Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts
Abstract
:1. Introduction
2. Results
2.1. Catalyst Characterization
2.2. OCM Reaction
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Catalyst Characterization
3.4. Reaction Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wang, Q.; Chen, X.; Jha, A.N.; Rogers, H. Natural gas from shale formation–the evolution, evidences and challenges of shale gas revolution in United States. Renew. Sust. Energ. Rev. 2014, 30, 1–28. [Google Scholar] [CrossRef]
- Jiyao, G.; You, F. Design and optimization of shale gas energy systems: Overview, research challenges, and future directions. Comput. Chem. Eng. 2017, 106, 699–718. [Google Scholar]
- Middleton, R.S.; Gupta, R.; Hyman, J.D.; Viswanathan, H.S. The shale gas revolution: Barriers, sustainability, and emerging opportunities. Appl. Energy 2017, 199, 88–95. [Google Scholar] [CrossRef]
- Vita, A.; Cristiano, G.; Italiano, C.; Specchia, S.; Cipitì, F.; Specchia, V. Methane oxy-steam reforming reaction: Performances of Ru/γ-Al2O3 catalysts loaded on structured cordierite monoliths. Int. J. Hydrog. Energy 2014, 39, 18592–18603. [Google Scholar] [CrossRef]
- Villoria, J.A.; Alvarez-Galvan, M.C.; Al-Zahrani, S.M.; Palmisano, P.; Specchia, S.; Specchia, V.; Fierro, J.L.G.; Navarro, R.M. Oxidative reforming of diesel fuel over LaCoO3 perovskite derived catalysts: Influence of perovskite synthesis method on catalyst properties and performance. Appl. Catal. B Environ. 2011, 105, 276–288. [Google Scholar] [CrossRef]
- Ashcroft, A.T.; Cheetham, A.K.; Green, M.; Vernon, P.D.F. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 1991, 352, 225. [Google Scholar] [CrossRef]
- Singha, R.K.; Ghosh, S.; Acharyya, S.S.; Yadav, A.; Shukla, A.; Sasaki, T.; Venezia, A.M.; Pendem, C.; Bal, R. Partial oxidation of methane to synthesis gas over Pt nanoparticles supported on nanocrystalline CeO2 catalyst. Catal. Sci. Technol. 2016, 6, 4601–4615. [Google Scholar] [CrossRef]
- Consuelo, A.G.; Mayra, M.; Laura, R.M.; Jose, L.E.; Rufino, M.N.; Mahdi, A.; Beatriz, R.C.; Jose, L.G.F. Partial Oxidation of Methane to Syngas Over Nickel-Based Catalysts: Influence of Support Type, Addition of Rhodium, and Preparation Method. Front. Chem. 2019, 7, 104. [Google Scholar]
- Vella, L.D.; Villoria, J.A.; Specchia, S.; Mota, N.; Fierro, J.L.G.; Specchia, V. Catalytic partial oxidation of CH4 with nickel–lanthanum-based catalysts. Catal. Today 2011, 171, 84–96. [Google Scholar] [CrossRef]
- Cheng, Q.; Tian, Y.; Lyu, S.; Zhao, N.; Ma, K.; Ding, T.; Jiang, Z.; Wang, L.; Zhang, J.; Zheng, L.; et al. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer–Tropsch synthesis. Nature Commun. 2018, 9, 3250. [Google Scholar] [CrossRef]
- Aluha, J.; Hu, Y.; Abatzoglou, N. Effect of CO concentration on the α-value of plasma-synthesized Co/C catalyst in Fischer-Tropsch synthesis. Catalysts 2017, 7, 69. [Google Scholar] [CrossRef]
- Davis, B.H.; Occelli, M.L. Fischer-Tropsch Synthesis, Catalysts and Catalysis; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- da Silva, M.J. Synthesis of methanol from methane: Challenges and advances on the multi-step (syngas) and one-step routes (DMTM). Fuel Process. Technol. 2016, 145, 42–61. [Google Scholar] [CrossRef]
