Bleached Wood Supports for Floatable, Recyclable, and Efficient Three Dimensional Photocatalyst
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Preparation of N-Wood and B-Wood
3.3. Preparation of NP-Wood and BP-Wood
3.4. Photocatalytic Activity Measurement
3.5. Characterization
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ren, Z.J.; Umble, A.K. Water treatment: Recover wastewater resources locally. Nature 2016, 529, 25. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.K.; Rana, M.S.; Bej, S.K.; Ancheyta-Juárez, J.; Murali Dhar, G.; Prasada Rao, T.S.R. TiO2–ZrO2 mixed oxide as a support for hydrotreating catalyst. Catal. Lett. 2001, 72, 115–119. [Google Scholar] [CrossRef]
- Ali, I. New generation adsorbents for water treatment. Chem. Rev. 2012, 112, 5073–5091. [Google Scholar] [CrossRef] [PubMed]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chen, J.; Gao, T.; Zhang, M.; Li, Y.; Dai, L.; Qu, L.; Shi, G. Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration. Adv. Mater. 2016, 28, 8669–8674. [Google Scholar] [CrossRef] [PubMed]
- Gratzel, M. Photocatalysis: Fundamentals and Applications; Serpone, N., Pelizzetti, E., Eds.; Wiley: New York, NY, USA, 1989; p. 123. [Google Scholar]
- Zheng, R.B.; Meng, X.W.; Tang, F.Q. Synthesis, characterization and photodegradation study of mixed-phase titania hollow submicrospheres with rough surface. Appl. Surf. Sci. 2009, 255, 5989–5994. [Google Scholar] [CrossRef]
- Nishimoto, S.I.; Ohtani, B.; Kajiwara, H.; Kagiya, T. ChemInform abstract: Correlation of the crystal structure of titanium dioxide prepared from titanium tetra-2-propoxide with the photocatalytic activity for redox reactions in aqueous propan-2-ol and silver salt solutions. J. Chem. Soc. Faraday Trans. 1985, 16, 61–68. [Google Scholar] [CrossRef]
- Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357. [Google Scholar] [CrossRef]
- Tanaka, K.; Hisanaga, T.; Rivera, A.P. Photocatalytic Purification and Treatment of Water and Air; Ollis, D.F., Al-Ekabi, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1993; p. 169. [Google Scholar]
- Yoneyama, H.; Yamanaka, S.; Haga, S. Photocatalytic activities of microcrystalline titania incorporated in sheet silicates of clay. J. Phys. Chem. 1989, 93, 4833–4837. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, C.C.; Zakaria, R.; Ying, J. Role of particle size in nanocrystalline TiO2 -based photocatalyst. J. Phys. Chem. B 1998, 102, 10871–10878. [Google Scholar] [CrossRef]
- Tsai, S.-J.; Cheng, S. Effect of TiO2 crystalline structure in photocatalytic degradation of phenolic contaminants. Catal. Today 1997, 33, 227–237. [Google Scholar] [CrossRef]
- Paola, A.D.; Ikeda, S.; Marcì, G.; Ohtani, B.; Palmisano, L. Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO2. Catal. Today 2002, 75, 171–176. [Google Scholar] [CrossRef]
- Hu, C.C.; Hsu, T.C.; Kao, L.H. One-step cohydrothermal synthesis of nitrogen-doped titanium oxide nanotubes with enhanced visible light photocatalytic activity. Int. J. Photoenergy 2012, 391958. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef] [PubMed]
- Al Dahoudi, N.; Zhang, Q.; Cao, G. Alumina and hafnia ALD Layers for a niobium-doped titanium oxide photoanode. Int. J. Photoenergy 2012, 401393. [Google Scholar] [CrossRef]
- Zheng, R.B.; Meng, X.W.; Tang, F.Q. A general protocol to coat titania shell on carbon-based composite cores using carbon as coupling agent. J. Solid State Chem. 2009, 182, 1235–1240. [Google Scholar] [CrossRef]
- Hsien, Y.H.; Chang, C.F.; Chen, Y.H.; Cheng, S. Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves. Appl. Catal. B Envion. 2001, 31, 241–249. [Google Scholar] [CrossRef]
- Sampath, S.; Uchida, H.; Yoneyama, H. Photocatalytic degradation of gaseous pyridine over zeolite-supported titanium dioxide. J. Catal. 1994, 149, 189–194. [Google Scholar] [CrossRef]
- Van Grieken, R.; Aguado, J.; López-Muñoz, M.J.; Marugán, J. Synthesis of size-controlled silica-supported TiO2 photocatalysts. J. Photochem. Photobiol. A Chem. 2012, 148, 315–322. [Google Scholar] [CrossRef]
