Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure
Abstract
:1. Introduction
2. Results
2.1. Daily and Cumulative Methane Production from Different Substrates
2.2. Effects of NaOH Pretreatment on the Daily and Cumulative Methane Production from Different Substrates
2.3. Daily and Cumulative Methane Production from Different Co-Digestion Types
2.4. Effect of NaOH Pretreatment on the Daily and Cumulative Methane Production from Different Co-Digestion Types
3. Discussion
4. Materials and Methods
4.1. Substrates and Inoculum of Anaerobic Dry Digestion
4.2. Treatment Design and Incubation Experiments
4.3. Sample Collection and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turley, D.B.; Chaudhry, Q.; Watkins, R.W.; Clark, J.H.; Deswarte, F.E.I. Chemical products from temperate forest tree species—Developing strategies for exploitation. Ind. Crop. Prod. 2006, 24, 238–243. [Google Scholar] [CrossRef]
- Souza, A.M.; Nascimento, M.F.; Almeida, D.H.; Silva, D.A.L.; Almeida, T.H.; Christoforo, A.L.; Lahr, F.A. Wood-based composite made of wood waste and epoxy based ink-waste as adhesive: A cleaner production alternative. J. Clean. Prod. 2018, 193, 549–562. [Google Scholar] [CrossRef]
- da Silva Vieira, R.; Lima, J.T.; Moreira da Silva, J.R.; Gherardi Hein, P.R.; Baillères, H.; Pereira Barauna, E.E. Small wooden objects using eucalypt sawmill wood waste. Bioresources 2010, 5, 1463–1472. [Google Scholar]
- Eshun, J.F.; Potting, J.; Leemans, R. Wood waste minimization in the timber sector of Ghana: A systems approach to reduce environmental impact. J. Clean. Prod. 2012, 26, 67–78. [Google Scholar] [CrossRef]
- Wang, H.; Zuo, X.; Wang, D.; Bi, Y. The estimation of forest residue resources in China. J. Cent. South Univ. Forest. Technol. 2017, 37, 29–38. [Google Scholar]
- Li, D.; Liu, S.; Mi, L.; Li, Z.; Yuan, Y.; Yan, Z.; Liu, X. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure. Bioresour. Technol. 2015, 187, 120–127. [Google Scholar] [CrossRef]
- Salehian, P.; Karimi, K.; Zilouei, H.; Jeihanipour, A. Improvement of biogas production from pine wood by alkali pretreatment. Fuel 2013, 106, 484–489. [Google Scholar] [CrossRef]
- Paul, S.; Dutta, A. Challenges and opportunities of lignocellulosic biomass for anaerobic digestion. Resour. Conserv. Recycl. 2018, 130, 164–174. [Google Scholar] [CrossRef]
- Jha, A.K.; Li, J.; Nies, L.; Zhang, L. Research advances in dry anaerobic digestion process of solid organic wastes. Afr. J. Biotechnol. 2011, 10, 14242–14253. [Google Scholar]
- Borowski, S.; Kucner, M.; Czyżowska, A.; Berłowska, J. Co-digestion of poultry manure and residues from enzymatic saccharification and dewatering of sugar beet pulp. Rnew. Energy 2016, 99, 492–500. [Google Scholar] [CrossRef]
- Wang, X.J.; Yang, G.H.; Feng, Y.Z.; Ren, G.X. Potential for biogas production from anaerobic co-digestion of dairy and chicken manure with corn stalks. Adv. Mat. Res. 2012, 347, 2484–2492. [Google Scholar] [CrossRef]
- Wang, X.; Yang, G.; Feng, Y.; Ren, G.; Han, X. Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour. Technol. 2012, 120, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Monlau, F.; Barakat, A.; Trably, E.; Dumas, C.; Steyer, J.P.; Carrère, H. Lignocellulosic materials into biohydrogen and biomethane: Impact of structural features and pretreatment. Crit. Rev. Environ. Sci. Technol. 2013, 43, 260–322. [Google Scholar] [CrossRef]
- Sambusiti, C.; Ficara, E.; Malpei, F.; Steyer, J.P.; Carrère, H. Benefit of sodium hydroxide pretreatment of ensiled sorghum forage on the anaerobic reactor stability and methane production. Bioresour. Technol. 2013, 144, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Mirahmadi, K.; Kabir, M.M.; Jeihanipour, A.; Karimi, K.; Taherzadeh, M. Alkaline pretreatment of spruce and birch to improve bioethanol and biogas production. Bioresources 2010, 5, 928–938. [Google Scholar]