- Kuld, S.; Thorhauge, M.; Falsig, H.; Elkjær, C.F.; Helveg, S.; Chorkendorff, I.; Sehested, J. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 2016, 352, 969–974. [Google Scholar] [CrossRef] [Green Version]
- Van Den Berg, R.; Prieto, G.; Korpershoek, G.; Van Der Wal, L.I.; Van Bunningen, A.J.; Lægsgaard-Jørgensen, S.; De Jongh, P.E.; De Jong, K.P. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nature Commun. 2016, 7, 13057. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, K.; Ham, H.; Tsubaki, N.; Bae, J.W. Recent progress for direct synthesis of dimethyl ether from syngas on the heterogeneous bifunctional hybrid catalysts. Appl. Catal. B: Environ. 2017, 217, 494–522. [Google Scholar] [CrossRef]
- Dadgar, F.; Myrstad, R.; Pfeifer, P.; Holmen, A.; Venvik, H.J. Direct dimethyl ether synthesis from synthesis gas: The influence of methanol dehydration on methanol synthesis reaction. Catal. Today 2016, 270, 76–84. [Google Scholar] [CrossRef] [Green Version]
- Palermo, A.; Vazquez, J.P.; Lee, A.F.; Tikhov, M.S.; Lambert, R.M. Critical influence of the amorphous silica-to-cristobalite phase transition on the performance of Mn/Na2WO4/SiO2 catalysts for the oxidative coupling of methane. J. Catal. 1998, 177, 259–266. [Google Scholar] [CrossRef]
- Elkins, T.W.; Hagelin-Weaver, H.E. Characterization of Mn–Na2WO4/SiO2 and Mn–Na2WO4/MgO catalysts for the oxidative coupling of methane. Appl. Catal. A: Gen. 2015, 497, 96–106. [Google Scholar] [CrossRef]
- Ahari, J.S.; Zarrinpashne, S.; Sadeghi, M.T. Micro-kinetic modeling of OCM reactions over Mn/Na2WO4/SiO2 catalyst. Fuel process. Technol. 2013, 115, 79–87. [Google Scholar] [CrossRef]
- Arndt, S.; Laugel, G.; Levchenko, S.; Horn, R.; Baerns, M.; Scheffler, M.; Schlögl, R.; Schomäcker, R. A critical assessment of Li/MgO-based catalysts for the oxidative coupling of methane. Catal. Rev. 2011, 53, 424–514. [Google Scholar] [CrossRef]
- Amin, N.A.S.; Pheng, S.E. Influence of process variables and optimization of ethylene yield in oxidative coupling of methane over Li/MgO catalyst. Chem. Eng. J. 2006, 116, 187–195. [Google Scholar] [CrossRef]
- Rane, V.H.; Chaudhari, S.T.; Choudhary, V.R. Oxidative coupling of methane over La-promoted CaO catalysts: Influence of precursors and catalyst preparation method. J. Nat. Gas Chem. 2010, 19, 25–30. [Google Scholar] [CrossRef]
- Stansch, Z.; Mleczko, L.; Baerns, M. Comprehensive kinetics of oxidative coupling of methane over the La2O3/CaO catalyst. Ind. Eng. Chem. Res. 1997, 36, 2568–2579. [Google Scholar] [CrossRef]
- Vandewalle, L.A.; de Vijver, R.V.; Van Greem, K.M.; Marin, G.B. The role of mass and heat transfer in the design of novel reactors for oxidative coupling of methane. Chem. Eng. Sci. 2019, 198, 268–289. [Google Scholar] [CrossRef]
- Aseem, A.; Jeba, G.G.; Conato, M.T.; Rimer, J.D.; Harold, M.P. Oxidative coupling of methane over mixed metal oxide catalysts: Steady state multiplicity and catalyst durability. Chem. Eng. J. 2018, 331, 132–143. [Google Scholar] [CrossRef]
- Schweer, D.; Meeczko, L.; Baerns, M. OCM in a fixed-bed reactor: Limits and perspectives. Catal. Today 1994, 21, 357–369. [Google Scholar] [CrossRef]
