Effect of Dilute Acid and Alkali Pretreatments on the Catalytic Performance of Bamboo-Derived Carbonaceous Magnetic Solid Acid
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalyst
2.2. Effects of Pretreatment Conditions on the Chemical Composition of Bamboo
2.3. Hydrolysis of Corncob with Bamboo-Derived Carbonaceous Magnetic Solid Acid
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Catalyst Characterization
3.2.2. Two-Step Preparation of Bamboo-Derived Magnetic Carbonaceous Solid Acid
3.2.3. Hydrolysis of Corncob by Bamboo-Derived Magnetic Solid Acid
3.2.4. Recyclability of Catalyst
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schmitt, C.; Belén, M.; Reolon, G.; Zimmermann, M.; Raffelt, K.; Grunwaldt, J.-D.; Dahmen, N. Synthesis and regeneration of nickel-based catalysts for hydrodeoxygenation of beech wood fast pyrolysis bio-oil. Catalysts 2018, 8, 449–477. [Google Scholar] [CrossRef]
- Xin, D.; Yang, Z.; Liu, F.; Xu, X.; Zhang, J. Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: Structure properties and enzymatic hydrolysis. Bioresour. Technol. 2015, 175, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Deng, A.; Ren, J.; Liu, C.; Lu, Q.; Zhong, L.; Peng, F.; Sun, R. Catalytic hydrothermal pretreatment of corncob into xylose and furfural via solid acid catalyst. Bioresour. Technol. 2014, 158, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.; Paul, S. Solid acids: Green alternatives for acid catalysis. Catal. Today 2014, 236, 153–170. [Google Scholar] [CrossRef]
- Lee, J. Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 1997, 56, 1–24. [Google Scholar] [CrossRef]
- Börjesson, M.; Larsson, A.; Westman, G.; Ström, A. Periodate oxidation of xylan-based hemicelluloses and its effect on their thermal properties. Carbohydr. Polym. 2018, 202, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Pellera, F.-M.; Gidarakos, E. Chemical pretreatment of lignocellulosic agroindustrial waste for methane production. Waste Manag. 2018, 71, 689–703. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ren, J.; Zhong, L.; Sun, R.; Liang, L. Production of furfural from xylose, water-insoluble hemicelluloses and water-soluble fraction of corncob via a tin-loaded montmorillonite solid acid catalyst. Bioresour. Technol. 2015, 176, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Zaccheria, F.S.F.; Iftitah, E.D.; Ravasio, N. Brønsted and Lewis Solid Acid Catalysts in the Valorization of Citronellal. Catalysts 2018, 8, 410–411. [Google Scholar] [CrossRef]
- Solinas, A.; Taddei, M. Solid-supported reagents and catch-and-release techniques in organic synthesis. Synthesis 2007, 38, 2409–2453. [Google Scholar] [CrossRef]
- Sebti, S.D.; Tahir, R.; Nazih, R.; Boulaajaj, S.D. Comparison of different Lewis acid supported on hydroxyapatite as new catalysts of Friedel-Crafts alkylation. Appl. Catal. A Gen. 2001, 218, 25–30. [Google Scholar] [CrossRef]
- Tanabe, K.; Yamaguchi, T. Acid-base bifunctional catalysis by ZrO2 and its mixed oxides. Catal. Today 1994, 20, 185–197. [Google Scholar] [CrossRef]
- Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.; Hayashi, S.; Domen, K. Carbon material as a strong protonic acid. Angew. Chem. Int. Ed. 2004, 43, 2955–2958. [Google Scholar] [CrossRef] [PubMed]
- Oregui, M.; Miletic, N.; Hao, W.; Björnerbäck, F.; Rosnes, M.; Garitaonandia, J.; Hedin, N.; Arias, P.L.; Barth, T. High-performance magnetic activated carbon from solid waste from lignin conversion processes. Part II: Their use as NiMo catalyst supports for lignin conversion. Energy Procedia 2017, 114, 6272–6296. [Google Scholar]
