed system. Energy Convers. Manag. 2019, 180, 60–71. [Google Scholar] [CrossRef]
- Shah, S.A.Y.; Zeeshan, M.; Farooq, M.Z.; Ahmed, N.; Iqbal, N. Co-pyrolysis of cotton stalk and waste tire with a focus on liquid yield quantity and quality. Renew. Energy 2019, 130, 238–244. [Google Scholar] [CrossRef]
- Van Nguyen, Q.; Choi, Y.S.; Choi, S.K.; Jeong, Y.W.; Kwon, Y.S. Improvement of bio-crude oil properties via co-pyrolysis of pine sawdust and waste polystyrene foam. J. Environ. Manag. 2019, 237, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Brebu, M.; Yanik, J.; Uysal, T.; Vasile, C. Thermal and catalytic degradation of grape seeds/polyethylene waste mixture. Cellul. Chem. Technol. 2014, 48, 665–674. [Google Scholar]
- Izzatie, N.I.; Basha, M.H.; Uemura, Y.; Hashim, M.S.M.; Afendi, M.; Mazlan, M.A.F. Co-pyrolysis of rubberwood sawdust (RWS) and polypropylene (PP) in a fixed bed pyrolyzer. J. Mech. Eng. Sci. 2019, 13, 4636–4647. [Google Scholar] [CrossRef]
- Martínez, J.D.; Veses, A.; Mastral, A.M.; Murillo, R.; Navarro, M.V.; Puy, N.; Artigues, A.; Bartrolí, J.; García, T. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Process. Technol. 2014, 119, 263–271. [Google Scholar] [CrossRef]
- Hassan, H.; Lim, J.K.; Hameed, B.H. Recent progress on biomass co-pyrolysis conversion into high-quality bio-oil. Bioresour. Technol. 2016, 221, 645–655. [Google Scholar] [CrossRef]
- Zhang, X.; Lei, H.; Chen, S.; Wu, J. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review. Green Chem. 2016, 18, 4145–4169. [Google Scholar] [CrossRef]
- Zhang, L.; Bao, Z.; Xia, S.; Lu, Q.; Walters, K.B. Catalytic pyrolysis of biomass and polymer wastes. Catalysts 2018, 8, 659. [Google Scholar] [CrossRef]
- Sanahuja-Parejo, O.; Veses, A.; Navarro, M.V.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. Catalytic co-pyrolysis of grape seeds and waste tyres for the production of drop-in biofuels. Energy Convers. Manag. 2018, 171, 1202–1212. [Google Scholar] [CrossRef]
- Iftikhar, H.; Zeeshan, M.; Iqbal, S.; Muneer, B.; Razzaq, M. Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield. Bioresour. Technol. 2019, 289, 121647. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jiang, J.; Zhong, Z.; Wang, K.; Wang, X.; Zhang, B.; Ruan, R.; Li, M.; Ragauskas, A.J. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5. Energy Convers. Manag. 2019, 196, 759–767. [Google Scholar] [CrossRef]
- Mishra, R.K.; Iyer, J.S.; Mohanty, K. Conversion of waste biomass and waste nitrile gloves into renewable fuel. Waste Manag. 2019, 89, 397–407. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Zhong, Z.; Wang, J.; Zhang, B.; Fan, L.; Liu, S.; Wang, Y.; Liu, Y.; Zhong, D.; Chen, P.; et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Bioresour. Technol. 2018, 261, 86–92. [Google Scholar] [CrossRef]
