Dehydrogenation of Propane to Propylene Using Promoter-Free Hierarchical Pt/Silicalite-1 Nanosheets
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structures and Properties of Catalysts
2.2. Dehydrogenation of Propane over Pt Nanoparticles Supported on Different Supports
2.3. Effects of WHSV and Pt Loading on the Propylene Selectivity
3. Materials and Methods
3.1. Synthesis of Silicalite-1 Zeolites
3.2. Preparation of Pt Supported Silicalite-1 Zeolites
3.3. Characterizations
3.4. Catalytic Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Rahimi, N.; Karimzadeh, R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl. Catal. A 2011, 398, 1–17. [Google Scholar] [CrossRef]
- Yoshimura, Y.; Kijima, N.; Hayakawa, T.; Murata, K.; Suzuki, K.; Mizukami, F.; Matano, K.; Konishi, T.; Oikawa, T.; Saito, M.; et al. Catalytic cracking of naphtha to light olefins. Catal. Surv. Jpn. 2001, 4, 157–167. [Google Scholar] [CrossRef]
- Chen, J.Q.; Bozzano, A.; Glover, B.; Fuglerud, T.; Kvisle, S. Recent advancements in ethylene and propylene production using the UOP/hydro MTO process. Catal. Today 2005, 106, 103–107. [Google Scholar] [CrossRef]
- Zhu, X.; Hofmann, J.P.; Mezari, B.; Kosinov, N.; Wu, L.; Qian, Q.; Weckhuysen, B.M.; Asahina, S.; Ruiz-Martínez, J.; Hensen, E.J.M. Trimodal Porous Hierarchical SSZ-13 zeolite with improved catalytic performance in the methanol-to-olefins reaction. ACS Catal. 2016, 6, 2163–2177. [Google Scholar] [CrossRef]
- Mol, J.C. Industrial applications of olefin metathesis. J. Mol. Catal. A 2004, 213, 39–45. [Google Scholar] [CrossRef]
- Weckhuysen, B.M.; Schoonheydt, R.A. Alkane dehydrogenation over supported chromium oxide catalysts. Catal. Today 1999, 51, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A.H. The manufacture of propylene, in refining petroleum for chemicals. Adv. Chemi. 1970, 153–178. [Google Scholar]
- Bhasin, M.M.; McCain, J.H.; Vora, B.V.; Imai, T.; Pujadó, P.R. Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl. Catal. A 2001, 221, 397–419. [Google Scholar] [CrossRef]
- Gascón, J.; Téllez, C.; Herguido, J.; Menéndez, M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: Transient kinetic modeling of propene and coke formation. Appl. Catal. A 2003, 248, 105–116. [Google Scholar] [CrossRef]
- Sattler, J.J.H.B.; Ruiz-Martinez, J.; Santillan-Jimenez, E.; Weckhuysen, B.M. Dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 2014, 114, 10613–10653. [Google Scholar] [CrossRef]
- Marcinkowski, M.D.; Darby, M.T.; Liu, J.; Wimble, J.M.; Lucci, F.R.; Lee, S.; Michaelides, A.; Flytzani-Stephanopoulos, M.; Stamatakis, M.; Sykes, E.C.H. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 2018, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Han, P.; Li, B.; Zhao, Z. Tunable catalytic performance of single Pt atom on doped graphene in direct dehydrogenation of propane by rational doping: A density functional theory study. J. Phys. Chem. C 2018, 122, 1570–1576. [Google Scholar] [CrossRef]
- Tan, S.; Hu, B.; Kim, W.G.; Pang, S.H.; Moore, J.S.; Liu, Y.; Dixit, R.S.; Pendergast, J.G.; Sholl, D.S.; Nair, S.; Jones, C.W. Propane dehydrogenation over alumina-supported iron/phosphorus catalysts: Structural evolution of iron species leading to high activity and propylene selectivity. ACS Catal. 2016, 6, 5673–5683. [Google Scholar] [CrossRef]
- Liu, G.; Zeng, L.; Zhao, Z.J.; Tian, H.; Wu, T.; Gong, J. Platinum-modified ZnO/Al2O3 for propane dehydrogenation: Minimized platinum usage and improved catalytic stability. ACS Catal. 2016, 6, 2158–2162. [Google Scholar] [CrossRef]