- Nieves, D.C.; Karimi, K.; Horváth, I.S. Improvement of biogas production from oil palm empty fruit bunches (OPEFB). Ind. Crop. Prod. 2011, 34, 1097–1101. [Google Scholar] [CrossRef] [Green Version]
- Park, S.; Li, Y. Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour. Technol. 2012, 111, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, A.; Merkle, W.; Baer, K.; Graf, F. Effects of high-pressure anaerobic digestion up to 30 bar on pH-value, production kinetics and specific methane yield. Energy 2017, 138, 659–667. [Google Scholar] [CrossRef]
- Jaffar, M.; Pang, Y.; Yuan, H.; Zou, D.; Liu, Y.; Zhu, B.; Li, X. Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion. Chin. J. Chen. Eng. 2016, 24, 404–409. [Google Scholar] [CrossRef]
- Siddique, M.N.I.; Wahid, Z.A. Achievements and perspectives of anaerobic co-digestion: A review. J. Clean. Prod. 2018, 194, 359–371. [Google Scholar] [CrossRef]
- Li, X.; Li, L.; Zheng, M.; Fu, G.; Lar, J.S. Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy Fuels 2009, 23, 4635–4639. [Google Scholar] [CrossRef]
- Jantrania, A.R.; White, R.K. High-solids anaerobic fermentation of poultry manure. In Proceedings of the Fifth International Symposium on Agricultural Waste, St. Joseph, MI, USA, 16–17 December 1985; pp. 73–80. [Google Scholar]
- Li, Y.; Chen, Y.; Wu, J. Enhancement of methane production in anaerobic digestion process: A review. Appl. Energy 2019, 240, 120–137. [Google Scholar] [CrossRef]
- Ağdağ, O.N.; Sponza, D.T. Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J. Hazard. Mater. 2007, 140, 75–85. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
Parameter | Inoculum | PM | WW | WW + NaOH | RS | RS + NaOH |
---|---|---|---|---|---|---|
TS (%) | 18.9 | 18.1 ± 0.2 | 96.2 ± 0.6 | NA | 92.5 ± 0.5 | NA |
VS (%) | 9.8 | 9.4 ± 0.1 | 79.8 ± 0.6 | NA | 84.4 ± 0.7 | NA |
Cellulose (%) | NA | 23.6 ± 0.4 | 39.9 ± 0.3 | 41.2 ± 0.3 | 30.3 ± 1.2 | 33.7 ± 1.4 |
Hemicellulose (%) | NA | 21.7 ± 1.2 | 36.7 ± 1.5 | 50.9 ± 1.6 | 29.2 ± 1.5 | 40.3 ± 1.8 |
Lignin (%) | NA | 8.4 ± 0.1 | 13.4 ± 0.7 | 3.3 ± 0.2 | 5.4 ± 0.4 | 1.24 ± 0.2 |
Ash (%) | NA | 6.9 ± 0.2 | 17.8 ± 0.3 | NA | 15.7 ± 0.3 | NA |
TC (%) | 32.2 | 26.2 ± 0.3 | 37.1 ± 0.4 | 39.1 ± 0.4 | 34.3 ± 0.5 | 36.4 ± 0.4 |
TN (%) | 1.4 | 1.3 ± 0.1 | 0.7 ± 0.1 | 1.4 ± 0.1 | 0.7 ± 0.1 | 1.3 ± 0.1 |
C/N | 23.5 | 20 | 53.5 | 27.2 | 47 | 29.1 |
Treatments | Raw Material | VS Ratio | C/N Ratio |
---|---|---|---|
T1 | PM | 20 | |
T2 | RS | 47 | |
T3 | WW | 53.5 | |
T4 | WW + NaOH | 27.2 | |
T5 | RS + NaOH | 29.1 | |
T6 | PM/WW | 2:01 | 31.3 |
T7 | PM/RS | 2:01 | 29 |
T8 | PM/WW(NaOH) | 2:01 | 22.4 |
T9 | PM/WW(NaOH) | 2:01 | 23 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, R.; Tan, W.; Zhao, X.; Dang, Q.; Song, Q.; Xi, B.; Zhang, X. Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure. Catalysts 2019, 9, 539. https://doi.org/10.3390/catal9060539
Li R, Tan W, Zhao X, Dang Q, Song Q, Xi B, Zhang X. Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure. Catalysts. 2019; 9(6):539. https://doi.org/10.3390/catal9060539
Chicago/Turabian StyleLi, Renfei, Wenbing Tan, Xinyu Zhao, Qiuling Dang, Qidao Song, Beidou Xi, and Xiaohui Zhang. 2019. "Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure" Catalysts 9, no. 6: 539. https://doi.org/10.3390/catal9060539
APA StyleLi, R., Tan, W., Zhao, X., Dang, Q., Song, Q., Xi, B., & Zhang, X. (2019). Evaluation on the Methane Production Potential of Wood Waste Pretreated with NaOH and Co-Digested with Pig Manure. Catalysts, 9(6), 539. https://doi.org/10.3390/catal9060539