- Zhang, B.; Zhong, Z.; Chen, P.; Ruan, R. Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5. J. Anal. Appl. Pyrolysis 2017, 127, 246–257. [Google Scholar] [CrossRef]
- Gulab, H.; Hussain, K.; Malik, S.; Hussain, Z.; Shah, Z. Catalytic co-pyrolysis of Eichhornia Crassipes biomass and polyethylene using waste Fe and CaCO3 catalysts. Int. J. Energy Res. 2016, 40, 940–951. [Google Scholar] [CrossRef]
- Liu, S.; Xie, Q.; Zhang, B.; Cheng, Y.; Liu, Y.; Chen, P.; Ruan, R. Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresour. Technol. 2016, 204, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Treedet, W.; Suntivarakorn, R. Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Process. Technol. 2018, 179, 17–31. [Google Scholar] [CrossRef]
- Campuzano, F.; Brown, R.C.; Martínez, J.D. Auger reactors for pyrolysis of biomass and wastes. Renew. Sustain. Energy Rev. 2019, 102, 372–409. [Google Scholar] [CrossRef]
- Martínez, J.D.; Murillo, R.; García, T.; Veses, A. Demonstration of the waste tire pyrolysis process on pilot scale in a continuous auger reactor. J. Hazard. Mater. 2013, 261, 637–645. [Google Scholar] [CrossRef]
- Veses, A.; Aznar, M.; López, J.M.; Callén, M.S.; Murillo, R.; García, T. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel 2015, 141, 17–22. [Google Scholar] [CrossRef]
- Brassard, P.; Godbout, S.; Raghavan, V. Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosyst. Eng. 2017, 161, 80–92. [Google Scholar] [CrossRef]
- Lan, Y.; Niu, D.; Liu, Q.; Yang, J.; Yang, Q.; Xu, J. Briquetting burnt dolomite powder for recycling in steel plants. Nat. Environ. Pollut. Technol. 2014, 13, 649–652. [Google Scholar]
- Chinthakuntla, D.; Kumar, M.K.; Chakra, C.S.; Rao, K.; Dayakar, T. Calcium Oxide Nano Particles Synthesized From Chicken Egg Shells by Physical Method. In Proceedings of the International Conference on Emerging Technologies in Mechanical Sciences, Hyderabad, India, 26–27 December 2014. [Google Scholar]
- Linggawati, A. Preparation and Characterization of Calcium Oxide Heterogeneous Catalyst Derived from Anadara Granosa Shell for Biodiesel Synthesis. KnE Eng. 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.L.; Wong, Y.C.; Tan, Y.P.; Yew, S.Y. Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst. Energy Convers. Manag. 2015, 93, 282–288. [Google Scholar] [CrossRef]
- Correia, L.M.; de Sousa Campelo, N.; Novaes, D.S.; Cavalcante, C.L.; Cecilia, J.A.; Rodríguez-Castellón, E.; Vieira, R.S. Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production. Chem. Eng. J. 2015, 269, 35–43. [Google Scholar] [CrossRef]