- Schweitzer, N.M.; Hu, B.; Das, U.; Kim, H.; Greeley, J.; Curtiss, L.A.; Stair, P.C.; Miller, J.T.; Hock, A.S. Propylene hydrogenation and propane dehydrogenation by a single-site Zn2+ on silica catalyst. ACS Catal. 2014, 4, 1091–1098. [Google Scholar] [CrossRef]
- Schäferhans, J.; Gómez-Quero, S.; Andreeva, D.V.; Rothenberg, G. Novel and effective copper–aluminum propane dehydrogenation catalysts. Chem. Eur. J. 2011, 17, 12254–12256. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Li, S.; Jiang, F.; Wang, T.; Ma, X.; Gong, J. Propane dehydrogenation over Pt-Cu bimetallic catalysts: The nature of coke deposition and the role of copper. Nanoscale 2014, 6, 10000–10008. [Google Scholar] [CrossRef]
- Hu, P.; Lang, W.Z.; Yan, X.; Chu, L.F.; Guo, Y.J. Influence of gelation and calcination temperature on the structure-performance of porous VOX-SiO2 solids in non-oxidative propane dehydrogenation. J. Catal. 2018, 358, 108–117. [Google Scholar] [CrossRef]
- Iglesias-Juez, A.; Beale, A.M.; Maaijen, K.; Weng, T.C.; Glatzel, P.; Weckhuysen, B.M. A combined in situ time-resolved UV–Vis, Raman and high-energy resolution X-ray absorption spectroscopy study on the deactivation behavior of Pt and PtSn propane dehydrogenation catalysts under industrial reaction conditions. J. Catal. 2010, 276, 268–279. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Huang, L.; Xue, M.; Zhang, S. Sn-modified ZSM-5 as support for platinum catalyst in propane dehydrogenation. Ind. Eng. Chem. Res. 2011, 50, 7896–7902. [Google Scholar] [CrossRef]
- Cheung, T.K.; Lange, F.C.; Gates, B.C. Propane conversion catalyzed by sulfated zirconia, iron- and manganese-promoted sulfated zirconia, and USY zeolite. J. Catal. 1996, 159, 99–106. [Google Scholar] [CrossRef]
- Xu, B.; Zheng, B.; Hua, W.; Yue, Y.; Gao, Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts. J. Catal. 2006, 239, 470–477. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Qiu, A.; Wang, Y.; Xu, Y.; Wu, P. Propane dehydrogenation on PtSn/ZSM-5 catalyst: Effect of tin as a promoter. Catal. Commun. 2006, 7, 860–866. [Google Scholar] [CrossRef]
- Gould, T.D.; Lubers, A.M.; Corpuz, A.R.; Weimer, A.W.; Falconer, J.L.; Medlin, J.W. Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition. ACS Catal. 2015, 5, 1344–1352. [Google Scholar] [CrossRef]
- Santhosh, K.M.; Holmen, A.; Chen, D. The influence of pore geometry of Pt containing ZSM-5, Beta and SBA-15 catalysts on dehydrogenation of propane. Micropor. Mesopor. Mater. 2009, 126, 152–158. [Google Scholar] [CrossRef]
- Jiang, F.; Zeng, L.; Li, S.; Liu, G.; Wang, S.; Gong, J. Propane dehydrogenation over Pt/TiO2–Al2O3 Catalysts. ACS Catal. 2015, 5, 438–447. [Google Scholar] [CrossRef]
- Bednarova, L.; Lyman, C.E.; Rytter, E.; Holmen, A. Effect of support on the size and composition of highly dispersed Pt–Sn particles. J. Catal. 2002, 211, 335–346. [Google Scholar] [CrossRef]
- Deng, L.; Miura, H.; Shishido, T.; Hosokawa, S.; Teramura, K.; Tanaka, T. Strong metal-support interaction between Pt and SiO2 following high-temperature reduction: A catalytic interface for propane dehydrogenation. Chem. Comm. 2017, 53, 6937–6940. [Google Scholar]
- Pérez-Ramírez, J.; Christensen, C.H.; Egeblad, K.; Christensen, C.H.; Groen, J.C. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Rev. 2008, 37, 2530–2542. [Google Scholar] [CrossRef]
