Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction
2.2. Microstructure of Infiltrated Cells
2.3. Electrochemical Characterization by Impedance Measurements of LSCTZ5 Infiltrated with Ni-CGO, Co, and Fe
2.4. Temperature Dependence
3. Materials and Methods
3.1. Symmetrical Cell Fabrication
3.2. Microstructure Characterization
3.3. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, S.P. Sintering behavior of Ni/Y2O3-ZrO2 cermet electrodes of solid oxide fuel cell. J. Mater. Sci. 2003, 38, 3775–3782. [Google Scholar] [CrossRef]
- Girona, K.; Laurencin, J.; Fouletier, J.; Lefebvre-Joud, F. Carbon deposition in CH4/CO2 operated SOFC: Simulation and experimentation studies. J. Power Sources 2012, 210, 381–391. [Google Scholar] [CrossRef]
- Kim, Y.J.; Lee, H.M.; Lim, H.T. Degradation comparison of hydrogen and internally reformed methane-fueled solid oxide fuel cells. J. Korean Ceram. Soc. 2016, 53, 483–488. [Google Scholar] [CrossRef]
- Chuang, K.T.; Luo, J.; Sanger, A. Evolution of fuel cells powered by H2S-containing gases. Chem. Ind. Chem. Eng. Q. 2008, 14, 69–76. [Google Scholar]
- Cheng, Z.; Wang, J.H.; Choi, Y.M.; Yang, L.; Lin, M.C.; Liu, M. From Ni-YSZ to sulfur tolerant anode materials for SOFCs: Electrochemical behavior, in situ characterization, modelling, and future perspectives. Energy Environ. Sci. 2011, 4, 4380–4409. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, M.J.; Park, S.H.; Hwang, H.J. Symmetrical solid oxide electrolyzed cells (SOECs) with La0.6 Sr0.4Co0.2Fe0.8O3 (LSCF)-Gadolinium doped ceria (GDC) composite electrodes. J. Korean Ceram. Soc. 2016, 53, 489–493. [Google Scholar] [CrossRef]
- Singh, K.; Nowotny, J.; Thangadurai, V. Amphoteric oxide semiconductors for energy conversion devices: A tutorial review. Chem. Soc. Rev. 2013, 42, 1961–1972. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, T. Nanomaterials for advanced electrode of low-temperature solid oxide fuel cells (SOFCs). J. Korean Ceram. Soc. 2016, 53, 469–477. [Google Scholar] [CrossRef]
- Hui, S.; Petric, A. Electrical properties of yttrium-doped strontium titanate under reducing conditions. J. Electrochem. Soc. 2002, 149, J1–J10. [Google Scholar] [CrossRef]
- Zhou, X.; Yan, N.; Chuang, K.T.; Luo, J. Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 2014, 4, 118–131. [Google Scholar] [CrossRef]
- Savaniu, C.D.; Miller, D.N.; Irvine, J.T.S. Scale up and anode development for La- Doped SrTiO3 anode-supported SOFCs. J. Am. Ceram. Soc. 2013, 96, 1718–1723. [Google Scholar] [CrossRef]
- Ma, Q.; Tietz, F.; Leonide, A.; Ivers-Tiffee, E. Electrochemical performances of solid oxide fuel cells based on Y-substituted SrTiO3 ceramic anode materials. J. Power Sources 2011, 196, 7308–7312. [Google Scholar] [CrossRef]
- Marina, O.A.; Canfield, N.L.; Stevenson, J.W. Thermal, electrical, and electrocatalytical properties of lanthanum-doped strontium titanate. Solid State Ionics 2002, 149, 21–28. [Google Scholar] [CrossRef]
- Vincent, A.L.; Luo, J.L.; Chuang, K.T.; Sanger, A.R. Promotion of activation of CH4 by H2S in the oxidation of sour gas over sulfur tolerant SOFC anode catalysts. Appl. Catal. 2011, 106, 114–122. [Google Scholar] [CrossRef]
- Mukundan, R.; Brosha, E.L.; Garzon, F.H. Sulfur tolerant anodes for SOFCs. Electrochem. Solid State Lett. 2004, 7, A5–A7. [Google Scholar] [CrossRef]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Zhang, L.; Jing, S.P.; Wang, W.; Zhang, Y. NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. J. Power Sources 2007, 170, 55–60. [Google Scholar] [CrossRef]