- Dabros, T.M.H.; Stummann, M.Z.; Høj, M.; Jensen, P.A.; Grunwaldt, J.D.; Gabrielsen, J.; Mortensen, P.M.; Jensen, A.D. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Prog. Energy Combust. Sci. 2018, 68, 268–309. [Google Scholar] [CrossRef]
- Rahman, M.; Chai, M.; Sarker, M.; Nishu; Liu, R. Catalytic pyrolysis of pinewood over ZSM-5 and CaO for aromatic hydrocarbon: Analytical Py-GC/MS study. J. Energy Inst. 2019. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Liu, Z.; Chen, Y.; Yang, H.; Wang, X.; Che, Q.; Chen, W.; Chen, H. Pyrolysis characteristics of lignocellulosic biomass components in the presence of CaO. Bioresour. Technol. 2019, 287. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Yang, H.; Wang, X.; Che, Q.; Chen, W.; Chen, H. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil. Bioresour. Technol. 2019. [Google Scholar] [CrossRef]
- Hossain, A.K.; Davies, P.A. Pyrolysis liquids and gases as alternative fuels in internal combustion engines—A review. Renew. Sustain. Energy Rev. 2013, 21, 165–189. [Google Scholar] [CrossRef]
- Biradar, C.H.; Subramanian, K.A.; Dastidar, M.G. Production and fuel quality upgradation of pyrolytic bio-oil from Jatropha Curcas de-oiled seed cake. Fuel 2014, 119, 81–89. [Google Scholar] [CrossRef]
- de Luna, M.D.G.; Cruz, L.A.D.; Chen, W.H.; Lin, B.J.; Hsieh, T.H. Improving the stability of diesel emulsions with high pyrolysis bio-oil content by alcohol co-surfactants and high shear mixing strategies. Energy 2017, 141, 1416–1428. [Google Scholar] [CrossRef]
- Cao, Q.; Jin, L.; Bao, W.; Lv, Y. Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire. Fuel Process. Technol. 2009, 90, 337–342. [Google Scholar] [CrossRef]
- Li, J.J.; Zhou, T.D.; Tang, X.D.; Chen, X.D.; Zhang, M.; Zheng, X.P.; Wang, C.S.; Deng, C.L. Viscosity reduction process of heavy oil by catalytic co-pyrolysis with sawdust. J. Anal. Appl. Pyrolysis 2019, 140, 444–451. [Google Scholar] [CrossRef]
- Persson, H.; Yang, W. Catalytic pyrolysis of demineralized lignocellulosic biomass. Fuel 2019, 252, 200–209. [Google Scholar] [CrossRef]
- Thoharudin, T.; Nadjib, M.; Santosa, T.H.A.; Juliansyah; Zuniardi, A.; Shihabudin, R. Properties of co-pyrolysed palm kernel shell and plastic grocery bag with CaO as catalyst. In Proceedings of the 3rd International Conference on Biomass: Accelerating the Technical Development and Commercialization for Sustainable Bio-based Products and Energy, Bogor, Indonesia, 1–2 August 2018. [Google Scholar]
- Sukumar, V.; Manieniyan, V.; Senthilkumar, R.; Sivaprakasam, S. Production of bio oil from sweet lime empty fruit bunch by pyrolysis. Renew. Energy 2020, 146, 309–315. [Google Scholar] [CrossRef]