- Chen, L.H.; Li, X.Y.; Rooke, J.C.; Zhang, Y.H.; Yang, X.Y.; Tang, Y.; Xiao, F.S.; Su, B.L. Hierarchically structured zeolites: Synthesis, mass transport properties and applications. J. Mater. Chem. 2012, 22, 17381–17403. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Yang, K.; Li, Y.; Wang, Y.; Xu, Y.; Wu, P. Effect of hydrothermal treatment on catalytic properties of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. Micropor. Mesopor. Mater. 2006, 96, 245–254. [Google Scholar] [CrossRef]
- Marafi, M.; Furimsky, E. Hydroprocessing Catalysts Containing noble metals: Deactivation, regeneration, metals reclamation, and environment and safety energy. Fuels 2017, 31, 5711–5750. [Google Scholar] [CrossRef]
- Christensen, C.H.; Schmidt, I.; Carlsson, A.; Johannsen, K.; Herbst, K. Crystals in crystals nanocrystals within mesoporous zeolite single crystals. J. Am. Chem. Soc. 2005, 127, 8098–8102. [Google Scholar] [CrossRef]
- Zhu, X.; Goesten, M.G.; Koekkoek, A.J.J.; Mezari, B.; Kosinov, N.; Filonenko, G.; Friedrich, H.; Rohling, R.; Szyja, B.M.; Gascon, J.; Kapteijn, F.; Hensen, E.J.M. Establishing hierarchy: The chain of events leading to the formation of silicalite-1 nanosheets. Chem. Sci. 2016, 7, 6506–6513. [Google Scholar] [CrossRef] [PubMed]
- Chaikittisilp, W.; Suzuki, Y.; Mukti, R.R.; Suzuki, T.; Sugita, K.; Itabashi, K.; Shimojima, A.; Okubo, T. Formation of hierarchically organized zeolites by sequential intergrowth. Angew. Chem. 2013, 125, 3439–3443. [Google Scholar] [CrossRef]
- Lee, K.; Choi, M. Hierarchically micro-/mesoporous Pt/KL for alkane aromatization: Synergistic combination of high catalytic activity and suppressed hydrogenolysis. J. Catal. 2016, 340, 66–75. [Google Scholar] [CrossRef]
- Sun, Y.; Prins, R. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Noble Metals Supported on Mesoporous Zeolites. Angew. Chem. Int. Ed. 2008, 47, 8478–8481. [Google Scholar] [CrossRef]
- Chao, P.H.; Tsai, S.-T.; Chang, S.-L.; Wang, I.; Tsai, T.C. Hexane isomerization over hierarchical Pt/MFI zeolite. Top. Catal. 2010, 53, 231–237. [Google Scholar] [CrossRef]
- Kim, J.; Kim, W.; Seo, Y.; Kim, J.C.; Ryoo, R. n-Heptane hydroisomerization over Pt/MFI zeolite nanosheets: Effects of zeolite crystal thickness and platinum location. J. Catal. 2013, 301, 187–197. [Google Scholar] [CrossRef]
- Fernandez, C.; Stan, I.; Gilson, J.P.; Thomas, K.; Vicente, A.; Bonilla, A.; Pérez-Ramírez, J. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chem. Eur. J. 2010, 16, 6224–6233. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Liu, H.; Wang, Y.; Xu, Y.; Wu, P. Effect of La addition on catalytic performance of PtSnNa/ZSM-5 catalyst for propane dehydrogenation. Appl. Catal. A 2007, 333, 202–210. [Google Scholar] [CrossRef]
- Gates, B.C. Supported metal clusters: Synthesis, structure, and catalysis. Chem. Rev. 1995, 95, 511–522. [Google Scholar] [CrossRef]
- Kulkarni, A.; Lobo-Lapidus, R.J.; Gates, B.C. Metal clusters on supports: Synthesis, structure, reactivity, and catalytic properties. Chem. Comm. 2010, 46, 5997–6015. [Google Scholar] [PubMed]
- Storck, S.; Bretinger, H.; Maier, W.F. Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A 1998, 174, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, G.; Ji, Y.; Davis, B.H.; Cronauer, D.; Kropf, A.J.; Marshall, C.L. Fischer–Tropsch synthesis: Temperature programmed EXAFS/XANES investigation of the influence of support type, cobalt loading, and noble metal promoter addition to the reduction behavior of cobalt oxide particles. Appl. Catal. A 2017, 333, 177–191. [Google Scholar] [CrossRef]
- Do, P.T.M.; Foster, A.J.; Chen, J.; Lobo, R.F. Bimetallic effects in the hydrodeoxygenation of meta-cresol on γ-Al2O3 supported Pt–Ni and Pt–Co catalysts. Green Chem. 2012, 14, 1388–1397. [Google Scholar] [CrossRef]