- Liu, F.; Rotaru, A.E.; Shrestha, P.M.; Malvankar, N.S.; Nevin, K.P.; Lovley, D.R. Promoting direct interspecies electron transfer with activated carbon. Energy Environ. Sci. 2012, 10, 8982–8989. [Google Scholar] [CrossRef]
- Li, X.; Lei, T.; Wang, Z.; Li, X.; Wen, M.; Yang, M.; Chen, G.; He, X.; Xu, H.; Guan, Q.; et al. Catalytic pyrolysis of corn straw with magnetic solid acid catalyst to prepare levulinic acid by response surface methodology. Ind. Crop. Prod. 2018, 116, 73–80. [Google Scholar] [CrossRef]
- Chen, T.; Peng, L.; Yu, X.; He, L. Magnetically recyclable cellulose-derived carbonaceous solid acid catalyzed the biofuel 5-ethoxymethylfurfural synthesis from renewable carbohydrates. Fuel 2018, 219, 344–352. [Google Scholar] [CrossRef]
- Guo, Y.; Rockstraw, D.A. Physical and chemical properties of carbons synthesized from xylan, cellulose, and Kraft lignin by H3PO4 activation. Carbon 2006, 44, 1464–1475. [Google Scholar] [CrossRef]
- Zhu, M.Q.; Wang, Z.W.; Wen, J.L.; Qiu, L.; Zhu, Y.H.; Su, Y.Q.; Wei, Q.; Sun, R.C. The effects of autohydrolysis pretreatment on the structural characteristics, adsorptive and catalytic properties of the activated carbon prepared from Eucommia ulmoides Oliver based on a biorefinery process. Bioresour. Technol. 2017, 232, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Chen, X.; Shekiro, J.; Kuhn, E.; Wang, W.; Ji, Y.; Kozliak, E.; Himmel, M.E.; Tucker, M.P. Kinetic modelling and experimental studies for the effects of Fe2+ ions on xylan hydrolysis with dilute-acid pretreatment and subsequent enzymatic hydrolysis. Catalysts 2018, 8, 39–57. [Google Scholar] [CrossRef]
- Safari, A.; Karimi, K.; Shafiei, M. Dilute alkali pretreatment of softwood pine: A biorefinery approach. Bioresour. Technol. 2017, 234, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Shi, Y.; Zhou, G.; Xu, X.; Liu, E.; Zhou, Y.; Zhang, F.; Li, C.; Fang, H.; Chen, L. Structural development and carbon dynamics of Moso bamboo forests in Zhejiang Province, China. For. Ecol. Manag. 2018, 409, 479–488. [Google Scholar] [CrossRef]
- Sluiter, J.B.; Ruiz, R.O.; Scarlata, C.J.; Sluiter, A.D.; Templeton, D.W. Compositional analysis of lignocellulosic feedstocks: Review and description of methods. J. Agric. Food Chem. 2010, 58, 9043–9053. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Watanabe, M.; Aida, T.M.; Smith, R.L., Jr. Sulfated zirconia as a solid acid catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Catal. Commun. 2009, 10, 1771–1775. [Google Scholar] [CrossRef]
- Li, H.; Deng, A.; Ren, J.; Liu, C.; Wang, W.; Peng, F.; Sun, R. A modified biphasic system for the dehydration of d-xylose into furfural using SO42−/TiO2−ZrO2/La3+ as a solid catalyst. Catal. Today 2014, 234, 251–256. [Google Scholar] [CrossRef]
- Hu, L.; Tang, X.; Wu, Z.; Lin, L.; Xu, J.; Xu, N.; Dai, B. Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide. Chem. Eng. J. 2015, 263, 299–308. [Google Scholar] [CrossRef]
- Jia, X.; Dai, R.; Sun, Y.; Song, H.; Wu, X. One-step hydrothermal synthesis of Fe3O4/g-C3N4 nanocomposites with improved photocatalytic activities. J. Mater. Sci. 2016, 27, 3791–3798. [Google Scholar] [CrossRef]
- Ishii, T.; Hiroi, T.; Thomas, J.R. Feruloylated xyloglucan and p-coumaroyl arabinoxylan oligosaccharides from bamboo shoot cell-walls. Phytochemistry 1990, 29, 1999–2003. [Google Scholar] [CrossRef]
- Xu, F.; Yu, J.; Tesso, T.; Dowell, F.; Wang, D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energ. 2013, 104, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Faix, O. Classification of lignins from different botanical origins by FT-IR Spectroscopy. Holzforschung 1991, 45, 21–28. [Google Scholar] [CrossRef]
