Influence of Nanocrystalline Palladium Morphology on Alkaline Oxygen Reduction Kinetics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sample Preparation
2.2. Electrochemical Surface Area Characterization
2.3. Structural Characterization of Pd Films
2.4. Alkaline ORR Characterization
2.5. Effect of Pd Morphology and Texture on Alkaline ORR Kinetics
3. Experimental
3.1. Electrochemistry
3.2. Materials Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gasteiger, H.A.; Kocha, S.S.; Sompalli, B.; Wagner, F.T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B Environ. 2005, 56, 9–35. [Google Scholar] [CrossRef]
- Shao, M. Palladium-based electrocatalysts for hydrogen oxidation and oxygen reduction reactions. J. Power Sour. 2011, 196, 2433–2444. [Google Scholar] [CrossRef]
- Henning, S.; Herranz, J.; Gasteiger, H.A. Bulk-Palladium and Palladium-on-Gold Electrocatalysts for the Oxidation of Hydrogen in Alkaline Electrolyte. J. Electrochem. Soc. 2015, 162, F178–F189. [Google Scholar] [CrossRef]
- Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H.A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260. [Google Scholar] [CrossRef] [Green Version]
- Sheng, W.; Bivens, A.P.; Myint, M.; Zhuang, Z.; Forest, R.V.; Fang, Q.; Chen, J.; Yan, Y. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 2014, 7, 1719–1724. [Google Scholar] [CrossRef]
- Srejic, I.; Rakocevic, Z.; Nenadovic, M.; Strbac, S. Oxygen reduction on polycrystalline palladium in acid and alkaline solutions: Topographical and chemical Pd surface changes. Electrochim. Acta 2015, 169, 22–31. [Google Scholar] [CrossRef]
- Lima, F.H.B.; Zhang, J.; Shao, M.H.; Sasaki, K.; Vukmirovic, M.B.; Ticianelli, E.A.; Adzic, R.R. Catalytic Activity−d-Band Center Correlation for the O2 Reduction Reaction on Platinum in Alkaline Solutions. J. Phys. Chem. C 2007, 111, 404–410. [Google Scholar] [CrossRef]
- Shao, M.-H.; Sasaki, K.; Adzic, R.R. Pd−Fe Nanoparticles as Electrocatalysts for Oxygen Reduction. J. Am. Chem. Soc. 2006, 128, 3526–3527. [Google Scholar] [CrossRef]
- Marković, N.; Adzic, R.R.; Cahan, B.D.; Yeager, E.B. Structural effects in electrocatalysis: Oxygen reduction on platinum low index single-crystal surfaces in perchloric acid solutions. J. Electroanal. Chem. 1994, 377, 249–259. [Google Scholar] [CrossRef]
- Poirier, J.A.; Stoner, G.E. Microstructural Effects on Electrocatalytic Oxygen Reduction Activity of Nano-Grained Thin-film Platinum in Acid Media. J. Electrochem. Soc. 1994, 141, 425–430. [Google Scholar] [CrossRef]
- Yoon, Y.-G.; Park, G.G.; Yang, T.H.; Han, J.N.; Lee, W.Y.; Kim, C.S. Effect of pore structure of catalyst layer in a PEMFC on its performance. Int. J. Hydrog. Energy 2003, 28, 657–662. [Google Scholar] [CrossRef]
- Erikson, H.; Merisalu, M.; Rähn, M.; Sammelselg, V.; Tammeveski, K. Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim. Acta 2012, 59, 329–335. [Google Scholar] [CrossRef]
- Marks, L.; Peng, L. Nanoparticle shape, thermodynamics and kinetics. J. Phys. Condens. Matter 2016, 28, 53001. [Google Scholar] [CrossRef] [PubMed]
- Markovic, N.M.; Gasteiger, H.A.; Ross, P.N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: Rotating ring diskPt (hkl) studies. J. Phys. Chem. 1996, 100, 6715–6721. [Google Scholar] [CrossRef]
- Kondo, S.; Nakamura, M.; Maki, N.; Hoshi, N. Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J. Phys. Chem. C 2009, 113, 12625–12628. [Google Scholar] [CrossRef]
- Shao, M.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. Electrocatalysis on shape-controlled palladium nanocrystals: Oxygen reduction reaction and formic acid oxidation. J. Phys. Chem. C 2013, 117, 4172–4180. [Google Scholar] [CrossRef]
- Jiang, L.; Hsu, A.; Chu, D.; Chen, R. Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. J. Electrochem. Soc. 2009, 156, B643–B649. [Google Scholar] [CrossRef]
- Litster, S.; McLean, G. PEM fuel cell electrodes. J. Power Sour. 2004, 130, 61–76. [Google Scholar] [CrossRef]