- Paul, B.; Martens, W.N.; Frost, R.L. Immobilised anatase on clay mineral particles as a photocatalyst for herbicides degradation. Appl. Clay Sci. 2012, 57, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Baek, M.H.; Yoon, J.W.; Hong, J.S.; Suh, J.K. Application of TiO2-containing mesoporous spherical activated carbon in a fluidized bed photoreactor—Adsorption and photocatalytic activity. Appl. Catal. A Gen. 2013, 45, 222–229. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc. 2016, 16, 307–325. [Google Scholar] [CrossRef]
- Hsieh, S.H.; Chen, W.J.; Wu, C.T. Pt-TiO2/Graphene photocatalysts for degradation of AO7 dye under visible light. Appl. Surf. Sci. 2015, 340, 9–17. [Google Scholar] [CrossRef]
- Li, D.; Jia, J.; Zhang, Y.; Wang, N.; Guo, X.; Yu, X. Preparation and characterization of Nano-graphite/TiO2 composite photoelectrode for photoelectrocatalytic degradation of hazardous pollutant. J. Hazard. Mater. 2016, 315, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, A.; Boufi, S.; Bouattour, S. Phthalocyanine/chitosan-TiO2 photocatalysts: Characterization and photocatalytic activity. Appl. Surf. Sci. 2015, 339, 128–136. [Google Scholar] [CrossRef]
- Lei, Y.; Zhang, C.; Lei, H.; Huo, J. Visible light photocatalytic activity of aromatic polyamide dendrimer/TiO2 composites functionalized with spirolactam-based molecular switch. J. Colloid Interface Sci. 2013, 406, 178–185. [Google Scholar] [CrossRef]
- Mejía, MI.; Marín, JM.; Restrepo, G.; Rios, LA.; Pulgarín, C.; Kiwi, J. Preparation, testing and performance of a TiO2/polyester photocatalyst for the degradation of gaseous methanol. Appl. Catal. B 2010, 94, 166–172. [Google Scholar] [CrossRef]
- Zhu, M.W.; Li, Y.J.; Chen, G.; Jiang, F.; Yang, Z.; Luo, X.G.; Wang, Y.B.; Lacey, S.D.; Dai, J.Q.; Wang, C.W.; et al. Tree-inspired design for high-efficiency water extraction. Adv. Mater. 2017, 29, 1704107. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C.J.; Chen, G.; Kuang, Y.D.; Zhao, X.P.; Song, J.W.; Jia, C.; Xu, X.; Hitz, E.; Xie, H.; et al. High-performance solar steam device with layered channels: Artificial tree with a reversed design. Adv. Energy Mater. 2017, 8, 1701616. [Google Scholar] [CrossRef]
- Chen, C.; Li, Y.; Song, J.; Yang, Z.; Kuang, Y.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J.Y.; et al. Highly flexible and efficient solar steam generation device. Adv. Mater. 2017, 29, 1701756. [Google Scholar] [CrossRef]
- Sun, Q.F.; Lu, Y.; Tu, J.C.; Li, J. Bulky macroporous TiO2 photocatalyst with cellular structure via facile wood-template method. Int. J. Photoenergy 2013, 649540. [Google Scholar] [CrossRef]
- Gao, L.K.; Gan, W.T.; Li, J. Preparation of heterostructured WO3/TiO2 catalysts from wood fibers and its versatile photodegradation abilities. Sci. Rep. 2017, 7, 1102. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.B.; Tshabalala, M.A.; Li, Q.Y.; Wang, H.Y. Construction of hydrophobic wood surfaces by room temperature deposition of rutile (TiO2) nanostructures. Appl. Surf. Sci. 2015, 28, 453–458. [Google Scholar] [CrossRef]
- Chen, F.J.; Gong, A.S.; Zhu, M.W.; Hu, L.B. Mesoporous, three-dimensional wood membrane decorated with nanoparticles for highly efficient water treatment. ACS Nano 2017, 11, 4275–4282. [Google Scholar] [CrossRef] [PubMed]
- Jana, S.; Vanessa, S.; Tobias, K.; Ingo, B. Characterization of wood derived hierarchical cellulose scaffolds for multifunctional applications. Materials 2018, 11, 517. [Google Scholar] [CrossRef]
- Li, H.Y.; Guo, X.L.; He, Y.M.; Zheng, R.B. A green, steam-modified delignification method to low lignin delignified wood for thick, large, highly transparent wood composites. J. Mater. Res. 2018. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Li, H.; Guo, X.; Zheng, R. Bleached Wood Supports for Floatable, Recyclable, and Efficient Three Dimensional Photocatalyst. Catalysts 2019, 9, 115. https://doi.org/10.3390/catal9020115
He Y, Li H, Guo X, Zheng R. Bleached Wood Supports for Floatable, Recyclable, and Efficient Three Dimensional Photocatalyst. Catalysts. 2019; 9(2):115. https://doi.org/10.3390/catal9020115
Chicago/Turabian StyleHe, Yuming, Huayang Li, Xuelian Guo, and Rongbo Zheng. 2019. "Bleached Wood Supports for Floatable, Recyclable, and Efficient Three Dimensional Photocatalyst" Catalysts 9, no. 2: 115. https://doi.org/10.3390/catal9020115
APA StyleHe, Y., Li, H., Guo, X., & Zheng, R. (2019). Bleached Wood Supports for Floatable, Recyclable, and Efficient Three Dimensional Photocatalyst. Catalysts, 9(2), 115. https://doi.org/10.3390/catal9020115