- Ghorbannezhad, P.; Kool, F.; Rudi, H.; Ceylan, S. Sustainable production of value-added products from fast pyrolysis of palm shell residue in tandem micro-reactor and pilot plant. Renew. Energy 2020, 145, 663–670. [Google Scholar] [CrossRef]
- Vichaphund, S.; Wimuktiwan, P.; Sricharoenchaikul, V.; Atong, D. In situ catalytic pyrolysis of Jatropha wastes using ZSM-5 from hydrothermal alkaline fusion of fly ash. J. Anal. Appl. Pyrolysis 2019, 139, 156–166. [Google Scholar] [CrossRef]
- Hussmann, G.P.; AMOCO Corporation. Preparation of dialkyl ketones from aliphatic carboxylic acids. U.S. Patent 4754074A, 28 June 1988. [Google Scholar]
- Choi, G.-G.; Oh, S.-J.; Kim, J.-S. Scrap tire pyrolysis using a new type two-stage pyrolyzer: Effects of dolomite and olivine on producing a low-sulfur pyrolysis oil. Energy 2016, 114, 457–464. [Google Scholar] [CrossRef]
- Veses, A.; Puértolas, B.; Callén, M.S.; García, T. Catalytic upgrading of biomass derived pyrolysis vapors over metal-loaded ZSM-5 zeolites: Effect of different metal cations on the bio-oil final properties. Microporous Mesoporous Mater. 2015, 209, 189–196. [Google Scholar] [CrossRef]
- Puértolas, B.; Veses, A.; Callén, M.S.; Mitchell, S.; García, T.; Pérez-Ramírez, J. Porosity-Acidity Interplay in Hierarchical ZSM-5 Zeolites for Pyrolysis Oil Valorization to Aromatics. ChemSusChem 2015, 8, 3283–3293. [Google Scholar] [CrossRef] [PubMed]
- Sanahuja-Parejo, O.; Veses, A.; Navarro, M.V.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. Drop-in biofuels from the co-pyrolysis of grape seeds and polystyrene. Chem. Eng. J. 2018. [Google Scholar] [CrossRef] [Green Version]
CaO (wt%) | MgO (wt%) | Al2O3 (wt%) | Fe2O3 (wt%) | K2O (wt%) | SiO2 (wt%) | BET (m2/g) | Dp (nm) | Porosity (%) | |
---|---|---|---|---|---|---|---|---|---|
Ca-based-1 | 95.1 ± 0.7 | 0.86 ± 0.03 | 0.14 ± 0.01 | 0.29 ± 0.02 | 0.02 ± 0.00 | 0.51 ± 0.02 | < 2 | 520 | 50 |
Ca-based-2 | 89.8 ± 0.6 | 0.78 ± 0.03 | 0.14 ± 0.01 | 0.10 ± 0.01 | 0.15 ± 0.01 | 1.09 ± 0.04 | 5 | 428 | 42 |
Ca-based-3 | 79.8 ± 0.4 | 0.33 ± 0.02 | 0.14 ± 0.01 | 0.07 ± 0.00 | 0.04 ± 0.00 | 0.60 ± 0.00 | 6 | 192 | 53 |
Ca-based-4 | 47.6 ± 0.2 | 33.2 ± 0.10 | 0.08 ± 0.00 | − | 0.02 ± 0.00 | 0.24 ± 0.01 | 12 | 48 | 50 |
Ca-based-1 | Ca-based-2 | Ca-based-3 | Ca-based-4 | |
---|---|---|---|---|
molNH3/g | 0.2 | 0.1 | 0.3 | 0.8 |
(T Peak (°C)) | (630) | (650) | (690) | (750) |
mmolCO2/g | 0.04 | 0.10 | 0.10 | 0.11 |
(T Peak (°C)) | (550) | (562) | (592) | (598) |
Liquid (wt%) | Solid (wt%) | Gas | Balance | Phase Distribution (wt%) | |||||
---|---|---|---|---|---|---|---|---|---|
Org. | Aq. | Char | Coke | CO2 | Org. | Aq. | |||