- Fouda-Onana, F.; Bah, S.; Savadogo, O. Palladium–copper alloys as catalysts for the oxygen reduction reaction in an acidic media I: Correlation between the ORR kinetic parameters and intrinsic physical properties of the alloys. J. Electroanal. Chem. 2009, 636, 1–9. [Google Scholar] [CrossRef]
- Grdeń, M.; Łukaszewski, M.; Jerkievicz, G.; Czerwiński, A. Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution, and ionic adsorption. Electrochim. Acta 2009, 53, 7583–7598. [Google Scholar]
- Mayet, N.; Servat, K.; Kokoh, B.; Napporn, T.W. Probing the Surface of Noble Metals Electrochemically by Underpotntial Depostion of Transition Metals. Surfaces 2019, 2, 257–276. [Google Scholar] [CrossRef]
- Chierchie, T.; Mayer, C. Voltammetric study of the underpotential depostion of copper on polycrystalline and sing crystal palladium surfaces. Electrochim. Acta 1988, 33, 341–345. [Google Scholar] [CrossRef]
- Shao, M.; Odell, J.H.; Choi, S.; Xia, Y. Electrochemical surface area measurements of platium- and palladium-based nanoparticles. Electrochem. Commun. 2013, 31, 46–48. [Google Scholar] [CrossRef]
- Natter, H.; Hempelmann, R.; Krajewski, T. Nanocrystalline Palladium by Pulsed Electrodeposition. Berichte der Bunsengesellschaft für physikalische Chemie 1996, 100, 55–64. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Kawashima, Y.; Hayashi, T. Pulse plating of Pd-Ni alloys: Dependence on current density. Surf. Coat. Tech. 1986, 27, 145–150. [Google Scholar] [CrossRef]
- Rosen, B.A.; Gileadi, E.; Eliaz, N. Microstructure and composition of pulse plated Re–Ni alloys on a rotating cylinder electrode. J. Electroanal. Chem. 2014, 731, 93–99. [Google Scholar] [CrossRef]
- Xing, W.; Yin, M.; Lv, Q.; Hu, Y.; Liu, C.; Zhang, J. 1-Oxygen Solubility, Diffusion Coefficient, and Solution Viscosity. In Rotating Electrode Methods and Oxygen Reduction Electrocatalysts; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–31. [Google Scholar]
- Crampin, S.; Vvedensky, D.D.; MacLaren, J.M.; Eberhart, M.E. Electronic structure near (210) tilt boundaries in nickel. Phys. Rev. B. 1989, 40, 3413. [Google Scholar] [CrossRef]
- Lavacchi, A.; Miller, H.; Vizza, F. Nanotechnology in Electrocatalysis for Energy; Springer: New York, NY, USA, 2013. [Google Scholar]
- De Oliveira, R.R.L.; Albuquerque, D.A.C.; Cruz, T.G.S.; Yamaji, F.M.; Leite, F.L. Measurement of the Nanoscale Roughness by Atomic Force Microscopy: Basic Principles and Applications, Atomic Force Microscopy—Imaging, Measuring and Manipulating Surfaces at the Atomic Scale, Victor Bellitto, IntechOpen, doi:10.5772/37583. Available online: https://www.intechopen.com/books/atomic-force-microscopy-imaging-measuring-and-manipulating-surfaces-at-the-atomic-scale/measurement-of-the-nanoscale-roughness-by-atomic-force-microscopy-basic-principles-and-applications (accessed on 26 June 2019).
Peak Current Density [mA/cm2] | Direct Current (DC) or Pulse Current (PC) Deposition | Pulse Width (ms) | ECSA (cm2)† Pd-O Reduction |
---|---|---|---|
30 | PC; 20% duty cycle | 100 | 0.280 |
30 | PC; 35% duty cycle | 100 | 0.261 |
30 | PC; 50% duty cycle | 100 | 0.199 |
3 | DC | - | 0.384 |
3 | PC; 20% duty cycle | 100 | 0.690 |
3 | PC; 35% duty cycle | 100 | 0.417 |
3 | PC; 50% duty cycle | 100 | 0.480 |
10 | DC | - | 0.423 |
20 | DC | - | 0.494 |
30 | DC | - | 0.608 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamo, E.; Raviv, A.; Rosen, B.A. Influence of Nanocrystalline Palladium Morphology on Alkaline Oxygen Reduction Kinetics. Catalysts 2019, 9, 566. https://doi.org/10.3390/catal9070566
Hamo E, Raviv A, Rosen BA. Influence of Nanocrystalline Palladium Morphology on Alkaline Oxygen Reduction Kinetics. Catalysts. 2019; 9(7):566. https://doi.org/10.3390/catal9070566
Chicago/Turabian StyleHamo, Eliran, Avichay Raviv, and Brian A. Rosen. 2019. "Influence of Nanocrystalline Palladium Morphology on Alkaline Oxygen Reduction Kinetics" Catalysts 9, no. 7: 566. https://doi.org/10.3390/catal9070566
APA StyleHamo, E., Raviv, A., & Rosen, B. A. (2019). Influence of Nanocrystalline Palladium Morphology on Alkaline Oxygen Reduction Kinetics. Catalysts, 9(7), 566. https://doi.org/10.3390/catal9070566