- Li, J.; Li, K.; Zhang, T.; Wang, S.; Jiang, Y.; Bao, Y.; Tie, M. Development of activated carbon from windmill palm sheath fiber by KOH activation. Fiber. Polym. 2016, 17, 880–887. [Google Scholar] [CrossRef]
- He, C.; Sasaki, T.; Shimizu, Y.; Koshizaki, N. Synthesis of ZnO nanoparticles using nanosecond pulsed laser ablation in aqueous media and their self-assembly towards spindle-like ZnO aggregates. Appl. Surf. Sci. 2008, 254, 2196–2202. [Google Scholar] [CrossRef]
Entry | Sample | Xylose | Arabinose | Glucose |
---|---|---|---|---|
1 | 0.25% H2SO4 | 1995.35 | 510.50 | 166.85 |
2 | 0.5% H2SO4 | 2157.45 | 582.70 | 243.45 |
3 | 0.75% H2SO4 | 2805.00 | 605.05 | 266.75 |
4 | 1% H2SO4 | 6278.50 | 665.25 | 417.15 |
5 | 2% H2SO4 | 8258.90 | 711.00 | 613.30 |
6 | 0.25% KOH | ND a | ND | ND |
7 | 0.5% KOH | ND | ND | ND |
8 | 0.75% KOH | ND | ND | ND |
9 | 1% KOH | ND | ND | ND |
10 | 2% KOH | ND | ND | ND |
11 | DI Water | ND | ND | ND |
Entry | Sample | Xylose | Arabinose | Glucose |
---|---|---|---|---|
1 | 0.25% H2SO4 | 9.61 | 0.058 | 38.02 |
2 | 0.5% H2SO4 | 6.08 | 0.051 | 39.93 |
3 | 0.75% H2SO4 | 5.71 | ND a | 42.05 |
4 | 1% H2SO4 | 4.17 | ND | 44.81 |
5 | 2% H2SO4 | 4.83 | ND | 48.31 |
6 | 0.25% KOH | 9.69 | 0.69 | 40.61 |
7 | 0.5% KOH | 12.14 | 0.84 | 40.55 |
8 | 0.75% KOH | 11.79 | 0.88 | 43.14 |
9 | 1% KOH | 14.74 | 1.15 | 50.23 |
10 | 2% KOH | 12.05 | 0.74 | 51.82 |
11 | DI Water | 10.93 | 0.74 | 33.94 |
Entry | Sample | Xylose | Arabinose | Glucose |
---|---|---|---|---|
1 | 0.25% H2SO4 | 4643.40 | 662.80 | 1111.30 |
2 | 0.5% H2SO4 | 3100.05 | 492.15 | 1100.90 |
3 | 0.75% H2SO4 | 2284.05 | 360.20 | 683.6 |
4 | 1% H2SO4 | 3356.75 | 497.80 | 991.40 |
5 | 2% H2SO4 | 2259.40 | 318.40 | 219.50 |
6 | 0.25% KOH | 1856.20 | 278.40 | 672.50 |
7 | 0.5% KOH | 2642.85 | 366.55 | 668.50 |
8 | 0.75% KOH | 2358.30 | 320.90 | 562.90 |
9 | 1% KOH | 2034.75 | 302.4 | 850.80 |
10 | 2% KOH | 2601.00 | 402.70 | 1226.20 |
11 | DI Water | 286.90 | 25.55 | 386.45 |
Entry | Sample | Xylose | Arabinose | Glucose |
---|---|---|---|---|
1 | 0.25% H2SO4 | 22.35 | 0.00 | 1172.05 |
2 | 0.5% H2SO4 | 46.30 | 0.00 | 1288.85 |
3 | 0.75% H2SO4 | 205.85 | 0.10 | 874.35 |
4 | 1% H2SO4 | 39.20 | 0.00 | 1150.00 |
5 | 2% H2SO4 | 63.55 | 0.00 | 1193.85 |
6 | 0.25% KOH | 42.00 | 0.00 | 1038.50 |
7 | 0.5% KOH | 44.30 | 0.00 | 1073.10 |
8 | 0.75% KOH | 105.30 | 0.65 | 959.90 |
9 | 1% KOH | 197.15 | 0.50 | 817.05 |
10 | 2% KOH | 0.00 | 0.00 | 1004.10 |
11 | DI Water | 0.00 | 0.00 | 999.05 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Huang, J.; Sun, S.; Wu, A.; Li, H. Effect of Dilute Acid and Alkali Pretreatments on the Catalytic Performance of Bamboo-Derived Carbonaceous Magnetic Solid Acid. Catalysts 2019, 9, 245. https://doi.org/10.3390/catal9030245
Zhu Y, Huang J, Sun S, Wu A, Li H. Effect of Dilute Acid and Alkali Pretreatments on the Catalytic Performance of Bamboo-Derived Carbonaceous Magnetic Solid Acid. Catalysts. 2019; 9(3):245. https://doi.org/10.3390/catal9030245
Chicago/Turabian StyleZhu, Yikui, Jiawei Huang, Shaolong Sun, Aimin Wu, and Huiling Li. 2019. "Effect of Dilute Acid and Alkali Pretreatments on the Catalytic Performance of Bamboo-Derived Carbonaceous Magnetic Solid Acid" Catalysts 9, no. 3: 245. https://doi.org/10.3390/catal9030245
APA StyleZhu, Y., Huang, J., Sun, S., Wu, A., & Li, H. (2019). Effect of Dilute Acid and Alkali Pretreatments on the Catalytic Performance of Bamboo-Derived Carbonaceous Magnetic Solid Acid. Catalysts, 9(3), 245. https://doi.org/10.3390/catal9030245