GSs | 16.0 ± 0.8 | 26.5 ± 1.3 | 31.2 ± 1.6 | 0 | 0 | 23.2 ± 1.2 | 96.9 | 37.7 | 62.3 |
WTs | 37.8 ± 1.9 | 0.0 ± 0.0 | 37.5 ± 1.8 | 0 | 0 | 23.5 ± 1.2 | 98.8 | 100.0 | 0.0 |
GSs/WTs (90/10) | 12.8 ± 0.6 | 20.2 ± 1.0 | 36.7 ± 1.2 | 0 | 0 | 28.9 ± 1.5 | 98.5 | 38.9 | 61.1 |
GSs/WTs (80/20) | 17.4 ± 0.8 | 18.2 ± 0.9 | 35.4 ± 1.8 | 0 | 0 | 24.2 ± 1.2 | 95.1 | 48.8 | 51.2 |
Ca-based-1 | 15.7 ± 0.8 | 23.0 ± 1.2 | 34.6 ± 1.7 | 0.37 | 1.8 | 20.5 ± 1.0 | 95.2 | 40.6 | 59.4 |
Ca-based-2 | 15.8 ± 0.8 | 21.4 ± 1.1 | 37.7 ± 1.9 | 0.39 | 1.6 | 19.7 ± 1.0 | 96.6 | 42.4 | 57.6 |
Ca-based-3 | 15.7 ± 0.8 | 20.6 ± 1.0 | 37.2 ± 1.8 | 0.41 | 2.4 | 20.1 ± 1.0 | 96.4 | 43.2 | 56.8 |
Ca-based-4 | 16.8 ± 0.9 | 20.0 ± 1.0 | 37.6 ± 1.9 | 0.41 | 2.6 | 18.7 ± 0.9 | 96.2 | 45.6 | 54.4 |
Properties | Elemental Analysis (wt%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
H2O (wt%) | pH | υ (mPa.s) | ρ (g/mL) | C | N | H | S | O | Deox. (%) | LHV (MJ/kg) | |
GSs | 5.09 ± 0.7 | 8.0 | 87.1 ± 2.6 | 1.30 | 77.4 ± 0.8 | 2.5 ± 0.2 | 8.3 ± 0.2 | 0.2 ± 0.02 | 11.6 ± 0.6 | − | 34.6 ± 1.0 |
WTs | <0.3 ± 0.0 | 8.3 | 3.2 ± 0.2 | 0.87 | 89.9 ± 1.0 | 1.1 ± 0.1 | 7.6 ± 0.1 | 0.7 ± 0.03 | 0.7 ± 0.1 | − | 42.4 ± 1.3 |
GSs/WTs (90/10) | 4.83 ± 0.6 | 9.6 | 21.3 ± 1.2 | 1.15 | 80.6 ± 0.9 | 2.8 ± 0.2 | 8.3 ± 0.2 | 0.6 ± 0.03 | 7.8 ± 0.5 | 32.8 | 36.0 ± 1.4 |
GSs/WTs (80/20) | 1.07 ± 0.1 | 9.5 | 16.3 ± 0.8 | 1.11 | 83.6 ± 0.9 | 2.6 ± 0.2 | 9.5 ± 0.2 | 0.4 ± 0.02 | 3.9 ± 0.2 | 66.4 | 38.78 ± 1.2 |
Ca-based-1 | 0.62 ± 0.1 | 9.1 | 3.5 ± 0.2 | 0.91 | 87.0 ± 0.8 | 2.5 ± 0.1 | 9.6 ± 0.2 | 0.4 ± 0.02 | 0.5 ± 0.1 | 95.7 | 40.7 ± 1.5 |
Ca-based-2 | 0.70 ± 0.1 | 8.9 | 4.7 ± 0.2 | 0.95 | 85.5 ± 0.7 | 2.7 ± 0.2 | 10.2 ± 0.3 | 0.6 ± 0.03 | 1.1 ± 0.2 0.3 | 90.5 | 40.7 ±1.5 |
Ca-based-3 | 0.90 ± 0.1 | 9.1 | 5.5 ± 0.3 | 0.97 | 85.0 ± 0.7 | 2.7 ± 0.2 | 9.9 ± 0.2 | 0.5 ± 0.02 | 1.9 ± 0.3 | 83.6 | 40.3 ±1.4 |
Ca-based-4 | 0.76 ± 0.1 | 9.1 | 5.6 ± 0.3 | 0.98 | 84.9 ± 0.4 | 2.8 ± 0.2 | 10.0 ± 0.1 | 0.6 ± 0.03 | 1.8 ± 0.2 | 84.5 | 40.1 ± 1.4 |
Experiment | H2 | CO2 | CO | CH4 | C2H6 | C2H4 | C3-C4 | H2S | LHV (MJ/Nm3) |
---|---|---|---|---|---|---|---|---|---|
GSs | 0.21 ± 0.01 | 10.5 ± 0.60 | 3.1 ± 0.16 | 5.5 ± 0.31 | 0.8 ± 0.05 | 1.1 ± 0.06 | 1.9 ± 0.10 | 0.02 | 24.1 ± 1.2 |
WTs | 0.34 ± 0.03 | 0.65 ± 0.06 | 0.21 ± 0.02 | 10.2 ± 0.60 | 2.1 ± 0.16 | 1.7 ± 0.14 | 8.1 ± 0.65 | 0.25 | 53.6 ± 2.0 |
GSs/WTs(90/10) | 0.21 ± 0.02 | 7.9 ± 0.40 | 2.5 ± 0.13 | 5.3 ± 0.32 | 0.9 ± 0.10 | 1.1 ±.0.09 | 2.5 ± 0.25 | 0.04 | 28.5 ± 1.4 |
GSs/WTs(80/20) | 0.22 ± 0.02 | 7.07 ± 0.40 | 2.2 ± 0.12 | 5.5 ± 0.35 | 0.9 ± 0.10 | 1.1 ± 0.09 | 2.7 ± 0.35 | 0.04 | 30.3 ± 1.5 |
Ca-based-1 | 0.31 ± 0.03 | 2.42 ± 0.12 | 3.2 ± 0.16 | 7.3 ± 0.45 | 1.5 ± 0.12 | 1.2 ± 0.12 | 4.3 ± 0.40 | 0.00 | 39.3 ± 1.8 |