- Jeon, S.; Roh, H.-S.; Moon, D.J.; Bae, J.W. Aqueous phase reforming and hydrodeoxygenation of ethylene glycol on Pt/SiO2–Al2O3: Effects of surface acidity on product distribution. RSC Adv. 2016, 6, 68433–68444. [Google Scholar] [CrossRef]
- Maciel, G.E.; Sindorf, D.W. Silicon-29NMR study of the surface of silica gel by cross polarization and magic-angle spinning. J. Am. Chem. Soc. 1980, 102, 7606–7607. [Google Scholar] [CrossRef]
- Vu, B.K.; Song, M.B.; Ahn, I.Y.; Suh, Y.-W.; Suh, D.J.; Kim, W.-I.; Koh, H.-L.; Choi, Y.G.; Shin, E.W. Pt–Sn alloy phases and coke mobility over Pt–Sn/Al2O3 and Pt–Sn/ZnAl2O4 catalysts for propane dehydrogenation. Appl. Catal. A 2011, 400, 25–33. [Google Scholar] [CrossRef]
- Silva, L.P.C.; Terra, L.E.; Coutinho, A.C.S.L.S.; Passos, F.B. Sour water–gas shift reaction over Pt/CeZrO2 catalysts. J. Catal. 2016, 341, 1–12. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, T.; Xu, X.; Xiao, P.; Li, J. Pt nanoparticles supported on SBA-15: Synthesis, characterization and applications in heterogeneous catalysis. Appl. Catal. B 2013, 130, 197–217. [Google Scholar] [CrossRef]
- Akporiaye, D.; Jensen, S.F.; Olsbye, U.; Rohr, F.; Rytter, E.; Rønnekleiv, M.; Spjelkavik, A.I. A novel, Highly efficient catalyst for propane dehydrogenation. Ind. Eng. Chem. Res. 2001, 40, 4741–4748. [Google Scholar] [CrossRef]
- Wannapakdee, W.; Wattanakit, C.; Paluka, V.; Yutthalekha, T.; Limtrakul, J. One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization. RSC Adv. 2016, 6, 2875–2881. [Google Scholar] [CrossRef]
- Chang, J.B.; Liu, C.H.; Liu, J.; Zhou, Y.Y.; Gao, X.; Wang, S.D. Green-chemistry Compatible Approach to TiO2-supported PdAu Bimetallic Nanoparticles for Solvent-free 1-Phenylethanol Oxidation under Mild Conditions. Nano-Micro Lett. 2015, 7, 307–315. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET a | Smicro b | Sext c | Vtotal d | Vmicro e | Vmeso f | %Ptg |
---|---|---|---|---|---|---|---|
Si-MFI-NS | 447 | 292 | 154 | 0.85 | 0.12 | 0.74 | n.d. |
1% Pt-Si-MFI-NS | 399 | 296 | 104 | 0.56 | 0.12 | 0.45 | 1.07 |
Si-MFI-CON | 427 | 334 | 93 | 0.25 | 0.13 | 0.12 | n.d. |
1% Pt-Si-MFI-CON | 374 | 322 | 52 | 0.22 | 0.13 | 0.09 | 0.90 |
1% Pt-Al2O3 | 161 | 11 | 150 | 0.96 | 0.005 | 0.95 | 1.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wannapakdee, W.; Yutthalekha, T.; Dugkhuntod, P.; Rodponthukwaji, K.; Thivasasith, A.; Nokbin, S.; Witoon, T.; Pengpanich, S.; Wattanakit, C. Dehydrogenation of Propane to Propylene Using Promoter-Free Hierarchical Pt/Silicalite-1 Nanosheets. Catalysts 2019, 9, 174. https://doi.org/10.3390/catal9020174
Wannapakdee W, Yutthalekha T, Dugkhuntod P, Rodponthukwaji K, Thivasasith A, Nokbin S, Witoon T, Pengpanich S, Wattanakit C. Dehydrogenation of Propane to Propylene Using Promoter-Free Hierarchical Pt/Silicalite-1 Nanosheets. Catalysts. 2019; 9(2):174. https://doi.org/10.3390/catal9020174
Chicago/Turabian StyleWannapakdee, Wannaruedee, Thittaya Yutthalekha, Pannida Dugkhuntod, Kamonlatth Rodponthukwaji, Anawat Thivasasith, Somkiat Nokbin, Thongthai Witoon, Sitthiphong Pengpanich, and Chularat Wattanakit. 2019. "Dehydrogenation of Propane to Propylene Using Promoter-Free Hierarchical Pt/Silicalite-1 Nanosheets" Catalysts 9, no. 2: 174. https://doi.org/10.3390/catal9020174
APA StyleWannapakdee, W., Yutthalekha, T., Dugkhuntod, P., Rodponthukwaji, K., Thivasasith, A., Nokbin, S., Witoon, T., Pengpanich, S., & Wattanakit, C. (2019). Dehydrogenation of Propane to Propylene Using Promoter-Free Hierarchical Pt/Silicalite-1 Nanosheets. Catalysts, 9(2), 174. https://doi.org/10.3390/catal9020174