- Savaniu, C.D.; Irvine, J.T.S. La-doped SrTiO3 as anode materials for IT-SOFC. Solid State Ionics. 2011, 192, 491–493. [Google Scholar] [CrossRef]
- Yoo, K.B.; Choi, G.M. Performance of La-doped strontium titanite (LST) anode on LaGaO3-based SOFC. Solid State Ionics 2009, 180, 867–871. [Google Scholar] [CrossRef]
- Arrive, C.; Delahaye, T.; Joubert, O.; Gauthier, G. Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. J. Power Sources 2013, 223, 341–348. [Google Scholar] [CrossRef]
- Watanabe, M.; Uchida, H.; Shibata, M.; Mochizuki, N.; Amikura, K. High Performance Catalyzed-Reaction Layer for Medium Temperature Operating Solid Oxide Fuel Cells. J. Electrochem. Soc. 1994, 141, 342–346. [Google Scholar] [CrossRef]
- Ramos, T.; Veltze, S.; Sudireddy, B.R.; Holtappels, P. Impedance and stability of M/CGO (M: Ni, Pd, Ru) Co-infiltrated Nb-doped SrTiO3 SOFC anodes. Electrochem. Lett. 2014, 3, F5–F6. [Google Scholar] [CrossRef]
- Ramos, T.; Veltze, S.; Sudireddy, B.R.; Jørgensen, P.S.; Kuhn, L.T.; Holtappels, P. Effect of Ru/CGO versus Ni/CGO Co-infiltration on the performance and stability of STN–based SOFCS. Fuel Cells 2014, 14, 1062–1065. [Google Scholar] [CrossRef]
- Boldrin, P.; Ruiz-Trejo, E.; Mermelstein, J.; Menendez, J.M.; Reina, T.R.; Brandon, N.P. Strategies for carbon and sulphur tolerant solid oxide fuel cell materials, incorporating lessons from heterogeneous catalysis. Chem. Rev. 2016, 116, 13633–13684. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.G.; Pronzi, E.N.; Ferretti, O.A.; Quincoces, C.E.; Marecot, P.; Barbier, J. Studies of H2S adsorption and carbon deposition over Mo-Ni/Al2O3 catalysts. Adsorpt. Sci. Technol. 2000, 18, 515–527. [Google Scholar] [CrossRef]
- Verbraeken, M.C.; Iwanschitz, B.; Mai, A.; Irvine, J.T.S. Evaluation of calcium-doped La0.2Sr0.7TiO3 as an alternative material for use in SOFC anodes. J. Electrochem. Soc. 2012, 159, F757–F762. [Google Scholar] [CrossRef]
- Yaqub, A.; Janjua, N.K.; Savaniu, C.; Irvine, J.T.S. Synthesis and characterization of B-site doped La0.20 Sr0.25Ca0.45TiO3 as SOFC anode materials. Int. J. Hydrogen Energy 2015, 40, 760–766. [Google Scholar] [CrossRef]
- Hussain, A.M.; Høgh, J.V.T.; Zhang, W.; Stamate, E.; Thydén, K.T.S.; Bonanos, N. Improved ceramic anodes for SOFCs with modified electrode/electrolyte interface. J. Power Sources 2012, 212, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, G.; Vohs, J.M.; Gorte, R.J. SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 2008, 155, B1179–B1183. [Google Scholar] [CrossRef]
- Hjelm, J.; Søgaard, M.; Wandel, M.; Mogensen, M.B.; Menon, M.; Hagen, A. Electrochemical Impedance studies of SOFC Cathodes. ECS Trans. 2007, 7, 1261–1270. [Google Scholar]
- Ramos, T.; Bernuy-Lopez, C.; Sudireddy, B.R.; Bentzen, J.J.; Zhang, W.; Jørgensen, P.S.; Kuhn, L.T. Performance-microstructure relations in Ni/CGO infiltrated Nb-doped SrTiO3 SOFC anodes. Electrochem. Lett. 2012, 45, 389–402. [Google Scholar] [CrossRef]
- Ramos, T.; Thyden, K.T.S.; Mogensen, M. Electrochemical characterization of Ni/(Sc) YSZ electrodes. ECS Trans. 2010, 28, 123–139. [Google Scholar]
- Søren Koch, Christopher Graves and Karin Vels Hansen, DTU Energy. 2018. Available online: https://www.elchemea.com/ (accessed on 7 December 2011).