Ca-based-2 | 0.33 ± 0.03 | 1.7 ± 0.09 | 3.0 ± 0.15 | 7.1 ± 0.40 | 1.3 ± 0.11 | 1.1 ± 0.10 | 4.2 ± 0.35 | 0.00 | 39.8 ± 1.8 |
Ca-based-3 | 0.33 ± 0.02 | 1.9 ± 0.10 | 3.3 ± 0.17 | 7.3 ± 0.40 | 1.4 ± 0.14 | 1.1 ± 0.09 | 4.5 ± 0.42 | 0.02 | 39.9 ± 1.9 |
Ca-based-4 | 0.19 ± 0.01 | 5.34 ± 0.35 | 3.2 ± 0.16 | 6.4 ± 0.38 | 1.3 ± 0.12 | 1.0 ± 0.11 | 4.1 ± 0.34 | 0.02 | 37.0 ± 1.7 |
Experiment | Aromatics | Olefins | Linear HC | Cyclic HC | Phenols | Esters | Ketones | Fatty Acids | Others OC |
---|---|---|---|---|---|---|---|---|---|
GSs | 31.6 ± 2.5 | 7.6 ± 0.6 | − | 18.8 ± 1.5 | 28.7 ± 2.3 | 0.8 ± 0.3 | 7.4 ± 0.3 | 5.1 ± 0.2 | |
WTs | 91.8 ± 2.5 | − | 8.2 ± 0.5 | − | − | − | − | − | |
GSs/WTs (90/10) | 63.3 ± 2.6 | 2.9 ± 0.3 | 0.4 ± 0.2 | 23.0 ± 1.2 | 6.4 ± 0.8 | 0.9 ± 0.2 | 0.1 ± 0.0 | 1.1 ± 0.2 | 1.9 ± 0.2 |
GSs/WTs (80/20) | 64.3 ± 2.8 | 2.8 ± 0.3 | 0.4 ± 0.2 | 24.0 ± 1.5 | 4.9 ± 0.5 | 0.8 ± 0.2 | 0.1 ± 0.0 | 1.1 ± 0.2 | 1.8 ± 0.2 |
Ca-based-1 | 70.9 ± 2.9 | 2.3 ± 0.2 | 0.6 ± 0.3 | 16.0 ± 0.8 | 1.3 ± 0.3 | 1.5 ± 0.2 | 2.0 ± 0.1 | 1.7 ± 0.3 | 3.6 ± 0.4 |
Ca-based-2 | 60.4 ± 2.2 | 4.1 ± 0.5 | 1.8 ± 0.4 | 16.1 ± 0.9 | 2.8 ± 0.6 | 2.6 ± 0.3 | 5.0 ± 0.7 | 2.5 ± 0.4 | 4.1 ± 0.5 |
Ca-based-3 | 54.5 ± 2.0 | 5.7 ± 0.8 | 2.8 ± 0.5 | 18.0 ± 1.0 | 2.8 ± 0.6 | 3.2 ± 0.4 | 6.2 ± 0.8 | 2.7 ± 0.5 | 4.0 ± 0.4 |
Ca-based-4 | 58.3 ± 2.2 | 5.0 ± 0.6 | 1.6 ± 0.3 | 18.3 ± 1.0 | 3.9 ± 0.3 | 2.9 ± 0.3 | 5.0 ± 0.7 | 2.4 ± 0.4 | 4.0 ± 0.4 |
GSs 1 | WTs 2 | |
---|---|---|
Ash (wt%) | 4.3 | 3.8 |
Volatile matter (wt%) | 65.1 | 63.6 |
Fixed Carbon (wt%) | 24.3 | 31.8 |
Ultimate analysis (wt%) | ||
C | 53.9 | 87.9 |
H | 6.6 | 7.4 |
N | 2.2 | 0.3 |
S | 0.1 | 1.1 |
O | 37.2 | 3.3 |
LHV (MJ/Kg) | 20.5 | 37.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanahuja-Parejo, O.; Veses, A.; López, J.M.; Murillo, R.; Callén, M.S.; García, T. Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts 2019, 9, 992. https://doi.org/10.3390/catal9120992
Sanahuja-Parejo O, Veses A, López JM, Murillo R, Callén MS, García T. Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts. 2019; 9(12):992. https://doi.org/10.3390/catal9120992
Chicago/Turabian StyleSanahuja-Parejo, Olga, Alberto Veses, José Manuel López, Ramón Murillo, María Soledad Callén, and Tomás García. 2019. "Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres" Catalysts 9, no. 12: 992. https://doi.org/10.3390/catal9120992
APA StyleSanahuja-Parejo, O., Veses, A., López, J. M., Murillo, R., Callén, M. S., & García, T. (2019). Ca-based Catalysts for the Production of High-Quality Bio-Oils from the Catalytic Co-Pyrolysis of Grape Seeds and Waste Tyres. Catalysts, 9(12), 992. https://doi.org/10.3390/catal9120992