- Pak, S.; Lunsford, J.H. Thermal effects during the oxidative coupling of methane over Mn/Na2WO4/SiO2 and Mn/Na2WO4/MgO catalysts. Appl. Catal. A Gen. 1998, 168, 131–137. [Google Scholar] [CrossRef]
- Le, T.A.; Kang, J.K.; Park, E.D. CO and CO2 Methanation Over Ni/SiC and Ni/SiO2 Catalysts. Top. Catal. 2018, 61, 1537–1544. [Google Scholar] [CrossRef]
- De la Osa, A.; Romero, A.; Dorado, F.; Valverde, J.; Sánchez, P. Influence of cobalt precursor on efficient production of commercial fuels over FTS Co/SiC. Catalysts 2016, 6, 98. [Google Scholar] [CrossRef]
- Ercolino, G.; Stelmachowski, P.; Specchia, S. Catalytic performance of Pd/Co3O4 on SiC and ZrO2 open cell foams for process intensification of methane combustion in lean conditions. Ind. Eng. Chem. Res. 2017, 56, 6625–6636. [Google Scholar] [CrossRef]
- Liao, M.; Wang, C.; Bu, E.; Chen, Y.; Cheng, Z.; Luo, X.; Shu, R.; Wu, J. Efficient hydrogen production from partial oxidation of propane over SiC doped Ni/Al2O3 catalyst. Energy Procedia 2019, 158, 1772–1779. [Google Scholar] [CrossRef]
- Liu, H.; Yang, D.; Gao, R.; Chen, L.; Zhang, S.; Wang, X. A novel Na2WO4–Mn/SiC monolithic foam catalyst with improved thermal properties for the oxidative coupling of methane. Catal. Commun. 2008, 9, 1302–1306. [Google Scholar] [CrossRef]
- Wang, H.; Schmack, R.; Paul, B.; Albrecht, M.; Sokolov, S.; Rümmler, S.; Kondratenko, E.V.; Kraehnert, R. Porous silicon carbide as a support for Mn/Na/W/SiC catalyst in the oxidative coupling of methane. Appl. Catal. A Gen. 2017, 537, 33–39. [Google Scholar] [CrossRef]
- Yildiz, M.; Simon, U.; Otremba, T.; Aksu, Y.; Kailasam, K.; Thomas, A.; Schomäcker, R.; Arndt, S. Support material variation for the MnxOy-Na2WO4/SiO2 catalyst. Catal. Today 2014, 228, 5–14. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez–Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Breneman, R.C.; Halloran, J.W. Kinetics of cristobalite formation in sintered silica. J. Am. Ceram. Soc. 2004, 97, 2272–2278. [Google Scholar] [CrossRef]
- Wu, J.; Li, S.; Niu, J.; Fang, X. Mechanistic study of oxidative coupling of methane over Mn2O3-Na2WO4SiO2 catalyst. Appl. Catal. A Gen. 1995, 124, 9–18. [Google Scholar] [CrossRef]
Catalyst | Specific Surface Area (m2·g−1) | ||
---|---|---|---|
Pristine | Treated at 800 °C a | Supported MNW Catalyst b | |
m-SiC | <1 | <1 | 2 |
n-SiC | 43 | 24 | 4 |
SiO2 | 463 | 264 | 5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, L.-H.; Ha, J.-M.; Park, E.D. Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts. Catalysts 2019, 9, 363. https://doi.org/10.3390/catal9040363
Kim J, Park L-H, Ha J-M, Park ED. Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts. Catalysts. 2019; 9(4):363. https://doi.org/10.3390/catal9040363
Chicago/Turabian StyleKim, Jieun, La-Hee Park, Jeong-Myeong Ha, and Eun Duck Park. 2019. "Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts" Catalysts 9, no. 4: 363. https://doi.org/10.3390/catal9040363
APA StyleKim, J., Park, L. -H., Ha, J. -M., & Park, E. D. (2019). Oxidative Coupling of Methane over Mn2O3-Na2WO4/SiC Catalysts. Catalysts, 9(4), 363. https://doi.org/10.3390/catal9040363