Infiltration | Weight Gain (g/cm2) | Weight Gain (%) | Standard Deviation (%) | Standard Deviation (g) |
---|---|---|---|---|
Co | 0.0008796 | 0.91 | 0.24 | 0.0000687 |
Fe | 0.0008889 | 0.77 | 0.28 | 0.0000748 |
Ni | 0.0007870 | 0.80 | 0.22 | 0.0001067 |
Ni-CGO | 0.0046667 | 4.22 | 0.91 | 0.0002482 |
Samples | RS (Ω cm2) (3% H2O/H2) | RS (Ω cm2) (50% H2O/H2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
850 °C | 800 °C | 750 °C | 700 °C | 650 °C | 850 °C | 800 °C | 750 °C | 700 °C | 650 °C | |
LSCTZ5 | - | - | 0.381 | 0.581 | 0.94 | - | - | - | - | - |
Ni-CGO | 0.181 | 0.249 | 0.341 | 0.5299 | 0.860 | 0.212 | 0.287 | 0.412 | 0.654 | 1.00 |
Co | 0.169 | 0.225 | 0.327 | 0.513 | 0.87 | 0.181 | 0.220 | 0.409 | 0.590 | 1.00 |
Fe | 0.147 | 0.147 | 0.294 | 0.437 | 0.65 | 0.146 | 0.213 | 0.316 | 0.49 | 0.85 |
Samples | Polarization Resistance (Ω cm2) (3% H2O/H2) | Polarization Resistance (Ω cm2) (50% H2O/H2) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
850 °C | 800 °C | 750 °C | 700 °C | 650 °C | 850 °C | 800 °C | 750 °C | 700 °C | 650 °C | |
LSCTZ5 backbone | - | - | 25 | 48 | 89 | - | - | - | - | - |
Ni-CGO | 0.072 | 0.0819 | 0.091 | 0.115 | 0.207 | 0.025 | 0.035 | 0.076 | 0.118 | 0.334 |
Co | 1.28 | 1.84 | 2.31 | 3.80 | 8.08 | 0.59 | 1.413 | 3.48 | 7.47 | 23.05 |
Fe | 0.159 | 0.193 | 0.290 | 0.529 | 1.086 | 3.87 | 10.95 | 22.57 | 54.55 | 136.9 |
Samples | Activation Energy (eV) | ||
---|---|---|---|
(3% H2O/H2) | (50% H2O/H2) | ||
High Temp. Region * | Low Temp. Region | ||
LSCTZ5 backbone | 1.02 | - | |
Ni-CGO | (0.23) | 0.87 | 1.15 |
Co | (0.55) | 1.20 | 1.59 |
Fe | (0.58) | 0.85 | 1.54 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muzaffar, N.; Arshad, N.; Drasbæk, D.B.; Sudireddy, B.R.; Holtappels, P. Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells. Catalysts 2019, 9, 269. https://doi.org/10.3390/catal9030269
Muzaffar N, Arshad N, Drasbæk DB, Sudireddy BR, Holtappels P. Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells. Catalysts. 2019; 9(3):269. https://doi.org/10.3390/catal9030269
Chicago/Turabian StyleMuzaffar, Nazan, Nasima Arshad, Daniel Bøgh Drasbæk, Bhaskar Reddy Sudireddy, and Peter Holtappels. 2019. "Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells" Catalysts 9, no. 3: 269. https://doi.org/10.3390/catal9030269
APA StyleMuzaffar, N., Arshad, N., Drasbæk, D. B., Sudireddy, B. R., & Holtappels, P. (2019). Fabrication and Electrochemical Performance of Zn-Doped La0.2Sr0.25Ca0.45TiO3 Infiltrated with Nickel-CGO, Iron, and Cobalt as an Alternative Anode Material for Solid Oxide Fuel Cells. Catalysts, 9(3), 269. https://doi.org/10.3390/catal9030269